Магнитные свойства и параметры структуры наноразмерных порошков оксидных ферримагнетиков, полученных методом механохимического синтеза из солевых систем

© Е.П. Найден, В.А. Журавлев, В.И. Итин, О.Г. Терехова, А.А. Магаева, Ю.Ф. Иванов

Томский научный центр Сибирского отделения Российской академии наук,

Отдел структурной макрокинетики,

634021 Томск, Россия

E-mail: maks@fisman.tomsk.ru

(Поступила в Редакцию 2 августа 2007 г.)

Проведено исследование фазового состава, параметров структуры и основных магнитных характеристик ряда наноразмерных порошков простых феррошпинелей, полученных методом механохимических реакций из солевых систем. Определено влияние размерных и поверхностных эффектов на намагниченность насыщения и магнитную анизотропию. Обсуждается возможность использования оболочечной модели для описания магнитных свойств наноразмерных феррошпинелей.

Работа выполнена при поддержке Президиума РАН (грант 8.21).

PACS: 75.50.Gg, 75.50.Tt

1. Введение

Известно, что в наноразмерном твердом теле проявляются физические свойства и явления, которые невозможно предсказать исходя из строения и свойств массивного вещества [1,2]. Так, переход магнетиков в нанорзмерное состояние (размер кристаллитов поликристаллического образца или частиц порошкового образца менее 100 nm) сопровождается значительным изменением его магнитных свойств, прежде всего величин намагниченности, поля магнитной кристаллографической анизотропии, температуры Кюри. В полной мере это проявляется в наноразмерных оксидных ферримагнетиках со структурой шпинели, причем их свойства существенно зависят от технологии получения образцов.

Отмечено, что влияние размерных эффектов в случае синтеза наноразмерных феррошпинелей методами соосаждения солевых растворов или микроэмульсий значительно слабее, чем при их получении диспергированием исходного крупнокристаллического материала в высокоэнергетических планетарных мельницах или методом механохимических реакций. Создание адекватных моделей магнитного состояния подобных материалов является одной из актуальных задач физики конденсированного состояния. Связано это как с широкими возможностями их практического использования, так и с насущной необходимостью развития теоретических представлений о влиянии размерных и поверхностных эффектов на магнитные свойства [3,4].

Широко используемая в настоящее время "оболочечная" модель Кодама с соавторами [5], основанная на результатах исследования мессбауэровских спектров наноразмерных частиц феррита никеля, дает лишь качественное объяснение эффекта уменьшения намагниченности с уменьшением размеров частиц и не может быть использована для интерпретации влияния размерных эффектов на анизотропные характеристики ферримагнетиков. Существенный вклад в развитие представлений о механизмах формировании магнитных свойств наноразмерных ферримагнетиков сделан авторами работы [6], указавшими на важную роль анизотропии, индуцированной внутренними упругими микронапряжениями.

В настоящей работе определены общие закономерности влияния размерных и поверхностных эффектов на структурные и магнитные характеристики наноразмерных простых ферритов со структурой шпинели, полученных методом механохимического синтеза.

2. Технология приготовления порошков и методы исследования их свойств

Для получения наноразмерных частиц феррошпинелей использовали метод механохимического синтеза из солевых систем [7]. В этом случае химические реакции протекают на межфазных поверхностях, которые непрерывно регенерируют в процессе механической активации и измельчения исходных реагентов, например хлоридов и карбонатов в присутствии инертного разбавителя — хлорида натрия. Выделяющееся в процессе реакции тепло рассеивается в среде разбавителя, в результате механохимический синтез протекает без нагрева, а конечным продуктом реакции являются наночастицы, диспергированные в растворимой солевой матрице, которая легко отмывается дистиллированной водой [7].

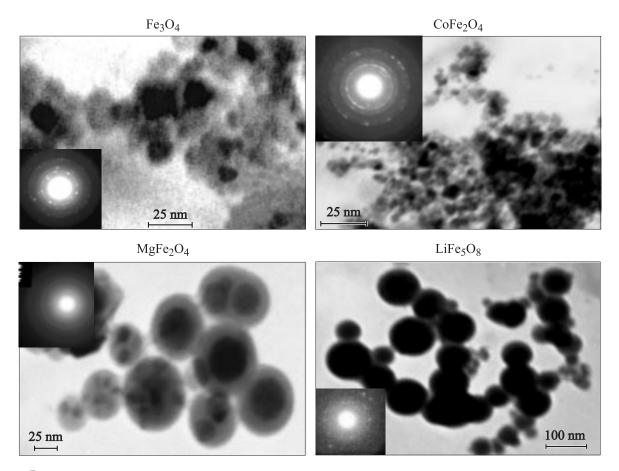


Рис. 1. Электронно-микроскопическое изображение порошков наноразмерных оксидных ферримагнетиков.

Для синтеза наночастиц феррошпинелей указанных выше составов использованы реакции

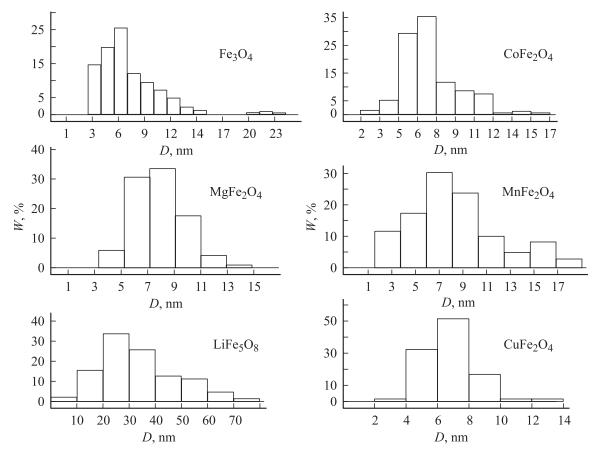
$$\begin{aligned} 2\text{FeCl}_3 + \text{FeSO}_4 + 8\text{NaOH} &\to \text{Fe}_3\text{O}_4 + \text{Na}_2\text{SO}_4 \\ &+ 6\text{NaCl} + 4\text{H}_2\text{O}, \\ 2\text{FeCl}_3 + \text{CoCl}_2 + \text{Ca}(\text{OH})_2 + 3\text{Na}_2\text{CO}_3 &\to \text{CoFe}_2\text{O}_4 \\ &+ \text{CaCl}_2 + 6\text{NaCl} + 3\text{CO}_2\uparrow + \text{H}_2\text{O}, \\ \text{MgCl}_2 + 2\text{FeCl}_3 + 4\text{Na}_2\text{CO}_3 &\to \text{MgFe}_2\text{O}_4 \\ &+ 8\text{NaCl} + 4\text{CO}_2\uparrow, \\ 5\text{FeCl}_3 + \text{LiCl} + 8\text{Na}_2\text{CO}_3 &\to \text{LiFe}_5\text{O}_8 \\ &+ 16\text{NaCl} + 8\text{CO}_2\uparrow, \\ \text{NiCl}_2 + 2\text{FeCl}_3 + 4\text{Na}_2\text{CO}_3 &\to \text{NiFe}_2\text{O}_4 \\ &+ 8\text{NaCl} + 4\text{CO}_2\uparrow, \\ \text{MnO}_2 + 2\text{FeCl}_3 + 6\text{NaOH} &\to \text{MnFe}_2\text{O}_4 + 6\text{NaCl} \\ &+ 0.5\text{O}_{2\uparrow} + 3\text{H}_2\text{O}. \end{aligned}$$

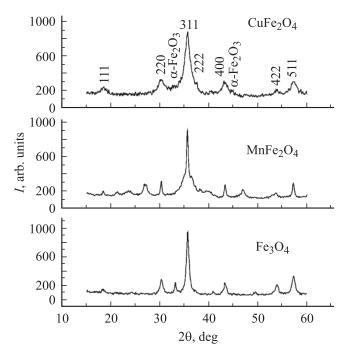
Смесь реагентов марки XЧ, предварительно просушенных при 120°C, разбавляли хлоридом натрия и герметизировали в стальных барабанах с шарами диаметром 5 mm, изготовленными из стали ШХ15. Механохимический синтез проводили в планетарной мельнице в течение 30 min при соотношении массы шаров к массе порошка 20:1. Полученный продукт промывали на фильтре дистиллированной водой и высушивали на воздухе. После фильтрации продукт обрабатывали ультразвуком и центрофугированием (УЗДН-2Т и Bekman J2-21).

Параметры кристаллической структуры, фазовый состав и дисперсность синтезированного ферритового порошка исследовали методами просвечивающей электронной микроскопии (ЭМ-125) и рентгеноструктурного анализа (дифрактометр Shimadzu XRD 6000, CuK_{α} -излучение).

Удельную поверхность наноразмерных порошков ферримагнетиков измеряли методом БЭТ (Брунауэр, Эммет, Теллер) на приборе серии СОРБИ[®] N.4.1, в качестве газа-адсорбата использовали азот.

При исследовании магнитных свойств синтезированного порошка кобальтовой феррошпинели использовали методы анализа температурной зависимости начальной магнитной проницаемости на частоте 1 kHz, а также кривых намагничивания и их производных, полученных в импульсных магнитных полях напряженностью до 3 T по методике, аналогичной описанной в работе [8].



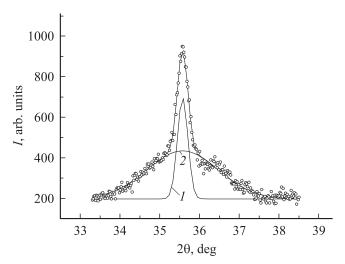

Рис. 2. Гистограмма размеров частиц порошков наноразмерных оксидных ферримагнетиков.

3. Морфология и структурные характеристики наноразмерных порошков феррошпинелей

Электронная микроскопия показала (рис. 1,2), что синтезированные кобальтовая, медная, марганцевая феррошпинели и магнетит представляют собой наноразмерные сферические частицы диаметром 3-15 nm, которые объединены в слабосвязанные агрегаты.

Сферические частицы магнитного MgFe $_2$ O $_4$ и литиевого LiFe $_5$ O $_8$ ферритов по размеру делятся на два класса: к первому размерному классу отнесены сравнительно крупные частицы D=40-53 nm, $\sigma=21-23$ nm, ко второму размерному классу — частицы среднего размера D=4-9 nm, $\sigma=2$ nm (рис. 1, 2). Особенностью частиц первого размерного класса является сложная внутренняя структура частиц — фрагментация; размеры фрагментов изменяются в пределах 10-30 nm. Особенность частиц второго размерного класса в том, что они практически всегда обнаруживаются в виде агрегатов, размеры которых изменяются в пределах 100-600 nm.

Для всех синтезированных порошков, за исключением $LiFe_5O_8$, доля частиц с размерами до $10\,\mathrm{nm}$ составляет примерно 65%. Микроэлектронограммы исследуемых порошков имеют характерную кольцевую структуру с


Рис. 3. Фрагменты рентгенограмм наноразмерных порошков феррошпинелей.

Состав	Содержание, vol.%			Параметр	Кислородный	$S, m^2/g$	Средний размер частиц, nm		$\Delta d/d \cdot 10^3$
	шпинельной фазы	гематита		решетки, пт	параметр	5, m /g		по данным РСА	,
Fe ₃ O ₄	90.3	5.7	4	0.8382	0.383	150.0	5.0	21.0	5.4
$MgFe_2O_4$	88.5	5.5	6	0.8397	0.387	132.3	10.0	11.2	8.3
LiFe ₅ O ₈	88	6	6	0.8336	0.385	119.3	10.0	9.8	8.7
$CoFe_2O_4$	90.8	3.2	6	0.8376	0.387	112.8	10.0	9.2	8.8
MnFe ₂ O ₄	90.6	4.4	5	0.8542	0.388	103.0	11.6	11.2	7.4
$CuFe_2O_4$	95.8	4	0.2	0.8375	0.391	162.0	6.9	9.5	8.5

Таблица 1. Структурные параметры наноразмерных феррошпинелей

выраженным диффузным максимумом в области малых углов рассеяния (рис. 1).

На рис. 3 представлены наиболее типичные участки рентгенограмм порошков магнетита, магниевой и медной феррошпинелей. Слабое диффузное рассеяние на малых углах свидетельствует о присутствии в исследованных материалах наряду с кристаллическими фазами небольшого количества вещества в рентгеноаморфном состоянии. Кроме того, на рентгенограммах всех образцов наблюдаются слабые пики, свидетельствующие о содержании в исследованных пробах небольшого количества гематита α -Fe₂O₃ (табл. 1). Анализ дифракционной картины феррошпинели магния показал, что ее можно интерпретировать как результат суперпозиций отражений от частиц порошка со средними размерами частиц 50 и 5 nm, соотношение объемов которых составляет приблизительно 1:4. Детальный анализ профиля сильнейшего дифракционного максимума для данного образца, приведенного на рис. 4, наглядно это демонстрирует. Подобная картина наблюдалась также для литиевого феррита.

Рис. 4. Отражение (311) магниевой феррошпинели. 1 — профиль дифракционного максимума для частиц со средним размером 50 nm, 2 — то же для частиц со средним размером 5 nm.

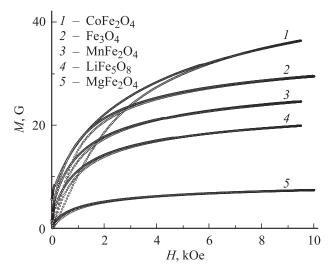
По данным рентгеноструктурного анализа, обработанным с использованием программы полнопрофильного анализа POWDER CELL 2.5, определены структурные параметры, размер областей когерентного рассеяния (ОКР) и величины внутренних упругих микронапряжений $\Delta d/d$ исследованных материалов. Эти данные вместе с результатами измерения удельной поверхности S сведены в табл. 1.

Таким образом, синтезированные порошки представляют собой гетерогенную смесь рентгеноаморфной фазы и наноразмерных частиц феррошпинелей с небольшой примесью фазы гематита.

4. Магнитные свойства нанопорошков феррошпинелей

Для всего исследованного интервала температур кривые намагничивания всех исследованных материалов характеризуются очень сильным парапроцессом ($\chi_{\text{para}} = 0.03 - 0.04$), причем величина восприимчивости парапроцесса с изменением температуры изменяется слабо.

На рис. 5, 6 приведены полевые зависимости намагниченности и ее второй производной по полю исследованных феррошпинелей при комнатной температуре. Наблюдаемые на зависимостях $d^2M/dH^2(H)$ минимумы (рис. 6) позволяют с высокой точностью определить величину эффективного поля магнитной анизотропии. Отметим, что во всех случаях, кроме феррошпинели кобальта, кривые намагничивания и размагничивания практически совпадают. Отсутствие гистерезиса и наличие температур блокировки являются характерными признаками реализации состояния типа "спиновое стекло".


В табл. 2 приведены основные магнитные характеристики исследованных ферримагнитных материалов, полученные в результате анализа кривых намагничивания, здесь же для сравнения приведены характеристики массивных монокристаллов.

Из приведенных данных следует, что намагниченность наноназмерных порошков феррошпинелей составляет не более 20-25% от намагниченности массивных образцов,

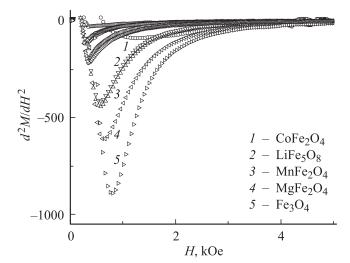

Образец	σ, ($G \cdot cm^3/g$	H_a , Oe	σ , G·cm ³ /g	<i>H_a</i> , Oe (монокристалл [7,8])	
	$H \rightarrow 0$	$H = 10 \mathrm{kOe}$,	(монокристалл [7,8])		
Fe_3O_4	26	29.5	520	92	680	
LiFe ₅ O ₈	16.1	20.0	580	68	640	
$MgFe_2O_4$	6.2	7.3	550	32	690	
$MnFe_2O_4$	19.2	24.8	580	80	140	
$CoFe_2O_4$	22.3	36.1	2300	82	12500	
CuFe ₂ O ₄	7.5	17.2	600	26 (45)	1000	

Таблица 2. Основные магнитные характеристики наноразмерных феррошпинелей

а величина поля анизотропии может как несколько увеличиваться (никелевый и марганцевый ферриты), так и уменьшаться, причем в случае кобальтовой феррошпинели величина поля анизотропии уменьшается в несколько раз.

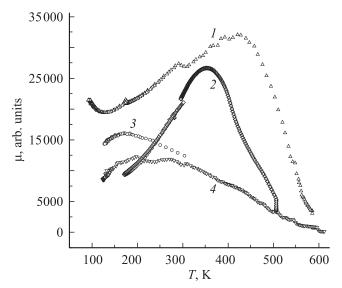
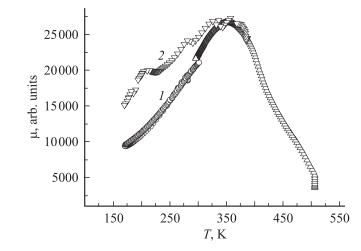

Рис. 5. Полевые зависимости удельной намагниченности наноразмерных порошков феррошпинелей.

Рис. 6. Полевые зависимости второй производной намагниченности по полю для наноразмерных феррошпинелей.

Поведение наноразмерного феррита кобальта заслуживает отдельного обсуждения. На рис. 7 показаны температурные зависимости начальной магнитной проницаемости порошков различных феррошпинелей, полученные при охлаждении в нулевом подмагничивающем поле (амплитудное значение переменного поля не более 0.0005 T).

Наличие широких максимумов начальной проницаемости в области $T=150-400\,\mathrm{K}$, а также различие в ходе $\mu(T)$ для образца кобальтовой феррошпинели, охлажденного в магнитном поле $0.2\,\mathrm{T}$ (рис. 8), являются характерными признаками реализации в данных материалах состояния, подобного кластерному спиновому стеклу.

Рис. 7. Температурные зависимости начальной магнитной проницаемости магнетита (1), кобальтовой феррошпинели (2), ферритов магния (3) и марганца (4).


Для всех исследованных феррошпинелей поведение температурных зависимостей намагниченности насыщения $M_S(T)_{H\to 0}$ (рис. 9, кривые I,2 для $\mathrm{CoFe_2O_4}$) и начальной магнитной проницаемости (рис. 7) подобно. Однако на полевых зависимостях второй производной намагниченности по полю при различных температурах для $\mathrm{CoFe_2O_4}$ наблюдалось две сингулярности, что, по на-

•	Температура блокировки T_B , K	Намагниченность M_s , G	Эффективное поле анизотропии H_a^{eff} , Ое	Эффективная константа MKA K^{eff} , 10^6erg/cm^3	Размер областей когерентного рассеяния <i>L</i> , nm
	200	223	5400	0.602	9.4
	260	239	5300	0.597	10.3
	300	255	4500	0.574	10.93
	370	275	3850	0.529	12.04

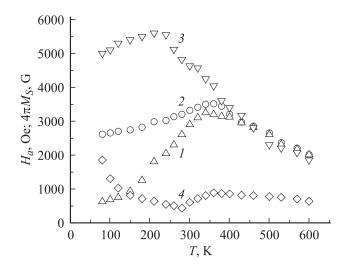
Таблица 3. Магнитные характеристики и размеры частиц нанопорошка кобальтового феррита, вычисленные по данным о температурах блокировки

шему мнению, подтверждает предположение о сосуществовании в данном материала двух магнитоупорядоченных фаз с существенно различающимися анизотропными характеристиками.

Можно предположить, что фаза с большими значениями эффективного поля анизотропии может быть идентифицирована как "ядро" частиц феррошпинели кобальта, а слабоанизотропная фаза — как их "оболочка". Содержание фракции в рентгеноаморфном состоянии в образце слишком мало для объяснения наблюдаемых величин амплитуд сингулярности в малых полях. Отметим, что для остальных наноразмерных феррошпинелей дополнительный минимум на полевой зависимости второй производной намагниченности не наблюдался.

Рис. 8. Температурные зависимости начальной магнитной проницаемости нанопорошка $CoFe_2O_4$. I — образец охлажден в нулевом магнитном поле, 2 — охлаждение в поле 0.2 Т.

Совокупность полученных результатов показывает, что наноразмерные порошки ферритов проявляют характерные черты суперпарамагнитного состояния или состояния типа "кластерное спиновое стекло". Аномалии зависимостей $\mu(T)$ для образца CoFe_2O_4 , охлажденного в магнитном поле (рис. 8), и магнетита (кривая I на рис. 7) можно интерпретировать как температуры блокировки T_B для наночастиц кобальтового феррита различных размеров. Используя соотношение, связывающее размеры частиц в состоянии "спиновое стекло" и


температуру блокировки [9],

$$T_B = K^{\text{eff}} V / k_{\text{B}} \ln(\tau_0 f),$$

где V — объем частицы, $\tau_0 \approx 10^{-9}\,\mathrm{s}$, f — частота измерения, а также данные по температурным зависимостям M(T) и $H_a(T)$, мы оценили размеры частиц феррита кобальта (табл. 3). Размеры наночастиц CoFe₂O₄, определенные по данным электронной микроскопии, измерения удельной поверхности и на основе анализа уширения дифракционных линий на рентгенограммах, хорошо согласуются с результатами расчета [10].

Особенности поведения намагниченности насыщения и константы магнитной кристаллографической анизотропии (МКА) наночастиц кобальтовой феррошпинели достаточно подробно обсуждались ранее [10].

Рассмотрим теперь наиболее общие закономерности изменения магнитных свойств, характерные для всех исследованных соединений, независимо от их химического состава. К таковым следует отнести в первую очередь существенный дефицит результирующего магнитного момента, составляющего не более 20—25% от магнитного момента соответствующего массивного кристалла. Возможное изменение магнитного момента за счет неравновесного распределения катионов, связанного с особенностями технологии получения исследованных

Рис. 9. Температурные зависимости намагниченности насыщения и полей анизотропии нанопорошка CoFe₂O₄. $1 - M_{H=0}$; $2 - M_{H=2 \text{ kOe}}$; $3 - H_{a1}$; $4 - H_{a2}$.

ферримагнетиков, не может быть причиной столь значительного уменьшения результирующей намагниченности. Для объяснения наблюдаемого явления в рамках оболочечной модели [5] толщина поверхностного слоя должна составлять не менее трети радиуса наночастиц, а сам поверхностный слой при этом должен характеризоваться нулевой спонтанной намагниченностью, т.е., по существу, обладать свойствами классического "спинового стекла". В этом случае величина спонтанной намагниченности, получаемая экстраполяцией кривых намагничивания наноразмерных частиц феррошпинелей к нулевому полю, соответствует величине намагниченности невозмущенного "ядра" частицы.

Изменение величин полей магнитной анизотропии при переходе в наноразмерных порошках феррошпинелей существенно зависит от электронной структуры парамагнитных ионов, входящих в соединение. Для феррошпинелей лития, магния, железа и кобальта величина эффективного поля магнитной анизотропии уменьшается, причем для кобальтовой феррошпинели это изменение очень значительно. В то же время в случае ферритов никеля и марганца поле анизотропии увеличивается. В качестве основных причин, ответственных за изменение анизотропных характеристик наноразмерных порошков феррошпинелей, можно предположить следующие:

- а) изменение симметрии внутрикристаллических полей, действующих на магнитоактивные атомы поверхностного слоя, и, следовательно, существенное изменение анизотропии поверхностного слоя по сравнению с внутренним объемом частицы;
- b) значительное увеличение магнитоупругой составляющей энергии магнитной анизотропии, связанное с наличием больших внутренних упругих микронапряжений в наноразмерных частицах феррошпинелей;
- с) изменение анизотропии наноразмерных ферримагнитных частиц, обусловленное изменением катионного распределения при механохимическом синтезе.

Корректная оценка первого и второго механизма требует сведений о величинах констант магнитоупругого взимодействия либо констант магнитострикции для наноразмерных порошков феррошпинелей, которые могут значительно отличаться от аналогичных характеристик массивных (крупнозернистых) материалов.

Анализ анизотропии наноразмерного порошка феррита кобальта проведен в работе [10]. С учетом аномально большой величины константы магнитострикции феррошпинели кобальта ($\lambda_S = -110 \cdot 10^{-6}$ [11]) вклад магнитоупругих взаимодействий в эффективную константу анизотропии при комнатной температуре составляет не менее $-0.6 \cdot 10^6$ erg/cm³. Таким образом, существенное уменьшение константы МКА для нанопорошка кобальтового гексаферрита, полученного методом механохимического синтеза из солевых систем, по сравнению с массивными образцами ($K = 1.8 \cdot 10^6$ erg/cm³ [12]) обусловлено, скорее всего, существенными вкладами поверхностной анизотропии и магнитоупругой составляющей.

Относительно других соединений следует отметить, что наименьшие изменения анизотропии наночастиц наблюдаются для соединений, содержащих в качестве магнито-активных лишь ионы трехвалентного железа, т.е. ионы с полностью вырожденным орбитальным моментом.

Список литературы

- [1] И.П. Суздалев. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. КомКнига, М. (2006). 592 с.
- [2] А.И. Гусев, А.А. Ремпель. Нанокристаллические материалы. ФИЗМАТЛИТ, М. (2001). 224 с.
- [3] R.C. Handley. Modern magnetic materials: principles and application. Wiley. N.Y. (2000). 318 p.
- [4] R.H. Kodama, A.E. Berkowitz. Phys. Rev. B. 59, 6321 (1999).
- [5] R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner. Phys. Rev. Lett. 77, 394 (1996).
- [6] R.N. Bhownik, R. Ranganathan, R. Naganajan, Riswatoch Ghosh, S. Kumar. Phys. Rev. B 72, 094 405 (2005).
- [7] P.G. Mac Cormick, J. Ding, Miao Wie-Fang, R. Street, US Patent 6203768 (2001).
- [8] В.Ю. Креслин, Е.П. Найден. ПТЭ 1, 63 (2002).
- [9] W.F. Brown. Phys. Rev. **130**, 1667 (1963).
- [10] Е.П. Найден, В.А. Журавлев, В.И. Итин, О.Г. Терехова, А.А. Магаева, Ю.Ф. Иванов. Изв. вузов. Физика 9, 40 (2006).
- [11] R. Perthel, W. Keiling. Monatsber. Deutsch. Akad. Wiss. 5, 109 (1963).
- [12] K.H.J. Bickford. Handbook Magn. Mater. 8, 212 (1995).