Магнитные свойства, магнитосопротивление и фазовые переходы, индуцированные магнитным полем, в мультиферроиках Tb_{0.95}Bi_{0.05}MnO₃ и Eu_{0.8}Ce_{0.2}Mn₂O₅

© В.А. Санина, Е.И. Головенчиц, В.Г. Залесский

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: sanina@mail.ioffe.ru

(Поступила в Редакцию 27 сентября 2007 г.)

Исследованы магнитные свойства, магнитосопротивление и фазовые переходы в полупроводниковых манганитах-мультиферроиках $Tb_{0.95}Bi_{0.05}MnO_3$ и $Eu_{0.8}Ce_{0.2}Mn_2O_5$, в которых ранее были изучены диэлектрические свойства. Анализ последних привел нас к заключению о возникновении в изученных кристаллах при температурах $T \ge 180 \,\mathrm{K}$ фазового расслоения с динамическим периодическим распределением квази-2D-слоев из ионов марганца разной валентности — зарядового сегнетоэлектричества. Это состояние обладает гигантской диэлектрической проницаемостью и ферромагнетизмом в слоях, содержащих ионы Mn³⁺ и Mn⁴⁺. При низких температурах (T < 100 K) основной фазовый объем занят диэлектрической фазой. Исследования магнитных свойств и влияния магнитного поля на диэлектрические свойства кристаллов подтверждают принятую нами картину формирования состояния с гигантской диэлектрической проницаемостью. При низких температурах намагниченность Tb_{0.95}Bi_{0.05}MnO₃ имеет особенности в точках фазовых переходов чистого кристалла TbMnO3. При всех температурах наблюдается также ферромагнитный момент. На границах квази-2D-слоев в магнитном поле наблюдаются скачки сопротивления, обусловленные метамагнитными переходами в слоях с ионами Mn^{3+} и Mn^{4+} . При температурах $T > 180 \, \text{K}$ наблюдается периодическое изменение сопротивления в магнитном поле, иллюстрирующее процесс самоорганизации носителей заряда. Магнитное поле достаточной величины приводит к сдвигу фазового перехода от 180К до более высоких температур и индуцирует добавочные фазовые переходы.

Работа поддержана грантами РФФИ 05-02-16328 и 08-02-00077, а также Программой 03 Президиума РАН.

PACS: 75.47.Lx, 76.50.+g, 77.80.-e

1. Введение

В работе [1] приведены результаты исследования диэлектрических свойств полупроводниковых манганитовмультиферроиков Tb_{0.95}Bi_{0.05}MnO₃ и $R_{(1-x)}$ Ce_xMn₂O₅ (R = Eu и Gd, x = 0.2 и 0.25 соответственно). Оказалось, что диэлектрические свойства этих кристаллов подобны при всех температурах и демонстрируют при T > 180 К наличие состояния с высокими значениями диэлектрической проницаемости.

Полученные результаты были интерпретированы на основе предположения о статистически неравномерном распределении легирующих примесей в исследованных кристаллах. Мы полагаем, что в процессе роста кристаллов формируются квази-2D-тонкие слои, содержащие легирующие ионы, ионы марганца различной валентности (Mn³⁺ и Mn⁴⁺) и носители заряда (электроны). При низких температурах электроны и ионы Mn³⁺-Mn⁴⁺ сосредоточены в этих слоях. При этом основной объем кристаллов не содержит носителей заряда и является диэлектрическим. Слои с носителями заряда занимают сравнительно малый фазовый объем. С ростом температуры при возникновении термически активированных прыжков носителей заряда из исходных (as grown) слоев происходит перераспределение электронов и связанное с этим перераспределение ионов марганца Mn³⁺-Mn⁴⁺ в основном объеме кристалла.

Полученный в [1] набор экспериментальных данных удалось объяснить в предположении, что в результате фазового перехода при $T \approx 180 \,\mathrm{K}$ в высокотемпературной фазе формируется новое динамическое состояние кристаллов с периодическим чередованием слоев, содержащих ионы Mn³⁺ и Mn⁴⁺, и слоев с исходными ионами кристалла определенной валентности. На границах слоев возникают искажения в решетке. Периодическое пространственное распределение зарядов в решетке обусловливает появление зарядового сегнетоэлектричества, которое приводит к состоянию с диэлектрическими проницаемостями $\varepsilon' \sim 10^4 - 10^5$. Теоретически возможность электронного (зарядового) сегнетоэлектричества рассмотрена в работе [2]. Недавно один из возможных вариантов реализации зарядового сегнетоэлектричества за счет упорядочения ионов железа разной валентности был обнаружен в зарядово-фрустированном кристалле $LuFe_2O_4$ [3].

Двойной обмен [4,5] между ионами Mn³⁺-Mn⁴⁺ приводит к ферромагнитной ориентации спинов этих ионов в соответствующих слоях.

В настоящей работе рассмотрены результаты исследования намагниченности, магнитосопротивления кристаллов $Tb_{0.95}Bi_{0.05}MnO_3$ и влияния магнитного поля на диэлектрические и магнитные свойства $Tb_{0.95}Bi_{0.05}MnO_3$ и $Eu_{0.8}Ce_{0.2}Mn_2O_5$. Одной из задач этих исследований была проверка сделанных в работе [1] предположений

о природе высокополяризуемого состояния. Полученные в настоящей работе результаты согласуются с принятым в [1] механизмом формирования динамического периодического распределения зарядов в кристаллах. Показано также, что магнитное поле оказывает сильное влияние на свойства изучаемых кристаллов при всех температурах и индуцирует в них ряд фазовых переходов.

2. Магнитные свойства

В исследуемых кристаллах изучались температурные зависимости намагниченности в постоянном магнитном поле в интервале температур 5–250 К, а также зависимости намагниченности от поля при фиксированных температурах. Измерения проводились на вибрационном магнитометре. Магнитное поле величиной до 7 Т создавалось сверхпроводящим соленоидом.

Исследования диэлектрических свойств в изучаемых кристаллах при низких температурах показали, что в кристаллах имеется преобладающий объем диэлектрической фазы, не содержащей носителей заряда и ионов марганца переменной валентности. И имеется незначительный фазовый объем исходных квази-2D-слоев, в которых локализованы носители заряда [1].

На рис. 1 представлены результаты исследования температурной зависимости магнитного момента в кристалле TbBi при низких температурах. Как видно, в этом

Рис. 1. Температурная зависимость магнитного момента кристалла $Tb_{0.95}Bi_{0.05}MnO_3$ в магнитном поле H = 7 kOe, параллельном [101]. На вставке — зависимость магнитного момента от поля (в той же ориентации) при T = 5 K.

кристалле имеются аномалии магнитного момента при тех же температурах (6, 20, 27 и 40 K), при которых в чистом TbMnO₃ наблюдаются фазовые переходы [6]. Магнитные свойства TbMnO₃ изучались ранее в работе [7]. Низкотемпературные фазовые переходы в [6] являются одновременно магнитными и структурными. Наблюдение нами аномалий магнитного момента при температурах фазовых переходов чистого кристалла TbMnO₃ показывает, что в легированном кристалла TbBi при низких температурах в матрице кристалла с квази-2D-слоями, в которых локализованы носители заряда, имеется бесконечный кластер диэлектрического кристалла со свойствами кристалла TbMnO₃.

Таким образом, изучение намагниченности при низких температурах подтверждает факт фазового расслоения кристалла на преобладающую диэлектрическую фазу и малый фазовый объем, занятый носителями заряда [1].

Как видно из вставки к рис. 1, при T = 5 К на зависимости намагниченности от магнитного поля возникает отклонение от линейной зависимости при $H \approx 17$ kOe. Этот факт указывает на возникновение добавочного ферромагнитного момента при поле, превышающем 17 kOe. Из рис. 1 видно также, что при всех температурах имеется небольшой фоновый ферромагнитный момент, который можно отнести к слоям с ионами марганца переменной валентности. При температурах выше 100 К видны отклонения от постоянного ферромагнитного фона.

3. Магнитосопротивление

Если состояние исходных квази-2D-слоев, в которых локализованы носители заряда, действительно определяется механизмом двойного обмена и зависит от взаимной ориентации спинов ионов Mn³⁺-Mn⁴⁺, то сопротивление и диэлектрическая проницаемость кристалла на высоких частотах должны зависеть от внешнего магнитного поля. Как можно видеть из рис. 2, 3, в кристалле ТbВi в интервале температур $5 \le T \le 100 \,\mathrm{K}$ при достижении магнитного поля определенной величины $(\sim 17 \, \text{kOe})$, не зависящей от температуры и частоты, наблюдается скачкообразный рост сопротивления. При дальнейшем увеличении поля также скачком восстанавливается исходное фоновое значение сопротивления в отсутствие магнитного поля. Емкость при этом ведет себя подобным образом, но в противофазе: скачкообразный рост сопротивления сопровождается скачкообразным падением емкости. Имеется гистерезис по магнитному полю для скачков сопротивления и емкости.

Наблюдаемые скачки естественно отнести к изменению состояния в магнитном поле исходных квази-2Dслоев. Характер влияния магнитного поля свидетельствует в пользу того, что поле достаточной величины приводит к скачкообразному увеличению потенциального барьера на границе слоя. Это вызывает рост сопротивления. Падение емкости при этом обусловлено увеличением концентрации носителей заряда под барьером, что усиливает экранировку локальной поляризации в слое.

В нелегированных кристаллах TbMnO3 и RMn2O5 (R = Eu, Gd) в слоях, содержащих ионы Mn^{3+} и Mn^{4+} соответственно, имеется антиферромагнитное взаимодействие. Как уже отмечалось, при легировании кристаллов образуются квази-2D-слои, в которых в исходно антиферромагнитных слоях появляются пары ионов Мп⁴⁺-Мп³⁺ с ферромагнитной компонентой ориентации спинов за счет двойного обмена (1). В результате эффективное поле антиферромагнитного обмена ослаблено в этих слоях. При приложении внешнего магнитного поля определенной величины все спины ионов марганца в таком слое ориентируются параллельно друг другу и магнитному полю. Такая ориентация возникает, когда внешнее магнитное поле сравнивается с эффективным полем антиферромагнитного обмена в слое. Происходит метамагнитный переход, который обычно является фазовым переходом I рода и сопровождается гистерезисом. При этом магнитное поле недостаточно для ферромагнитной ориентации спинов за пределами слоев с носителями заряда.

Рис. 2. *а*) Зависимость удельного сопротивления кристалла $Tb_{0.95}Bi_{0.05}MnO_3$ от магнитного поля ($H \parallel [101]$) на частоте 15 kHz при фиксированных температурах 5–65, 120 и 180 K. *b*) Кривые, иллюстрирующие наличие гистерезиса по направлению изменения магнитного поля при T = 120 K.

Рис. 3. Зависимость удельного сопротивления кристалла $Tb_{0.95}Bi_{0.05}MnO_3$ от магнитного поля ($H \parallel [101]$) для T = 180 К и ряда частот, указанных около кривых.

Магнитное поле одновременно приводит к зеемановскому расщеплению между основным и возбужденным состояниями двухуровневых систем в потенциальной яме слоев, которое возникает для параллельной и антипараллельной ориентации спинов относительно поля. В результате для коррелированных двойным обменом пар носителей заряда активационный барьер определяется как двойным обменом, так и взаимодействием Зеемана. По аналогии с формулой (3) в [1] (см. также [8]) можно записать

$$W = W_m + W_{DE} - 2\gamma \,\mathbf{S} \cdot \mathbf{H}.\tag{1}$$

Здесь W_m — барьер в решетке, W_{DE} — изменение барьера за счет двойного обмена, последнее слагаемое взаимодействие Зеемана (**H** — магнитное поле, γ гиромагнитное отношение). В магнитном поле, соответствующем первому скачкообразному росту сопротивления, формируется ферромагнитный спин **S** внутри квази-2D-слоев, и барьер увеличивается скачком благодаря двойному обмену (W_{DE}). Двойной обмен описывается гамильтонианом

$$H_J = -J\cos(\theta/2)\,\mathbf{S}_1\cdot\mathbf{S}_2.\tag{2}$$

Здесь θ — угол между направлениями спинов S_1 и S_2 соседних ионов марганца $Mn^{3+}-Mn^{4+}$, J — обменная константа ($J \approx 300 \text{ meV}$). Двойной обмен может реализоваться лишь при $\cos(\theta/2) \neq 0$, т.е. при наличии хотя бы незначительной неколлинеарности спинов соседних ионов марганца $Mn^{3+}-Mn^{4+}$, приводящей к появлению

Напомним, что при T = 5 K в магнитном поле $H \approx 17 \text{ kOe}$ наблюдались отклонение от линейного роста намагниченности в поле и появление ферромагнитной компоненты в кристалле TbBi (рис. 1). Скачкообразный рост сопротивления в магнитном поле при низких температурах происходит в этом же магнитном поле (рис. 2). Таким образом, состояние носителей заряда в слоях действительно согласовано с величиной их ферромагнитного момента.

В интервале промежуточных температур 100-180 К, как можно видеть из рис. 2, требуется все большее поле для скачкообразного роста сопротивления. Рассмотрим ситуацию при $T \approx 180 \, \text{K}$, при которой происходит фазовый переход с формированием бесконечного кластера динамического состояния кристалла с периодическим расположением слоев ионов Mn³⁺-Mn⁴. Как видно из рис. 3, на всех частотах, в том числе и достаточно высоких, при малых величинах магнитного поля возникает отрицательное магнитосопротивление. Это указывает на появление при этой температуре объемной сквозной проводимости в возникшем "однородном" состоянии кристалла. Появление отрицательного магнитосопротивления обусловлено увеличением вероятности обмена носителями между ионами Mn³⁺-Mn⁴ при увеличении ферромагнитной компоненты спинов в магнитном поле. Одновременно при $T \approx 180 \,\mathrm{K}$ в достаточно сильном магнитном поле наблюдается скачок сопротивления, который по-прежнему характеризует изменение сопротивления при метамагнитном переходе для спинов ионов марганца сохранившихся исходных квази-2D-слоев. Увеличение барьера на границе слоя при метамагнитном переходе приводит к увеличению концентрации носителей заряда под барьером. В результате растет кулоновское отталкивание между носителями заряда в слое, что эффективно понижает барьер для прыжков коррелированных пар носителей заряда (см. (3) в [1]), и часть носителей заряда попадает в "однородный" объем кристалла. Это увеличивает концентрацию носителей в объемной части кристалла и уменьшает ее за барьером в слое. В результате вновь увеличивается вероятность прыжков носителей в слой. Процесс развивается периодически и является, по существу, иллюстрацией тех процессов самоорганизации носителей заряда, которые стабилизируют динамическое периодическое распределение зарядов в решетке в новом состоянии кристалла, возникшем при *T* ≥ 180 K [1]. Этот же процесс приводит к резкому замедлению носителей заряда вблизи границы слоя и к максимумам индуктивности, которые наблюдаются вблизи 180 К (рис. 5 в [1]).

Заметим, что отрицательное магнитосопротивление является характерной чертой полупроводниковых манганитов-перовскитов $La_{(1-x)}A_xMnO_3$ (A = Ca, Ba или Sr) с фазовым расслоением на проводящие ферромагнитные и диэлектрические антиферромагнитные области (см., например, [4,5]). Однако в этих кристаллах нет сегнетоэлектрического упорядочения при низких температурах, которое в изучаемых нами мультиферроиках определяет характер распределения зарядов при фазовом расслоении при всех температурах.

4. Влияние магнитного поля на фазовый переход при $T \approx 180 \, \text{K}$ и формирование зарядового сегнетоэлектричества

Как отмечалось в предыдущем разделе, магнитное поле достаточной величины при низких температурах приводит к появлению ферромагнитной ориентации спинов ионов марганца в квази-2D-слоях и к увеличению потенциального барьера на их границах. Естественно, что при этом начало режима прыжковой проводимости носителей заряда из слоев и соответственно формирование периодической динамической сверхструктуры в решетке должны происходить при более высоких температурах, чем при H = 0.

Как видно из рис. 4, 5, после приложения при низкой температуре магнитного поля величиной, большей поля скачка сопротивления, действительно наблюдается сдвиг фазового перехода формирования нового динамического

Рис. 4. Температурная зависимость ε' кристалла Tb_{0.95}Bi_{0.05}MnO₃. *I* — исходное состояние кристалла без магнитного поля (нагрев и охлаждение совпадают), *2* — нагрев образца после того, как при *T* = 5 K магнитное поле нарастало до величины *H* = 6 T, а затем было отключено при этой же температуре, *3* — последующее охлаждение образца. Частота 0.5 kHz. Скачок на кривой *I* при *T* = 320 K обусловлен переходом от режима прыжковой к зонной проводимости.

состояния в решетке кристаллов TbBi и EuCe от 180 К к более высоким температурам. При этом формирование стационарного, динамического состояния с большими величинами диэлектрической проницаемости также происходит при более высокой температуре. Рис. 4, 5 иллюстрируют такой сдвиг для наиболее характерных частот в кристаллах TbBi и EuCe соответственно (см. также [9]). При приложении магнитного поля величиной, меньшей поля скачка сопротивления при соответствующей температуре, эффекта влияния поля не наблюдалось.

Имеется значительный гистерезис для формирования сильнополяризуемого состояния при нагреве и охлаждении образцов в достаточно сильном магнитном поле. При этом кривая охлаждения в магнитном поле практически воспроизводит исходную (до приложения поля) кривую возникновения сильнополяризуемого состояния. Заметим, что для формирования этого состояния без магнитного поля температурный гистерезис отсутствовал или был незначителен в кристаллах TbBi и EuCe соответственно (см. вставку к рис. 5).

Рис. 5. Температурные зависимости $\varepsilon'(a)$ и $\rho(b)$ кристалла Eu_{0.8}Ce_{0.2}Mn₂O₅ для исходного состояния без магнитного поля и после приложения поля в том же режиме, что и на рис. 4. *I* — кривая охлаждения в исходном состоянии кристалла до приложения поля, *2* — нагрев образца после приложения поля, *3* — нагрев образца через 15 дней после приложения поля. На вставке — гистерезис по температуре для исходного состояния кристалла до приложения поля. Частота 0.5 kHz.

Рис. 6. Температурная зависимость в интервале температур 5–500 К емкости кристалла $Tb_{0.95}Bi_{0.05}MnO_3$ без магнитного поля и при приложении поля в том же режиме, что на рис. 4. *I* и 2 — то же, что и на рис. 4. Частота 0.5 kHz. Скачки на кривых *I* и 2 при *T* = 320 и 350 К обусловлены переходом от режима прыжковой к зонной проводимости. *4* — нагрев при *H* = 0 (ZFH) после отжига кристалла до температуры, превышающей 441 К. На вставке показан скачок емкости на кривой 2 при *T* = 441 К в более крупном масштабе.

Возникающее при T > 225 K состояние с большой диэлектрической проницаемостью в кристаллах TbBi и EuCe имеет иное распределение барьеров в решетке по сравнению с состоянием кристаллов при H = 0. Характерный поляризационный барьер в законе Аррениуса $E_A^{\text{pol}} \approx 0.43$ и $\approx 0.55 \text{ eV}$ (вместо $E_A^{\text{pol}} \approx 0.275 \text{ eV}$ при H = 0) для кристаллов TbBi и EuCe соответственно [1]. Как видно, увеличение барьера по порядку величины соответствует двойному обмену [4,5].

Возникшая при приложении сильного магнитного поля динамическая сверхрешетка в кристаллах не разрушается при снятии магнитного поля. После снятия магнитного поля при высокой температуре и охлаждении образца без поля (ZFC) кривые для сопротивления и є', как отмечалось выше, воспроизводят исходные кривые охлаждения, полученные до приложения поля. Однако при новом нагревании образцов без магнитного поля (ZFH) воспроизводятся те значения сопротивления и ε' , которые соответствовали режиму нагрева в поле. Таким образом, возникшая при приложении магнитного поля достаточной величины периодическая сверхструктура из ионов марганца разной валентности является устойчивой. В кристалле TbBi эта новая сверхрешетка, индуцированная магнитным полем, при комнатной температуре не разрушалась в течение нескольких месяцев, не меняя своего состояния. И только нагрев до температур выше 441 К приводил к восстановлению исходного состояния в решетке. При этом вблизи температуры 441 К был обнаружен фазовый переход, которого не наблюдалось при отсутствии поля (рис. 6). Только при нагреве образца до температуры выше температуры этого фазового перехода восстанавливалось исходное состояние кристалла без поля.

В кристаллах EuCe после приложения магнитного поля возникало лишь метастабильное, но долгоживущее состояние. Наблюдалась медленная релаксация состояния (в течение 15 дней) к исходному состоянию кристалла до первого приложения магнитного поля.

Таким образом, приложение магнитного поля достаточной величины сдвигает температуру фазового перехода возникновения динамической сверхрешетки из ионов $Mn^{3+}-Mn^4$ и носителей заряда от 180 К до температуры выше 200 К во всех изученных кристаллах. При этом в кристалле TbBi с малой концентрацией легирующих примесей по сравнению с церийсодержащими кристаллами состояние, возникающее при $T \ge 225$ К, является устойчивым до нового фазового перехода при температуре $T \approx 441$ К, индуцированного магнитным полем.

5. Заключение

Исследования магнитных свойств, магнитосопротивления и влияния магнитного поля на фазовые переходы кристаллов Tb_{0.95}Bi_{0.05}MnO₃ и Eu_{0.8}Ce_{0.2}Mn₂O₅ подтверждают схему формирования (в результате фазового перехода при $T \approx 180$ K) периодического динамического распределения зяряда и сопутствующих им искажений решетки, которая была предложена в работе [1] при анализе диэлектрических свойств кристаллов. В результате в кристаллах Tb_{0.95}Bi_{0.05}MnO₃ и $R_{(1-x)}$ Ce_xMn₂O₅ (x = 0.25 для R =Gd, x = 0.2 для R =Eu) при температурах выше 180 K (включая и комнатную температуру) возникает состояние с гигантскими величинами диэлектрической проницаемости ($\varepsilon' \sim 10^4 - 10^5$) и ферромагнитной ориентацией спинов пар ионов Mn³⁺ и Mn⁴⁺. Это состояние управляется магнитным полем.

Двойной обмен между ионами Mn³⁺-Mn⁴ через электроны, приводящий к ферромагнитной ориентации пар этих ионов, играет большую роль в изученных кристаллах при всех температурах. Он формирует наряду с ян-теллеровским взаимодействием барьер на границах квази-2D-слоев. При низких температурах магнитное поле достаточной величины индуцирует метамагнитный переход в слоях. Приложение магнитного поля величиной, превышающей поле метамагнитного перехода, сдвигает фазовый переход образования динамической, периодической сверхструктуры к более высоким температурам. Магнитное поле в Tb_{0.95}Bi_{0.05}MnO₃ индуцирует новый фазовый переход при $T \approx 441$ К. В этом кристалле в интервале температур 225-441 К состояние, индуцированное магнитным полем, является устойчивым и сохраняется при снятии поля.

Авторы благодарят Н.В. Зайцеву за рентгеновский фазовый анализ образцов.

Авторы благодарят за финансовую поддержку работы РФФИ и Президиум РАН.

Список литературы

- [1] В.А. Санина, Е.И. Головенчиц, В.Г. Залесский. ФТТ **50**, 000 (2008).
- [2] T. Portengen, Th. Östreih, L.J. Sham. Phys. Rev. B 54, 17452 (1996).
- [3] N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Nature (London) 436, 1136 (2005).
- [4] Л.П. Горьков. УФН 168, 665 (1998).
- [5] М.Ю. Каган, К.И. Кугель. УФН 171, 577 (2001).
- [6] N. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura. Nature (London) 426, 55 (2003).
- [7] S. Quezel, F. Tcheou, J. Rossat-Mignod, G. Quezel, E. Raudaut. Physica B 86–88, 916 (1977).
- [8] A.R. Long. Adv. Phys. 31, 587 (1982).
- [9] Е.И. Головенчиц, В.А. Санина. Письма в ЖЭТФ 84, 222 (2006).