Магнитная структура соединения Nd_5Ge_3

© А.П. Вохмянин¹, Б. Мэджи², А.Н. Пирогов¹, А.Е. Теплых¹

¹ Институт физики металлов УрО РАН, Екатеринбург, Россия ² Индийский технологический институт, Мумбай, Бомбей, Индия

E-mail: pirogov05@gmail.com

При температурах ~ 10 и 293 К проведены нейтронографические измерения интерметаллического соединения Nd₅Ge₃, имеющего гексагональную структуру (пространственная группа $P6_3/mcm$). Для облегчения поиска реальной модели магнитной структуры соединения использованы базисные функции неприводимых представлений пространственной группы $D_{6h}^3 (P6_3/mcm)$, вычисленные в результате симметрийного анализа возможных в Nd₅Ge₃ магнитных структур с волновым вектором $\mathbf{k} = \mu \mathbf{b}_1$.

Работа частично финансировалась программой "Импульс" (код 01.2.006.13394), проектом РФФИ № 10-02-00155, проектом УрО РАН № 12-Т-2-1006 и Минобрнауки (госконтракт № 14.518.11.7020).

1. Введение

Интерметаллические соединения типа R_5M_3 , где R — редкоземельный ион, M = Si, Ge, обладают интересными магнитными свойствами, обусловленными наличием двух кристаллографически неэквивалентных позиций, в которых расположены редкоземельные ионы. Например, в интерметаллиде Nd₅Ge₃ имеют место переход в фазу обратного спинового стекла, необратимый индуцированный внешним полем переход из антиферромагнитного в ферромагнитное состояние и т.д. [1,2].

Магнитная структура соединения Nd₅Ge₃ изучалась с помощью дифракции нейтронов в [1,3]. В этих работах был сделан вывод, что соединение имеет неколлинеарную антиферромагнитную структуру с волновым вектором $\mathbf{k} = 0.25\mathbf{b}_1$, где \mathbf{b}_1 — один из основных периодов обратной решетки [4]. При этом магнитные моменты ионов, занимающих позицию 6*g*, ориентированы параллельно оси *c*, тогда как моменты ионов, находящихся в 4*d*-позиции, отклонены от оси *c* на 31°.

Мы выполнили симметрийный анализ возможных в Nd_5Ge_3 магнитных структур и установили, что для волнового вектора $\mathbf{k} = \mu \mathbf{b}_1$ имеют место только одномерные неприводимые представления. Это обстоятельство позволяет предполагать, что в Nd_5Ge_3 допустимы магнитные структуры типа спиновой волны.

Целью настоящей работы является определение магнитной структуры соединения Nd₅Ge₃, модель которой могла бы быть построена из базисных функций одномерных неприводимых представлений.

2. Методика эксперимента

Исследуемый образец синтезирован на физическом факультете Индийского технологического института. Нейтронографические измерения выполнены на дифрактометрах Д-2 и Д-3, смонтированных на горизонтальных каналах реактора ИВВ-2М (Заречный, Россия), при $T \approx 10$ и 293 К в криостате с замкнутым гелиевым

циклом. Использовались пучки нейтронов с длинами волн $\lambda = 1.8$ (Д-2) и 2.43 Å (Д-3). Нейтронограммы обрабатывались по методу Ритвелда с использованием программы Fullprof.

3. Кристаллическая структура Nd_5Ge_3

Нейтронограмма, полученная при комнатной температуре (рис. 1), содержит только ядерные рефлексы. Расчет приводит к следующим структурным параметрам: пространственная группа D_{6h}^3 ($P6_3/mcm$) (гексагональная сингония); параметры решетки a == 8.760(2) Å, c = 6.636(2) Å; ионы Nd расположены в 4d-(1(1/3 2/3 0)),2(1/3 2/3 1/2),3(2/3 1/3 0),4 (2/3 1/3 1/2)) 6д-позициях $(1 (x \ 0 \ 1/4)),$ И 2 (0 x 1/4), $3 (\bar{x} \ \bar{x} \ 1/4),$ $4 (\bar{x} \ 0 \ 3/4),$ 5 $(0 \bar{x} 3/4)$, 6 (x x 3/4) с $x \approx 0.243$); атомы Ge занимают 6g-позиции с $x \approx 0.606$. Факторы расходимости $R_B = 7.03\%$, $R_f = 7.06\%$.

Рис. 1. Нейтронограмма Nd₅Ge₃, полученная при 293 К.

4. Симметрийный анализ магнитных структур, возможных в Nd₅Ge₃

В результате анализа нейтронограммы, измеренной при $T \approx 10 \, \text{K}$ (рис. 2) установлено, что магнитная структура Nd₅Ge₃ характеризуется волновым вектором $\mathbf{k} = \mu \mathbf{b}_1 \, \mathbf{c} \, \mu \approx 0.187$. Чтобы получить базисные функции, описывающие весь набор магнитных структур, возможных в Nd₅Ge₃ для этого вектора \mathbf{k} , воспользуемся методикой симметрийного анализа, следуя [5].

Прежде всего перейдем к системе координат, используемой Ковалевым [4]: $(XYZ)_K = (XYZ)_I - (0\ 0\ 1/4)$, где $(XYZ)_I$ — система координат, принятая в Международных таблицах пространственных групп [6].

Выписываем матрицы преобразований для поворотных элементов группы волнового вектора $\mathbf{k}_5 = \mu \mathbf{b}_1$ из работы [4]

$$H_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad H_{10} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$H_{16} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad H_{19} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Для элементов симметрии H_1 и H_{16} сопровождающая трансляция $\boldsymbol{\tau}_h = 0$, для элементов H_{10} и H_{19} $\boldsymbol{\tau}_h = (0 \ 0 \ 1/2).$

Для 4*d*- и 6*g*-позиций составляем таблицы перестановок атомов под действием элементов группы волнового вектора \mathbf{k}_5

$$(x' y' z') = g \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \mathbf{a}_p,$$

где $g = \{h | \boldsymbol{\tau}_h\}$ — элемент симметрии *H*-группы волнового вектора G_k с сопровождающей трансляцией $\boldsymbol{\tau}_h$, а \mathbf{a}_p — возвращающая трансляция, т.е. трансляция, возвращающая атом с полученными координатами в

Рис. 2. Нейтронограмма Nd₅Ge₃, полученная при 9.5 К.

Таблица 1. Проективные представления группы волнового вектора $\mathbf{k} = \mu \mathbf{b}_1$

T32	H_1	H_{10}	H_{16}	H_{19}
$ au_1$	1	1	1	1
$ au_2$	1	1	-1	-1
$ au_3$	1	-1	1	-1
$ au_4$	1	-1	-1	1

нулевую ячейку. Мы используем обозначения Вигнера– Зейтца [5], в которых все поворотные элементы симметрии считаются помещенными в начало системы координат, а наличие трансляционных компонент учитывается приписыванием сопровождающих трансляций к этим элементам. Полученные таблицы перестановок атомов мы не приводим. В дальнейшем учитываются следующие переходы атомов: $1 \rightarrow 1$, $1 \rightarrow 2$, $3 \rightarrow 3$ и $3 \rightarrow 4$ в 4*d*-позиции и $1 \rightarrow 1$, $1 \rightarrow 6$, $2 \rightarrow 2$, $2 \rightarrow 5$, $3 \rightarrow 3$ и $3 \rightarrow 4$ в 6*g*-позиции.

Определим значения $\exp(-i\mathbf{k}\boldsymbol{\tau}_h)$ для каждого элемента группы волнового вектора. В случае элементов H_1 и H_{16} экспонента $\exp(-i\mathbf{k}\boldsymbol{\tau}_h) = 1$, так как $\boldsymbol{\tau}_h = 0$, в случае элементов H_{10} и H_{19} экспонента $\exp(-i\mathbf{k}\boldsymbol{\tau}_h) = 1$, так как $\boldsymbol{\tau}_h$ и **k** взаимно перпендикулярны.

Затем выписываются проективные представления группы волнового вектора из работы [4] (табл. 1). Поскольку $\exp(-i\mathbf{k\tau}_h) = 1$ во всех случаях, малые представления совпадают с проективными.

Вычислим характер магнитного представления χ_m^k , знание которого необходимо при расчете кратности вхождения неприводимых магнитных представлений τ_i в приводимое. Для этого используем формулу

$$\chi_m^k = \chi_p^k \delta_h \mathrm{Sp} R^h,$$

в которой

$$\chi_p^k = \sum_j \exp[-ika_p(g, j)]\delta_{j,g_k}$$

— характер перестановочного представления, $\delta_h = 1$ для простых элементов симметрии и $\delta_h = -1$ для инверсионных, R^h — матрица элемента симметрии [5].

Рассчитываем кратность вхождения неприводимых магнитных представлений в приводимое, используя формулу [5]

$$n_{\nu} = \left[\sum_{h \in G_k^0} \chi_m^k \chi^{*k\nu}(g)\right] / n(G_k^0),$$

где $\chi^{k\nu}$ — характер неприводимого представления группы волнового вектора $d^{k\nu}$, $n(G_k^0)$ — число элементов в точечной группе G_k^0 . Определяем состав магнитного представления для каждой позиции

$$d_m^{k5}(4d) = 2(\tau_1 + \tau_2) + 4(\tau_3 + \tau_4),$$

$$d_m^{k5}(6g) = 3(\tau_1 + \tau_3) + 6(\tau_2 + \tau_4).$$

Физика твердого тела, 2014, том 56, вып. 1

Представление	Позиция 4d					
	1 (1/3 2/3 0)	2 (1/3 2/3 1/2)	3 (2/3 1/3 0)	4 (2/3 1/3 1/2)		
$ au_1$	210	$\bar{2}\bar{1}0$	000	000		
$ au_1'$	000	000	210	$\overline{2}\overline{1}0$		
$ au_2$	210	210	000	000		
$ au_2'$	000	000	210	210		
$ au_3$	010	010	000	000		
$ au_3'$	000	000	010	010		
$ au_{3}^{\prime\prime}$	001	001	000	000		
$ au_{3}^{\prime\prime\prime}$	000	000	001	001		
$ au_4$	010	010	000	000		
$ au_4'$	000	000	010	010		
$ au_4^{\prime\prime}$	001	001	000	000		
$ au_4^{\prime\prime\prime}$	000	000	001	001		

Таблица 2. Приведенные к вещественному виду базисные функции неприводимых представлений группы D_{6h}^3 (*P*6₃/*mcm*), входящих в состав магнитного представления с {**k**₅} = μ **b**₁ (позиция 4*d*)

Таблица 3. Приведенные к вещественному виду базисные функции неприводимых представлений группы D_{6h}^3 (*P*6₃/*mcm*), входящих в состав магнитного представления с {**k**₅} = μ **b**₁ (позиция 6*g*)

Представление	Позиция 6g					
	1 (x 0 1/4)	2 (0x 1/4)	3 $(\bar{x} \bar{x} 1/4)$	4 $(\bar{x} 0 3/4)$	5 $(0\bar{x} 3/4)$	6 (<i>x x</i> 3/4)
$ au_1$	001	000	000	000	000	001
$ au_1'$	000	001	000	000	001	000
$\tau_1^{\prime\prime}$	000	000	001	001	000	000
$ au_2$	210	000	000	000	000	210
$ au_2'$	000	210	000	000	210	000
$ au_2^{\prime\prime}$	000	000	210	210	000	000
$ au_2^{\prime\prime\prime}$	010	000	000	000	000	010
$ au_2^{ m IV}$	000	010	000	000	010	000
$\overline{\tau_2^{\mathrm{V}}}$	000	000	010	010	000	000
$\overline{\tau_3}$	001	000	000	000	000	001
$ au_3'$	000	001	000	000	001	000
$ au_{3}^{\prime\prime}$	000	000	001	001	000	000
$ au_4$	210	000	000	000	000	$\bar{2}\bar{1}0$
$ au_4'$	000	210	000	000	$\overline{2}\overline{1}0$	000
$ au_4^{\prime\prime}$	000	000	210	2 10	000	000
$ au_4^{\prime\prime\prime}$	010	000	000	000	000	010
$ au_4^{ m IV}$	000	010	000	000	010	000
$ au_4^{ m V}$	000	000	010	010	000	000

Базисные функции $\psi_{\lambda}^{k\nu}$, которые необходимо найти, представляют собой полный набор всех атомных компонент и преобразуются по неприводимому представлению $d^{k\nu}$. Они могут быть записаны как $3\sigma N$ -мерный столбец (N — число примитивных ячеек в кристалле) в виде прямой суммы [5]

$$\psi_{\lambda}^{k\nu} = \sum_{n}^{\otimes} \sigma_{\lambda}^{k\nu} \exp(i\mathbf{k}\mathbf{t}_{n}),$$

где $\sigma_{\lambda}^{kv} - 3\sigma_m$ -мерный столбец. Его можно представить в виде прямой суммы σ_m аксиальных трехмерных векторов $\mathbf{S}\binom{kv}{\lambda}|i)$, относящихся к отдельным магнитоактив-

ным атомам і примитивной ячейки кристалла [5],

$$\sigma_{\lambda}^{k\nu} = \sum_{i=1}^{\sigma_m} S \begin{pmatrix} k \nu \\ \lambda \end{pmatrix} i$$

Рассчитываем атомную (для *i*-го атома) компоненту λ -й аксиальной базисной функции ν -го неприводимого представления с помощью следующего соотношения [5]:

$$S\begin{pmatrix} k \nu \\ \lambda \end{pmatrix} = \sum_{h \in G_k^0} d_{\lambda[\mu]}^{*k\nu}(g) \exp[-ika_p(g, j)] \delta_{i,g[j]} \delta_h \begin{pmatrix} R_{x[\beta]}^h \\ R_{y[\beta]}^h \\ R_{z[\beta]}^h \end{pmatrix},$$

где $d_{\lambda[\mu]}^{k\nu}$ — матрица неприводимого представления $d^{k\nu}$, $[\mu]$ — фиксированный (стартовый) номер столбца матри-

цы), $\delta_{i,g[j]}$ — δ -символ Кронекера, а $\begin{pmatrix} R^h_{x[\beta]} \\ R^h_{y[\beta]} \\ R^h_{z[\beta]} \end{pmatrix}$ — столбец

матрицы поворотного элемента симметрии точечной группы волнового вектора G_k^0 со стартовым номером β .

Базисные функции на произвольном луче \mathbf{k}_L связаны с базисными функциями на исходном луче $\mathbf{k} = \mathbf{k}_1$ следующей формулой:

$$S\begin{pmatrix}k_L\nu\\\lambda\end{vmatrix} i'\end{pmatrix} = \exp[-i\mathbf{k}_L\mathbf{a}_p(g_L,i)]\delta_{h_L}R^{h_L}\mathbf{S}\begin{pmatrix}k\nu\\\lambda\end{vmatrix} i\end{pmatrix}.$$

Здесь $\mathbf{k}_L = h_L \mathbf{k}_1$, где h_L — поворотная часть элементапредставителя $g_L = \{h_L | \boldsymbol{\tau}_{hL}\}.$

Комплексные базисные функции приводим к вещественному виду. Для этого следует рассчитать базисные функции для лучей звезды волнового вектора $\mathbf{k}_1 = \mu \mathbf{b}_1$ и $\mathbf{k}_2 = -\mathbf{k}_1$. Линейная комбинация базисных функций для этих лучей, как правило, является вещественной величиной.

Полученные нами базисные функции неприводимых представлений группы D_{6h}^3 (*P*6₃/*mcm*), входящих в состав магнитного представления со звездой волнового вектора { \mathbf{k}_5 } = $\mu \mathbf{b}_1$, приведены в табл. 2 и 3.

5. Магнитная структура Nd₅Ge₃ при $T \approx 10$ K

Используя данные табл. 2 и 3 и нейтронограмму, измеренную при $T \approx 10$ К, мы пришли к выводу, что модель магнитной структуры Nd₅Ge₃ можно построить из следующих базисных функций неприводимых представлений группы $D_{6h}^3 (P6_3/mcm)$: $\psi(4d) = \psi_{\tau 3''} + \psi_{\tau 3''}$ и $\psi(6g) = \psi_{\tau 3} + \psi_{\tau 3'} + \psi_{\tau 3''}$, т.е. магнитные моменты ионов Nd направлены вдоль оси *c* в обеих позициях. Величина магнитного момента иона Nd в 4*d*-позиции равна 2.6(1) $\mu_{\rm B}$, а в 6*g*-позиции — 1.9(1) $\mu_{\rm B}$. Факторы расходимости $R_B = 9.73\%$, $R_f = 8.70\%$, $R_m = 9.52\%$.

6. Заключение

Результаты симметрийного анализа возможных в Nd₅Ge₃ магнитных структур с $\mathbf{k}_5 = \mu \mathbf{b}_1$ показывают, что неприводимые представления, входящие в состав магнитного представления, являются одномерными. Этот результат указывает на возможность существования магнитной структуры типа спиновой волны. Полученное из расчета нейтронограммы при $T \approx 10$ K значение $\mu \approx 0.187$ свидетельствует о модуляции магнитного момента вдоль волнового вектора.

Список литературы

[1] P. Schobinger-Papamantellos, K.H.J. Buschov. J. Magn. Magn. Mater. **49**, 349 (1985).

- [2] B. Maji, K.G. Suresh, A.K. Nigam. J. Phys: Cond. Matter 23, 506 002 (2011).
- [3] B. Maji, K.G. Suresh, A.K. Nigam. Europhys. Lett. 91, 37 007 (2010).
- [4] О.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. Наука, М. (1986). 368 с.
- [5] Нейтроны и твердое тело. Т. 2. Нейтронография магнетиков / Ю.А. Изюмов, В.Е. Найш, Р.П. Озеров. Атомиздат, М. (1981). 312 с.
- [6] International tables for X-ray crystallography. V. I. Kynoch Press, Birmingham (1952). 558 p.