Динамика молекулы воды, адсорбированной кремнеземом и смолой SGK-7

© Ю.В. Лисичкин¹, Л.А. Сахарова², А.А. Туманов²

¹ Институт атомной энергетики НИЯУ "МИФИ",

Обнинск, Россия

² ГНЦ РФ Физико-энергетический институт им. А.И. Лейпунского,

Обнинск, Россия

E-mail: lsakharova@rambler.ru, lisoferma@gmail.com

Представлены данные нейтронной спектроскопии динамики молекулы легкой воды, адсорбированной в катионите (ионообменной смоле) SGK-7 и на поверхности аэросила (высокодисперсного пирогенного кремнезема) при разной степени гидратации. Измерения проводились на спектрометре ДИН-2ПИ (ЛНФ ОИЯИ, Дубна). По экспериментальным нейтронным спектрам определены характеристики диффузионного и колебательного движения адсорбированных молекул воды. Для анализа данных в области квазиупругого рассеяния нейтронов применялась модель, учитывающая эффекты ограниченной трансляционной и вращательной диффузии. Полученные результаты показывают существенную заторможенность диффузионной подвижности адсорбированных молекул воды по сравнению с обычной (объемной) водой. В частности, коэффициент самодиффузии уменьшается в несколько раз, причем диффузия заторможена тем сильнее, чем меньше толщина гидратного слоя. Зависимость интенсивности и полуширины пика квазиупругого рассеяния от величины изменения импульса нейтрона при рассеянии *q* показывает немонотонный характер, свидетельствующий о проявлении эффектов ограниченной трансляционной диффузии, а также вращательной диффузии и перескоков. Из данных по неупругому рассеянию нейтронов получены парциальные распределения частот колебаний атома водорода молекул воды, адсорбированной катионитом и аэросилами.

1. Введение

В последние годы уделяется значительное внимание изучению поведения молекул воды, адсорбированной на поверхности различных материалов. В отличие от обычной объемной (bulk) воды адсорбированная связана с поверхностью подложки или пор материала матрицы. Типичным примером указанного состояния является вода в пористых средах (стекло Vycor, цеолиты, силикагели, различные полимерные гели, глина, микроэмульсии), а также вода в биологических материалах внутри клетки или на поверхности макромолекул и мембран. Возрастающий интерес к воде в адсорбированном состоянии также обусловлен ее важной ролью во многих отраслях, явлениях и процессах, имеющих практическое и фундаментальное значение (добыча нефти, горнодобывающая промышленность, гетерогенный катализ, замедление коррозии, ряд электрохимических эффектов, стабильность глобулярных протеинов, мембранные технологии, самоорганизация структур мицелл и микроэмульсий, роль гидратации в формировании нативной структуры биополимеров, функционировании реакционноспособных полимеров и др.).

Сетчатый полимерный катионит (ионообменная смола) SGK-7 наряду с другими ионообменными смолами в гидратированном виде используется, например, при добыче урана и в некоторых физико-химических процессах на АЭС [1,2]. Сорбция ионов металла обусловлена образованием в катионите комплексов хелатного типа, причем реакционная способность таких сорбентов в значительной мере определяется молекулярной динамикой адсорбированных катионитом молекул воды [3,4]. Методом рассеяния нейтронов, насколько нам известно, динамика адсорбированной ионообменными смолами воды не изучалась.

Аэросил (высокодисперсный пирогенный кремнезем) в различных формах широко используется в промышленности и медицине. Его сорбционные свойства интенсивно исследуются разными методами. В частности, динамика воды, адсорбированной на поверхности аэросила, изучалась методом нейтронной спектроскопии в работах [5–12]. Однако в [5–9] не исследовалась область квазиупругого рассеяния нейтронов, наиболее информативная относительно механизма диффузии молекул воды. В [10,11] область неупругого рассеяния вообще не рассматривалась, а проведенный анализ квазиупругого рассеяния носил в основном качественный характер. В [12] для учета специфики молекулярной динамики адсорбированной воды была развита феноменологическая модель автокорреляционной функции молекулы H₂O, включающая эффекты ограниченной трансляционной и вращательной диффузии. Однако конкретный анализ экспериментальных данных проводился по упрощенной версии разработанной модели, в которой пренебрегалось влиянием вращательной диффузии на форму пиков квазиупругого рассеяния нейтронов.

В настоящей работе методом нейтронной спектроскопии получены микродинамические характеристики воды, адсорбированной катионитом SGK-7 и несколькими образцами аэросила. Анализ полученных экспериментальных данных проведен на основе модели, позволяющей более адекватно оценить эффекты вращательного движения молекул воды в измеренных спектрах рассеяния нейтронов.

Особенности условий экспериментов и предварительной обработки данных

Измерения спектров рассеяния нейтронов проведены при комнатной температуре на двойном нейтронном спектрометре прямой геометрии ДИН-2ПИ [13]. Средняя энергия падающих на образец нейтронов составляла $E_0 = 4.2$ meV. Разрешение прибора для упругорассеянных нейтронов $\Delta E = 0.15 - 0.20$ meV. Углы рассеяния нейтронов лежали в диапазоне $11 \le \theta \le 134^{\circ}$, что для упругого рассеяния соответствует передаче импульса нейтрона $0.3 \le q \le 2.6$ Å⁻¹. Максимальная передача энергии для неупругого рассеяния составляла $\Delta E_M \sim 200$ meV.

Кроме измерений на гидратированных образцах катионита и аэросила для сопоставления данных проводились измерения на образце обычной объемной воды, а для относительной нормировки детекторов и определения формы функции разрешения в области упругого рассеяния — на ванадии.

Условия и параметры проведения измерений, методика приготовления и конструкция образцов аналогичны описанным в [10–12,14]. Здесь мы остановимся лишь на некоторых моментах, отражающих специфику данной работы.

1. Катионит SGK-7 получен на основе цепи полиакриловой кислоты $(-CH(COOH) - CH_2 -)_n$ и сшивки из дивинилбензола $(-CH(CH_2)(C_6H_6)(CH)(CH_2) -)_m$, содержащего звенья этилстирола $(-CH(CH_2)(C_6H_6)C_2H_5) -)_l$, и имеет следующую формулу:

Образцы катионита были гидратированы как в тяжелой, так и в легкой воде, что позволило за счет изотопного контраста выделить эффект рассеяния нейтронов именно адсорбированной легкой воды (H₂O).

Степень гидратации $c = [m(H_2O)/m(SGK-7)] \cdot 100\%$ (*m* — общая масса соответствующих молекул в образце) равна 90%.

2. Аэросил (пирогенный высокодисперсный кремнезем) состоит из наночастиц приблизительно сферической формы диаметром около 10 nm и имеет удельную поверхность $S_{\rm sp} \sim 250-400 \, {\rm m}^2/{\rm g}$.

В измерениях использовалось четыре образца аэросила с различной степенью гидратации $c = [m(H_2O)/m(SiO_2)] \cdot 100\%$:

1) ASW-1, аэросил марки А-300 (удельная поверхность 300 m²/g), c = 4.9%;

2) ASW-2, аэросил — пористое стекло, получен из аэросила марки A-460 гидротермической обработкой (удельная поверхность $460 \text{ m}^2/\text{g}$), c = 8.2%;

3) ASW-3, получен из аэросила марки A-380 (удельная поверхность $380 \text{ m}^2/\text{g}$) гидротермической обработкой, c = 14.9%;

4) ASW-4, получен добавлением A-300 в обычную воду до образования желеобразной консистенции, c = 900% (аэросил гидрогель).

О выделении эффекта рассеяния нейтронов адсорбированной водой

В данном случае для измерений и на катионите, и на аэросиле было необходимо определить эффект рассеяния от адсорбированной воды, отделив его от других источников рассеяния.

Для эксперимента с катионитом имеем следующие нейтронные спектры:

$$I_{\rm shc} = C_{\rm shc} [\alpha_{\rm shc}^{\rm s} \sigma_{\rm s} + \alpha_{\rm shc}^{\rm h} \sigma_{\rm h} + \alpha_{\rm shc}^{\rm c} \sigma_{\rm c}] + I_{\rm shc}^{\rm mkr},$$

$$I_{\rm sdc} = C_{\rm sdc} [\alpha_{\rm sdc}^{\rm s} \sigma_{\rm s} + \alpha_{\rm sdc}^{\rm d} \sigma_{\rm d} + \alpha_{\rm sdc}^{\rm c} \sigma_{\rm c}] + I_{\rm sdc}^{\rm mkr},$$

$$I_{\rm c} = C_{\rm c} \alpha_{\rm c}^{\rm c} \sigma_{\rm c} + I_{\rm c}^{\rm mkr},$$
(1)

где индексы shc, sdc, s, c, h, d обозначают соответственно "смола+легкая вода+контейнер", "смола+тяжелая вода+контейнер, "смола", "контейнер", "легкая вода" и "тяжелая вода".

Но соотношения (1) существенно упрощаются за счет того, что полное сечение рассеяния на химически связанном протоне (некогерентное сечение $\sigma_{in} = 80$ barn) более чем в 10 раз превышает полное сечение рассеяния на дейтерии (когерентное сечение $\sigma_c = 5.4$ barn, $\sigma_{in} = 2.2$ barn). Это приводит к тому, что рассеянием на D₂O можно пренебречь по сравнению с рассеянием не только на H₂O, но и на смоле, в которой значительно содержание протонов.

Поэтому из (1) для воды, адсорбированной в катионите, приближенно получаем

$$\sigma_{\rm h} = \left[I_{\rm shc} / C_{\rm shc} - \alpha_{\rm shc}^{\rm s} I_{\rm sdc} / (C_{\rm sdc} \alpha_{\rm sdc}^{\rm s}) - (\alpha_{\rm shc}^{\rm c} \alpha_{\rm sdc}^{\rm s}) - \alpha_{\rm shc}^{\rm s} \alpha_{\rm sdc}^{\rm s} \right] - \alpha_{\rm shc}^{\rm s} \alpha_{\rm sdc}^{\rm c} I_{\rm c} / (C_{\rm c} \alpha_{\rm c}^{\rm c} \alpha_{\rm sdc}^{\rm s})] / \alpha_{\rm shc}^{\rm h} + R_{\rm h}^{\rm mkr},$$
(2)

где

$$R_{\rm h}^{\rm mkr} = \left[\alpha_{\rm shc}^{\rm s} I_{\rm shc}^{\rm mkr} / (C_{\rm sdc} \alpha_{\rm sdc}^{\rm s}) + (\alpha_{\rm shc}^{\rm c} \alpha_{\rm sdc}^{\rm s} - \alpha_{\rm shc}^{\rm s} \alpha_{\rm sdc}^{\rm c}) I_{\rm c}^{\rm mkr} / (C_{\rm c} \alpha_{\rm c}^{\rm c} \alpha_{\rm sdc}^{\rm s}) - I_{\rm shc}^{\rm mkr} / C_{\rm shc}\right] / \alpha_{\rm shc}^{\rm h}.$$
 (3)

В случае с аэросилом получаем

$$I_{swc} = C_{swc} [\alpha_{swc}^{s} \sigma_{s} + \alpha_{swc}^{w} \sigma_{w} + \alpha_{swc}^{c} \sigma_{c}] + I_{swc}^{mkr},$$
$$I_{s} = C_{s} \alpha_{s}^{s} \sigma_{s} + I_{s}^{mkr},$$
$$I_{c} = C_{c} \alpha_{c}^{c} \sigma_{c} + I_{c}^{mkr},$$
(4)

где нижние индексы swc, s, с обозначают соответственно "аэросил+вода+контейнер", "аэросил" и "контейнер", верхние индексы s, w, c — соответственно "аэросил", "вода", "контейнер", mkr — вклад многократного рассеяния в регистрируемый нейтронный спектр, І — счет в *n*-ом канале *k*-го детектора (индексы *n* и *k* для краткости опущены), σ — дважды дифференциальное сечение (DDS) соответствующего вещества (аргументы E_0, E_n, θ_k для краткости опущены), C — нормировочная константа, зависящая только от номера детектора (опущен), α — коэффициент ослабления регистрируемого потока однократно рассеянных нейтронов (за счет поглощения и самоэкранировки образца). Для бесконечно тонкого образца коэффициент α равен единице, зависит от E_0, E_n, θ_k . Например, α_{swc}^w — коэффициент ослабления плотности потока нейтронов, однократно рассеянных молекулами воды, адсорбированной на кремнеземе, заключенном в контейнер.

Спектр рассеяния медленных нейтронов от воды, адсорбированной на поверхности аэросила, определялся вычитанием вкладов отожженного аэросила и контейнера из спектра, наблюдаемого в случае "аэросил+вода+контейнер", с учетом указанных выше поправок.

Из (4) получаем

$$\sigma_{\rm w} = \left[I_{\rm swc} / C_{\rm swc} - \alpha_{\rm swc}^{\rm s} I_{\rm s} / (C_{\rm s} \alpha_{\rm s}^{\rm s}) - \alpha_{\rm swc}^{\rm c} I_{\rm c} / (C_{\rm c} \alpha_{\rm c}^{\rm c}) \right] / \alpha_{\rm swc}^{\rm w} + R_{\rm w}^{\rm mkr},$$
(5)

где

$$R_{\rm w}^{\rm mkr} = \left[\alpha_{\rm swc}^{\rm s} I_{\rm s}^{\rm mkr} / (C_{\rm s} \alpha_{\rm s}^{\rm s}) + \alpha_{\rm swc}^{\rm c} I_{\rm c}^{\rm mkr} / (C_{\rm c} \alpha_{\rm c}^{\rm c}) - I_{\rm swc}^{\rm mkr} / (C_{\rm swc}] / \alpha_{\rm swc}^{\rm w} \right]$$
(6)

определяет вклад многократного рассеяния в экспериментально наблюдаемые DDS адсорбированной воды.

Обработка и анализ измеренных нейтронных спектров с учетом необходимых методических и физических поправок (многофононного и многократного рассеяния, разрешения спектрометра и т. д.) проводились аналогично [12] с помощью комплекса программ PRANA [15,16].

4. Анализ экспериментальных данных

Для качественной характеристики наблюдаемых спектров рассеяния нейтронов рассмотрим рис. 1, 2, где представлены области как неупругого, так и квазиупругого рассеяния.

На рис. 1 сравниваются нейтронные спектры для воды, адсорбированной в катионите и на аэросиле. Видно, что в области квазиупругого рассеяния форма спектров для катионита (c = 90%) и аэросила (c = 14.9%) практически одинакова, что свидетельствует о подобии механизмов диффузии молекул адсорбированной воды в данных образцах. В то же время наблюдается резкое уширение квазиупругого пика для гидрогеля (c = 900%), которое

Рис. 1. Экспериментальные времяпролетные спектры рассеяния нейтронов для воды, адсорбированной на аэросиле и смоле SGK-7. 1-3 — адсорбированная вода в образцах с различной степенью гидратации c: 1 — аэросил, c = 14.9%; 2 - SGK-7, c = 90%; 3 - гидрогель; 4 -объемная вода. Угол рассеяния 43° . Спектры нормированы на единицу в максимуме квазиупругого пика.

Рис. 2. Экспериментальные времяпролетные спектры рассеяния нейтронов для различных образцов. 1-3 — адсорбированная вода в образцах с различной степенью гидратации c: 1 — аэросил, c = 4.9%; 2 — c = 14.9%; 3 — гидрогель; 4 — пористое стекло, c = 8.2%; 5 — отожженный аэросил; 6 — ванадий. Спектры для каждого образца просуммированы по углам рассеяния и нормированы на одинаковую площадь.

в свою очередь существенно меньше, чем для объемной воды. Также заметно проявляется разница в энергетической зависимости спектров в области неупругого рассеяния нейтронов в интервале передач энергии 2–20 meV (рис. 2). Это указвает на различие частотных распределений колебаний атомов водорода в молекулах адсорбированной воды для всех образцов. Рис. 2 демонстрирует существенное влияние степени гидратации на молекулярную динамику молекул воды, адсорбированных аэросилом. Спектры гидратированных образцов значительно отличаются от спектров отожженного аэросила и ванадия как в области квазиупругого, так и в области неупругого рассеяния. Это свидетельствует о том, что диффузионная подвижность адсорбированных молекул заметным образом проявляется в экспериментальных данных и увеличивается с возрастанием степени гидратации. Для воды, адсорбированной в пористом стекле аэросила (c = 8.2%), диффузия заторможена сильнее по сравнению с другими образцами.

Модель для расчета функции рассеяния

Специфика динамики молекул адсорбированной воды была подробно рассмотрена нами в [12], где приведены соответствующие соотношения. В частности, было показано, что при наличии ограниченной диффузии функция (закон) рассеяния $S_{\exp}^{lim}(q, \varepsilon)$ будет содержать свернутые с функцией разрешения а) компоненту упругого рассеяния; b) сумму (с определенными весовыми коэффициентами) функций неупругого рассеяния для трансляционного и вращательного движения центра масс, вращательного движения положений равновесия атомов в молекуле и их колебательные движения; с) компоненты с различными коэффициентами, содержащие одну и более сверток "частных" функций рассеяния.

Полученные соотношения, определяющие динамику молекул адсорбированной воды, слишком сложны для непосредственного использования при нахождении параметров этой модели из экспериментальных данных. Поэтому обработка и анализ нейтронных спектров носят поэтапный характер.

Первый этап анализа данных для воды, адсорбированной на кремнеземе, был выполнен в [12] на основе упрощенной модели.

Во-первых, предполагалось, что ограниченной диффузией можно пренебречь, а неограниченную достаточно описать одним лоренцианом с интенсивностью и полушириной, зависящими от изменения импульса нейтрона при рассеянии. Во-вторых, считалось, что эффекты вращательного движения влияют только на интенсивность неупругого рассеяния, поскольку вращательные моды проявляются в виде свертки (см. формулу (33) в [12]) и их влияние на форму квазиупругого пика можно отнести на счет неупругого рассеяния, описываемого в гауссовском приближении.

Использованная упрощенная модель дает вполне удовлетворительное описание экспериментальных данных для воды, адсорбированной на кремнеземе. Согласие расчета с экспериментом улучшается при увеличении степени гидратации. В частности, рис. 3, где приведены результаты для гидрогеля, демонстрирует фактически совпадение измеренных и адекватных им расчетных DDS. Отметим, что на рис. 3 вместе с экспериментальными и адекватными им расчетными DDS также показаны вклады процессов квазиупругого, однофононного, многофононного и многократного рассеяния

Рис. 3. Экспериментальные и расчетные DDS рассеяния нейтронов на адсорбированной воде (гидрогель) при различных углах рассеяния. Светлые кружки — эксперимент, сплошная линия — адекватный расчет. *1* — DDS однофононного рассеяния, *2* — DDS многофононного рассеяния, *3* — DDS квазиупругого рассеяния, *4* — DDS многократного рассеяния.

в полный (адекватный) спектр неупругого рассеяния нейтронов.

Однако в области квазиупругого рассеяния в основании пика для образцов аэросила со степенями гидратации 4.9, 14.9%, а также для катионита SGK-7 (c = 90%) наблюдались расхождения расчетных и экспериментальных кривых.

Поэтому далее анализ полученных экспериментальных данных проведен на основе модели, позволяющей более адекватно оценить эффекты вращательного движения молекул адсорбированной воды.

6. Анализ квазиупругого рассеяния

Предполагая, что как трансляционный, так и вращательный законы квазиупругого рассеяния имеют лоренцевскую зависимость от передачи энергии ε , для описания экспериментального закона квазиупругого рассея-

Рис. 4. Разложение пиков квазиупругого рассеяния на компоненты для воды, адсорбированной на поверхности аэросила (c = 14.9%). *1* — эксперимент, *2* — расчет, *3* — трансляционная компонента (ΔE_T — ее полуширина), *4* — вращательная компонента (ΔE_R — ее полуширина). Угол 43°.

ния мы использовали следующее модельное выражение:

$$S^{\exp}(q,\varepsilon) = \left\{ \frac{A_T(q)}{\pi} \left[\frac{\Delta E_T(q)}{\varepsilon^2 + \Delta E_T^2(q)} \right] + \frac{A_R(q)}{\pi} \left[\frac{\Delta E_R(q)}{\varepsilon^2 + \Delta E_R^2(q)} \right] \right\} \otimes R(q,\varepsilon), \quad (7)$$

где $\mathbf{q} = |\mathbf{k} - \mathbf{k}_0|$; \mathbf{k} — волновой вектор нейтрона, индекс 0 относится к нейтрону до взаимодействия с рассеивателем; $\varepsilon = E - E_0$ — переданная энергия, E и E_0 конечная и начальная энергии нейтрона соответственно; $A_T(q), A_R(q), \Delta E_T(q), \Delta E_R(q)$ — интенсивности и полуширины компонент, индексы T и R относятся к трансляционной и вращательной компонентам соответственно; $R(q, \varepsilon)$ — функция разрешения спектрометра.

Рис. 4 иллюстрирует типичный результат подгонки модельной кривой с использованием выражения (7) экспериментальных пиков квазиупругого рассеяния для воды, адсорбированной на поверхности аэросила (c = 14.9%).

Полученная естественная трансляционная полуширина для воды, адсорбированной аэросилом (c = 4.9 и 14.9%), представлена на рис. 5. На рис. 5 также нанесены данные для воды, адсорбированной катионитом SGK-7 (c = 90%).

Полуширина для воды, адсорбированной в порах стекла (c = 8.2%), в пределах имеющихся погрешностей не отличается от полуширины, характеризующей разрешение спектрометра.

Описание полуширины компоненты трансляционного движения для указанных образцов адсорбированной воды по модели перескоков с формулой $\Delta E(q) = (1 - \cos(qa))A (A$ — нормировочная константа, a — длина перескока) и по модели Чадлей–Эллиота $\Delta E(q) = 2\hbar/\tau_0 [1 - (\sin(ql)/ql)]$ (τ_0 — время "оседлой"

жизни молекулы, l — длина диффузионного скачка) [17] дало значения диффузионных параметров, представленные в таблице вместе с данными работы [12], полученными в однолоренцевском приближении. При небольших значениях переданных нейтрону импульсов q процесс диффузии молекул воды независимо от ее конкретного механизма воспринимается как непрерывный, и полуширина закона рассеяния выражается как $\Delta E(q) = 2\hbar q^2 D$, где D — эффективный коэффициент самодиффузии

Рис. 5. Зависимость полуширины естественной линии трансляционной компоненты закона квазиупругого рассеяния от модуля передачи импульса для адсорбированной воды. *I*, 2 — вода, адсорбированная аэросилом: *I* — c = 4.9%, 2 — c = 14.9%; 3 — вода, адсорбированная катионитом SGK-7 (c = 90%); 4-6 — описание с помощью модели $(1 - \cos(qa))A$ экспериментальных данных I-3 соответственно (параметры приведены в таблице); 7 — описание по модели Чадлей-Эллиота для воды, адсорбированной аэросилом (c = 4.9%) (параметры даны в таблице).

Рис. 6. Естественная полуширина вращательной компоненты квазиупругого пика при различных передачах импульса для воды, адсорбированной на кремнеземе. 1 — аэросил, c = 4.9%; 2 — аэросил, c = 14.9%; 3 — SGK-7 (c = 90%).

Модель	Работа [12]			Настоящая работа		
	c = 4.9%	c = 14.9%	Гидрогель	c = 4.9%	c = 14.9%	Гидрогель
$(1 - \cos(qa))A$	a = 2.3 Å A = 0.017	a = 2.2 Å A = 0.027	a = 1.9 Å A = 0.05	a = 2.6 Å A = 0.012	a = 2.4 Å A = 0.019	a = 2.3 Å A = 0.017
Чарлей-Эллиот	l = 3.6 Å $ au_0 = 51$ ps	$l = 3.5 \text{ \AA}$ $ au_0 = 29 \text{ ps}$	$l = 3.1 \text{\AA}$ $ au_0 = 15 \text{ps}$	$l = 3.5 \text{\AA}$ $ au_0 = 37 \text{ps}$	$l = 3.4 \text{ \AA}$ $ au_0 = 26 \text{ ps}$	$l=3.3\mathrm{\AA}$ $ au_0=28\mathrm{ps}$
Непрерывная диффузия, D, cm ² /s	$2.1 \cdot 10^{-6}$	$3.5 \cdot 10^{-6}$	$8.5 \cdot 10^{-6}$	$2.6 \cdot 10^{-6}$	$3.4 \cdot 10^{-6}$	$2.9 \cdot 10^{-6}$

Параметры модельного описания естественной полуширины квазиупругого рассеяния

молекул H₂O. При рассмотрении области $q \le 1 \text{ Å}^{-1}$ на рис. 5 были определены значения коэффициентов диффузии, которые также представлены в таблице.

На рис. 5 наблюдается близость зависимостей $\Delta E_T(q)$ для воды, адсорбированной на аэросиле (c = 14.9%) и в ионообменной смоле SGK-7 (c = 90%), что согласуется с отмеченным выше (рис. 1) крайне малым различием пиков квазиупругого рассеяния для указанных образцов.

На рис. 6 показана естественная полуширина вращательной компоненты квазиупругого пика воды, адсорбированной аэросилом и катионитом SGK-7. Видно, что в пределах экспериментальных погрешностей нет существенной разницы между полуширинами для образцов воды, адсорбированной аэросилами со степенями гидратации 4.9 и 14.9% и смолой SGK-7 (90%), и (а значит, и коэффициенты вращательной диффузии D_R) не зависят от передачи импульса нейтрона q. Порядок величины ΔE_R (0.37 meV) совпадает с имеющимися в литературе данными [18].

Рис. 7. Зависимость интенсивностей трансляционной и вращательной компонент закона квазиупругого рассеяния от модуля передачи импульса для воды, адсорбированной в катионите SGK-7 (c = 90%). 1 -экспериментальная интенсивность трансляционной компоненты $A_T(q)$, 2 -экспериментальная интенсивность вращательной компоненты $A_R(q)$, 3 -расчет коэффициента A_0^0 [19], 4 -расчет коэффициента A_0^1 [19].

Интенсивности трансляционной $A_T(q)$ и вращательной $A_R(q)$ компонент для воды, адсорбированной смолой SGK-7 (90%), входящие в выражение (7), представлены на рис. 7. Экспериментальные данные достаточно хорошо описываются коэффициентами A_0^0 и A_0^1 [19], определяющими соответственно трансляционную и вращательную диффузию атома внутри сферы. Аналогичные рисунки получены и для других образцов.

Анализ неупругого рассеяния, парциальное частотное распределение атомов водорода адсорбированной воды

Посредством итерационной процедуры с помощью комплекса программ PRANA [16] с учетом эффектов конечного разрешения, многофононного и многократного рассеяния из экспериментальных DDS было получено парциальное распределение частот колебаний атомов водорода $g(\varepsilon)$ в области межмолекулярных колебаний для воды, адсорбированной на поверхности аэросила и в катионите SGK-7.

Рис. 8, где представлены полученные $g(\varepsilon)$, демонстрирует наличие общих черт распределения частот колебаний объемной и адсорбированной воды, за исключением воды, адсорбированной в порах стекла (8.2%). Четко выражены полоса заторможенных вращений (либраций) при энергии колебаний $\varepsilon = 70 \,\mathrm{meV}$ и полоса заторможенных трансляционных колебаний молекул воды вместе с окружением ($\varepsilon = 5 \text{ meV}$). К особенностям наблюдаемого частотного распределения межмолекулярных колебаний адсорбированных молекул воды относится некоторое сужение и смещение в область более высоких частот полосы заторможенных вращений молекулы в поле близких соседей, а также проявление отчетливой полосы заторможенных трансляций, что свидетельствует о значительных временах жизни ближнего порядка и размере пространственной области, на которую он распространяется в адсорбированной воде.

На рис. 9 полученное нами распределение $g(\varepsilon)$ для воды, адсорбированной на гидрогеле, сравнивается с другими частотными распределениями. В частности,

Рис. 8. Парциальное частотное распределение атома водорода адсорбированной воды для различных образцов. *1* — объемная вода, *2*-6 — адсорбированная вода: на аэросиле (*2* — 4.9%, *3* — 8.2%, *4* — 14.9%, *5* — гидрогель), *6* — SGK-7 (90%).

Рис. 9. Парциальное частотное распределение атома водорода для различных образцов. I — вода, адсорбированная на гидрогеле (результаты настоящей работы), T = 290 K; 2 — вода, адсорбированная на аэросиле A-380 (эксперимент [5]), T = 10 K; 3 — спектр льда (T = 24 K, спектрометр КДСОГ); 4 — расчет для кластера с шестью молекулами воды [5]. Спектры нормированы на единицу при передаче энергии $\varepsilon = 15$ meV.

на рисунке представлены экспериментальные $g(\varepsilon)$ для льда и воды, адсорбированной на аэросиле, и расчетное распределение для кластера из шести молекул воды [5]. Можно отметить а определенное подобие частотных распределений в области вращательных колебаний, несмотря на существенную разницу температур образцов, и существенное обеднение областей трансляционных колебаний с энергией около 5–7 и 23–26 meV для воды в гидрогеле, что является свидетельством разрушения сетки водородных связей.

8. Заключение

Анализ экспериментальных данных квазиупругого рассеяния нейтронов на основе модели, учитывающей трансляционные и вращательные движения молекул воды, адсорбированной аэросилом и катионитом SGK-7, показал, что полуширины и интенсивности квазиупругого пика в зависимости от передачи импульса *q* не описываются простыми моделями трансляционной диффузии, демонстрируя вид более характерный для вращательных перескоков.

Естественная полуширина квазиупругого пика для вращательной компоненты не зависит от *q* и практически не чувствительна к степени гидратации образцов.

Диффузионная подвижность молекул адсорбированной воды по сравнению с объемной водой существенно заторможена, причем тем сильнее, чем меньше толщина гидратного слоя. Даже весьма малая добавка аэросила в объемную воду приводит к уменьшению коэффициента самодиффузии в несколько раз. Коэффициент диффузии молекул адсорбированной воды увеличивается с ростом степени гидратации, но не достигает значения для объемной воды: для аэросила при c = 4.9% $D = 2.6 \cdot 10^{-6}$ cm²/s, для гидрогеля $D = 8.5 \cdot 10^{-6}$ cm²/s (для объемной воды $D = 24 \cdot 10^{-6}$ cm²/s).

Установлена значительная близость формы пиков квазиупругого рассеяния и параметров механизма диффузионного движения для воды, адсорбированной катионитом SGK-7 со степенью гидратации 90% и аэросилом (c = 14.9%).

На основе экспериментальных данных по неупругому рассеянию нейтронов определены парциальные частотные распределения межмолекулярных колебаний атома водорода для воды, адсорбированной аэросилом и катионитом SGK-7. Наблюдается существенное уменьшение интенсивности в низкочастотной трансляционной области ($\varepsilon \sim 5 \,\mathrm{meV}$) для аэросила со степенью гидратации 4.9% по сравнению с чистой водой и для гидрогеля ($\varepsilon \sim 6$ и 25 meV) по сравнению со льдом и адсорбированной аэросилом водой при температуре 10 K, что свидетельствует о заметном разрушении сетки водородных связей.

Полученные данные о параметрах диффузионного и колебательного движения использованы для адекватного расчета наблюдаемых спектров рассеяния нейтронов исследованными образцами адсорбированной воды. Результаты расчетов удовлетворительно согласуются с экспериментом как в области квазиупругого, так и в области неупругого рассеяния, что подтверждает достаточную точность примененных в настоящей работе методов и приближений.

Список литературы

 Ионообменные материалы для процессов гидрометаллургии, очистки сточных вод и водоподготовки. Справочник / Под ред. акад. Б.Н. Ласкорина. 3-е изд. ВНИИХТ, М. (1985). 207 с.

- [2] Е.И. Захаров, Б.Е. Рябчиков, В.С. Дьяков. Ионообменное оборудование атомной промышленности. Энергоатомиздат, М. (1987). 248 с.
- [3] Н.М. Эмануэль, В.И. Рогинский, А.Л. Бучаченко. Успехи химии 51, 361 (1986).
- [4] В.И. Гольданский, Ю.Ф. Крупянский, Е.Н. Фролов. Молекуляр. биология **19**, 532 (1982).
- [5] Е.Ф. Шека, И.В. Маркичев, И. Натканец, В.Д. Хаврюченко. Физика элементар. частиц и атом. ядра 27, 493 (1996).
- [6] Е.Ф. Шека, И.В. Маркичев, В.Д. Хаврюченко, И. Натканец. ЖСХ 34, 40 (1993).
- [7] Е.Ф. Шека, В.Д. Хаврюченко, И. Натканец. ЖСХ **33**, 66 (1992).
- [8] В.Д. Хаврюченко, Е.Ф. Шека. ЖСХ 35, 18 (1994).
- [9] E.F. Sheka, I. Natkaniec, V.D. Khavryutchenko, P.B. Nechitaylov, A.Yu. Musychka, V.M. Ogenko, I.V. Markichev, J. Brankowski, J. Krawczyk. J. Electron Spectroscopy Related Phenom. 54/55, 855 (1990).
- [10] А.А. Туманов, В.И. Зарко, Г.М. Козуб, А.А. Чуйко. Поверхность. Физика, химия, механика 5, 115 (1993).
- [11] A.A. Tumanov, V.I. Zarko. Physica B 198, 97 (1994).
- [12] Ю.В. Лисичкин, Л.А. Сахарова, А.А. Туманов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 6, 56 (2006).
- [13] А.В. Абрамов, Н.М. Благовещенский, Б.К. Блинов. Атом. энергия 66, 316 (1989).
- [14] Ю.В. Лисичкин, Л.А. Сахарова, А.А. Туманов. Кристаллография **52**, *4*, 645 (2007).
- [15] Ю.В. Лисичкин. Учебное пособие. ИАТЭ, Обнинск. (2004).44 с.
- [16] Ю.В. Лисичкин, Н.В. Ситуха. Поверхность. Рентгеновские, синхротронные и нейтронные исследования *6*, 38 (2006).
- [17] C.T. Chudley, R. Elliot. J. Proc. Phys. Soc. 77, 353 (1961).
- [18] Н.М. Благовещенский, А.Г. Новиков, Е. Осава, Н.Н. Рожкова. ФТТ **52**, *5*, 904 (2010).
- [19] F. Volino, A.J. Dianoux. Mol. Phys. 41, 271 (1980)