Анизотропия примесного рассеяния и электропроводности квазидвумерных электронных систем

© Б.М. Аскеров, Г.И. Гусейнов, В.Р. Фигаров, С.Р. Фигарова

Бакинский государственный университет, AZ1178 Баку, Азербайджан E-mail: askerov@bsu.az

(Поступила в Редакцию в окончательном виде 10 сентября 2007 г.)

Исследовалось рассеяние носителей тока на ионах примеси в квазидвумерных электронных системах. Проведен анализ зависимости продольной и поперечной компонент времени релаксации от компонент волнового вектора и радиуса экранирования. Исследована анизотропия электропроводности вырожденного квазидвумерного электронного газа в зависимости от соотношения между уровнем Ферми и шириной мини-зоны, а также от концентрации примесей и постоянной решетки.

PACS: 68.65.Cd, 73.50.Bk

1. Введение

Слоистые соединения, в том числе и сверхрешетки, являются идеальной системой для исследования явлений переноса, имеющих место в низкоразмерных системах, таких как отрицательное дифференциальное сопротивление, анизотропия проводимости, а также для создания различных приборов на их основе: детекторов, высокочувствительных сенсоров и генераторов сверхвысоких частот.

Важнейшим определяющим параметром в электронных явлениях переноса является время релаксации при различных механизмах рассеяния. Известно, что в области низких температур рассеяние носителей тока на ионах примеси — один из основных механизмов рассеяния.

В настоящее время имеется целый ряд работ, посвященных механизмам рассеяния в низкоразмерных системах, и в некоторых из них [1-8] рассматривается рассеяние носителей тока на ионах примеси и влияние этого механизма релаксации на электропроводность. В большинстве из этих работ [1-7] изучается время релаксации и электронные явления переноса вдоль слоя в приближении чисто двумерного вырожденного электронного газа. В случае сверхрешеток и слоистых кристаллов, в которых кроме продольного есть и поперечный перенос, работ по электропроводности с учетом примесного рассеяния сравнительно мало. В работе [8] изучается дисперсия времени релаксации при рассеянии на ионах примеси и проводится только численный расчет, учитывающий влияние этого механизма рассения на подвижность невырожденного электронного газа в сверхрешетках с легированными квантовыми ямами. В отличие от [8] в настоящей работе получено компактное аналитическое выражение для анизотропного времени релаксации и рассматривается вырожденный электронный газ. Отличие также заключается в том, что в работе [8] используется гипотеза Конуэлл-Вайскопфа, а мы рассматриваем рассеяние на экранированном кулоновском потенциале, что обеспечивает устранение расходимости в сечении рассеяния.

Целью настоящей работы является построение теории электропроводности с учетом анизотропного рассеяния носителей тока на экранированных ионах примеси в квазидвумерных электронных системах с косинусоидальным законом дисперсиии, который описывает и слоистые кристаллы, и сверхрешетки. Анизотропия рассеяния учитывается с помощью введения тензора обратного времени релаксации в борновском приближении. Найдены аналитические выражения для продольной и поперечной компонент тензора времени релаксации в виде, удобном для дальнейшего применения при вычислениях кинетических коэффициентов. На основе полученных выражений в приближении анизотропного времени релаксации вычислены компоненты тензора электропроводности вырожденного электронного газа. Показано, что величина анизотропии электропроводности зависит от соотношения между шириной мини-зоны и уровнем Ферми и определяется отношением радиуса экранирования к постоянной решетки поперек слоя.

2. Время релаксации квазидвумерных электронных систем

Рассмотрим слоистый проводник с квазидвумерным энергетическим спектром электронов проводимости в виде [9]

$$\varepsilon(k) = \frac{\hbar^2 k_{\perp}^2}{2m_{\perp}} + \varepsilon_0 [1 - \cos(ak_z)]. \tag{1}$$

Здесь $k_{\perp}^2 = k_x^2 + k_y^2$, k_{\perp}^2 и k_z — поперечная и продольная компоненты волнового вектора соответственно, ε_0 — ширина одномерной мини-зоны проводимости, a — постоянная решетки в направлении, перпендикулярном плоскости слоев, $m_x = m_y = m_{\perp}$ — эффективная масса электронов проводимости в плоскости слоя.

Анизотропия электронных свойств слоистых соединений связана с анизотропией энергетического спектра, которая естественным образом отражается на времени релаксации, диагональные компоненты которого определяются по формуле [10]

$$\frac{1}{\tau_i} = \sum_{\mathbf{k}'} \left| 1 - \frac{k'_i}{k_i} \right| W_{\mathbf{k}\mathbf{k}'},\tag{2}$$

где $W_{kk'}$ — вероятность перехода. Отметим, что при вычислении вероятности перехода необходимо использовать блоховскую волновую функцию. Однако, как известно [11], при вычислении кинетических коэффициентов учет блоховского множителя не приводит к качественному изменению результатов, а сводится для рассматриваемого нами спектра к появлению множителя порядка единицы. Поэтому здесь будем использовать известное выражение для вероятности перехода при рассеянии носителей тока на экранированных ионах примеси в борновском приближении

$$W(\mathbf{k}, \mathbf{k}') = C \frac{\delta(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}'})}{\left[(\mathbf{k} - \mathbf{k}')^2 + r_0^{-2} \right]^2},$$
(3)

где

$$C = \frac{2\pi}{\hbar} \frac{N_i}{V} \left(\frac{4\pi e^2}{\varkappa}\right)^2.$$

Здесь N_i — концентрация примеси, V — объем кристалла, ла, \varkappa — диэлектрическая проницаемость кристалла, e — величина заряда электрона, r_0 — усредненное значение радиуса экранирования [11]:

$$r_0^{-2} = \frac{4\pi e^2}{\varkappa} \int \left(-\frac{\partial f_0}{\partial \varepsilon}\right) g(\varepsilon) \, d\varepsilon, \tag{4}$$

f₀ — функция распределения Ферми–Дирака, g — плотность состояния, которая для квазидвумерного электронного газа имеет вид [12]

$$g(\varepsilon) = \frac{m_{\perp}}{\pi^2 \hbar^2 a} \, z(\varepsilon), \tag{5}$$

где $z(\varepsilon) = \pi$ при $\varepsilon > 2\varepsilon_0$ и $z(\varepsilon) = \arccos(1 - \varepsilon/\varepsilon_0)$ при $\varepsilon < 2\varepsilon_0$. При вычислении радиуса экранирования анизотропия спектра учитывается через плотность состояния. Подставляя выражение (5) в формулу (4) для радиуса экранирования вырожденного электронного газа в квазидвумерном случае, получаем

$$r_0^{-2} = \frac{4\pi e^2}{\varkappa} \frac{m_{\perp} z(\mu_{\rm F})}{\pi^2 \hbar^2 a} \frac{4\pi e^2 n}{\varkappa \varepsilon_0},\tag{6}$$

 $\mu_{\rm F}$ — граничная энергия Ферми, n — концентрация двумерного электронного газа. Мы предполагаем, что концентрация электронов равна концентрации примеси из-за электронейтральности системы $(n = N_i)$. В двумерном случае $z(\mu_{\rm F}) = \pi$ и радиус экранирования не зависит от концентрации примеси.

Подставляя выражение для вероятности перехода (3) в формулу (2) и производя интегрирование в цилиндрических координатах k_{\perp} , φ , k_z , удобных для явного вида энергетического спектра (1), после интегрирования по φ и k'_{\perp} с помощью δ -функции, для поперечной и продольной компонент обратного времени релаксации при рассеянии носителей тока на ионах примеси получим

$$\frac{1}{\tau_{\perp}} = \frac{m_{\perp}CVa^2}{4\pi^2\hbar^2k_{\perp}^2} \int_{-k_z}^{k_z} \frac{B^2 - 2k_{\perp}^2a^2A}{(A^2 + B^2)^{3/2}} \theta(\varepsilon - \varepsilon_z') dk_z', \quad (7)$$

$$\frac{1}{\tau_{\parallel}} = \frac{m_{\perp}CVa^4}{4\pi^2\hbar^2k_{\perp}}$$

$$\times \int_{-k_z}^{k_z} |k_z - k_z'| \frac{A + 2k_{\perp}^2a^2}{(A^2 + B^2)^{3/2}} \theta(\varepsilon - \varepsilon_z') dk_z', \quad (8)$$

где введены следующие обозначения: $A = 2\gamma(\cos ak'_z - \cos ak_z) + (k_z - k'_z)^2 a^2 + (a/r_0)^2$, $B = 2k_{\perp}a \left[(k_z - k'_z)^2 a^2 + (a/r_0)^2 \right]^{1/2}$, $\gamma = m_{\perp}/m_{0z}$, $m_{0z} = \hbar^2/\varepsilon_0 a^2$, $\theta(\varepsilon_z - \varepsilon'_z) = 1$ при $\varepsilon_z - \varepsilon'_z > 0$ и $\theta(\varepsilon_z - \varepsilon'_z) = 0$ при $\varepsilon_z - \varepsilon'_z < 0$ — функции Хевисайда.

Для слоистых кристаллов эффективная масса электронов проводимости вдоль слоя намного меньше эффективной массы поперек его, т.е. $\gamma < 1$. В этом случае можно произвести интегрирование по k'_z и получить окончательные выражения для компонент обратного времени релаксации при произвольном значении kr_0 $(k^2 = k_{\perp}^2 + k_z^2)$:

$$\frac{1}{\tau_{\perp}} = \frac{1}{\tau_0} \left\{ \frac{2k_z r_0}{\left[1 + (2k_{\perp} r_0)^2\right] \sqrt{1 + (2kr_0)^2} \sqrt{1 + (2k_z r_0)^2}} + \frac{F(\alpha, q) - E(\alpha, q)}{(2ak_{\perp})^2 \left[1 + (2k_{\perp} r_0)^2\right]^{1/2}} \right\},$$
(9)

$$\frac{1}{\tau_{\parallel}} = \frac{1}{\tau_0} \frac{1}{2k_z r_0} \left\{ \frac{1}{\left(1 + (2k_\perp r_0)^2\right)^{1/2}} - \frac{1}{\left(1 + (2k_z r_0)^2\right)^{1/2} \left(1 + (2k_z r_0)^2 + (2k_\perp r_0)^2\right)^{1/2}} \right\},$$
(10)

где

$$q = \frac{2(k_{\perp}r_0)}{\sqrt{1 + 4(k_{\perp}r_0)^2}}, \qquad \alpha = \arctan(r_0k_z),$$
$$r_0 = \frac{(m\varkappa)^{1/2}}{8\pi Nea^{3/2}}, \qquad F(\alpha, q) = \int_0^\alpha \frac{d\varphi}{\sqrt{1 - q^2\sin^2\varphi}},$$

 $E(\alpha,q) = \int_{0}^{\alpha} \sqrt{1-q^2 \sin^2 \varphi} \, d\varphi$ — эллиптические интегралы I и II рода.

Из полученных формул видно, что время релаксации при рассеянии электронов проводимости на ионах примеси имеет анизотропный характер даже при учете анизотропии только через плотность состояния. Эти формулы получены в борновском приближении $r_0 \ll r_{\rm B}$ (где $r_{\rm B} = \kappa \hbar^2/me^2$ — боровский радиус). В настоящей работе рассматривается вырожденный электронный газ. В этом случае условие применимости борновского приближения имеет вид $n \gg (\kappa k_0 T)/(4\pi^2 e^2 r_{\rm B}^2)$. В зависимости от величины произведения kr_0 можно рассмотреть два предельных случая.

При слабой экранировке кулоновского потенциала примесных ионов — $kr_0 \gg 1$ — для компонент обратного времени релаксации имеем

$$\frac{1}{\tau_{\perp}} = \frac{1}{\tau_0} \frac{\ln(4k_z r_0)}{(2k_{\perp} r_0)^3},\tag{11}$$

$$\frac{1}{r_{\parallel}} = \frac{1}{\tau_0} \frac{1}{4k_{\perp}k_z r_0^2}.$$
 (12)

Из формул (11) и (12) следует, что поперечная компонента обратного времени релаксации при слабом экранировании сильно зависит от поперечной компоненты волнового вектора и слабо зависит от продольной компоненты. При переходе к двумерному случаю зависимость τ_{\perp} от k_{\perp} совпадает с зависимостью, полученной в работах [1,3]. Продольная компонента времени релаксации одинаковым образом зависит как от продольной, так и от поперечной компоненты волнового вектора.

В случае сильного экранирования — $kr_0 \ll 1$ — из формул (9) и (10) получим

$$\frac{1}{\tau_{\perp}} = \frac{1}{\tau_{\parallel}} = \frac{1}{\tau_0} 2k_z r_0.$$
(13)

Отсюда видно, что при сильном экранировании анизотропия времени релаксации не имеет места, причем τ_{\perp} и τ_{\parallel} обратно пропорциональны радиусу экранирования. В этом предельном случае заряженный ион примеси ведет себя как точечный дефект с короткодействующим δ -образным потенциалом.

На основе формул (9) и (10) был произведен численный расчет продольной и поперечной компонент времени релаксации как функций поперечного (рис. 1) и продольного (рис. 2) волновых векторов.

Расчет производился для параметров сверхрешеток GaAs/Al_{0.36}Ga_{0.64}As (a = 10 nm, $\varkappa = 13.18$, $\varepsilon_0 = 12.5$ meV, $m_{\perp} = 0.06m_0$, $N_i = 10^{24}$ m⁻³) [8]. Из рис. 1 видно, что наблюдается рост как продольной, так и поперечной компоненты времени релаксации с увеличением энергии поперечного движения. При этом вычисленная величина поперечного времени релаксации больше продольного и близка к значению времени релаксации объемного проводника, приведенного в [6]. На рост τ_{\perp} с увеличением энергии поперечного движения в двумерном случае $\mu > 2\varepsilon_0$ указывалось

Рис. 1. Зависимость поперечного τ_{\perp} и продольного τ_{\parallel} времени релаксации от поперечного волнового вектора.

Рис. 2. Зависимость поперечного τ_{\perp} и продольного τ_{\parallel} времени релаксации от продольного волнового вектора.

в [6]. Отметим, что среднее значение поперечного времени релаксации (9), рассчитанное по формуле (1) работы [4], для слоистого InP дает значение 0.71 ps, что достаточно хорошо согласуется с экспериментальным значением 0.57 ps [6]. При усреднении использованы следующие параметры: постоянная решетки a = 50 Å, радиус экранирования $r_0 = 18$ Å.

В зависимостях продольного и поперечного времени релаксации от продольного волнового вектора при фиксированном r_0 наблюдается существенное различие (рис. 2).

С ростом $k_z r_0$ продольное время релаксации τ_{\parallel} увеличивается, а поперечное τ_{\perp} уменьшается и при больших $k_z r_0$ они приближаются к одинаковому значению. Следует отметить, что с увеличением концентрации примеси различия в зависимости времен релаксации от продольной компоненты волнового вектора значительны.

3. Электропроводность

На основе полученного выражения для анизотропного времени релаксации вычислим компоненты электропроводности квазидвумерных электронных систем, исходя из выражения для плотности тока [12]

$$j_i = -en_0 \Big\langle P_i \frac{v_i^2}{\varepsilon_\perp} \Big\rangle, \tag{14}$$

где $P_i = \hat{\tau} \Phi_i$ — компоненты импульса обобщенной силы Φ [11], вызывающей дрейф носителей тока, $n_0 = m_{\perp}(\mu - \varepsilon_0)/(\pi^2 \hbar^2 a)$ [12], v_i — компоненты групповой скорости электрона. Выражение в угловых скобках в (14) означает [12]

$$\left\langle P_{i} \frac{v_{i}^{2}}{\varepsilon_{\perp}} \right\rangle = \frac{m_{\perp}}{2\pi^{2}\hbar^{2}an_{0}} \int_{0}^{z_{0}} dz \int_{0}^{2\pi} d\varphi \int_{0}^{\infty} \varepsilon_{\perp} \left(-\frac{\partial f_{0}}{\partial \varepsilon_{\perp}} \right) A d\varepsilon_{\perp}.$$

Подставляя (11) и (12) в (14), получим общие выражения компонент тензора электропроводности, которые имеют вид

$$\sigma_i = e^2 n_0 \left\langle \frac{\tau_i v_i^2}{\varepsilon_\perp} \right\rangle. \tag{15}$$

В случае вырожденного электронного газа после интегрирования по ε_{\perp} и φ для поперечной σ_{\perp} и продольной σ_{\parallel} компонент электропроводности получим

$$\frac{\sigma_{\perp}}{\sigma_0} = 4 \frac{k_0 T}{\varepsilon_0} \left(\frac{2mk_0 T}{\hbar^2 r_0^{-2}}\right)^{3/2} \frac{J_{0,0,5/2}}{\ln\left(\frac{r_0}{a} z_0\right)},\tag{16}$$

$$\frac{\sigma_{\parallel}}{\sigma_0} = 4 \frac{r_0}{a} \frac{m_{\perp}}{m_{0z}} \left(\frac{2mk_0 T}{\hbar^2 r_0^{-2}}\right) \quad J_{1,2,1/2}, \tag{17}$$

где введены следующие обозначения: $\sigma_0 = e^2 \tau_0 n_0/m$, $J_{k,l,m} = \int_0^{z_0} z^k \sin^l z [\mu_F^* - 2\varepsilon_0^* \sin^2(z/2)]^m dz$ [13], $\mu_F^* = \mu_F/k_0 T$, $\varepsilon_0^* = \varepsilon_0/k_0 T$, $z_0 = \pi$ при $\mu_F > 2\varepsilon_0$, $z_0(\mu_F) = \arccos(1 - \mu_F/\varepsilon_0)$ при $\mu < 2\varepsilon_0$.

В общем виде отношение электропроводности вдоль слоя к электропроводности перпендикулярно слою (коэффициент анизотропии) имеет вид

$$\frac{\sigma_{\perp}}{\sigma_{\parallel}} = 2 \frac{r_0}{a} \left(\frac{k_0 T}{\varepsilon_0}\right)^2 \frac{1}{\ln\left(\frac{r_0}{a} z_0\right)} \frac{J_{0,0,5/2}}{J_{1,2,1/2}}.$$
 (18)

Отсюда видно, что в отличие от рассеяния на фононах, где отношение компонент электропроводности пропорционально отношению эффективных масс [12], при рассеянии на ионах примеси коэффициент анизотропии $\sigma_{\perp}/\sigma_{\parallel}$ пропорционален отношению радиуса экранирования к постоянной решетки поперек слоя r_0/a .

На основе формулы (18) был произведен численный расчет зависимости $\sigma_{\perp}/\sigma_{\parallel}$ от отношения r_0/a при $\mu < 2\varepsilon_0$ (квазидвумерный случай) (рис. 3). Здесь использовались приведенные выше данные для сверхрешетки GaAs/Al_{0.36}Ga_{0.64}As.

Рис. 3. Зависимость анизотропии электропроводности $\sigma_{\perp}/\sigma_{\parallel}$ от $z_0 = \arccos(1 - \mu/\varepsilon_0)$ для различных значений отношений r_0/a : I = 4, 2 = -1, 3 = 0.5.

Рис. 4. Зависимость анизотропии электропроводности $\sigma_{\perp}/\sigma_{\parallel}$ от постоянной решетки *а* для различных концентраций примесей. N_i , m⁻³: $I - 10^{22}$, $2 - 10^{24}$.

Из рис. З видно, что величина анизотропии электропроводности определяется соотношением между уровнем Ферми $\mu_{\rm F}$ и величиной мини-зоны $2\varepsilon_0$. С ростом отношения $\mu_{\rm F}/(2\varepsilon_0)$ анизотропия электропроводности увеличивается. Из рисунка также следует, что степень анизотропии зависит от отношения r_0/a : чем меньше это отношение, тем меньше анизотропия. Так как r_0 уменьшается с увеличением концентрации примеси, анизотропия электропроводности в случае примесного рассеяния уменьшается с ростом концентрации.

Анизотропия электропроводности зависит как от концентрации примесей, так и от постоянной решетки. При малых концентрациях, когда выполняется условие $r_0 > a$, анизотропия падает с ростом постоянной решетки поперек слоя. При больших концентрациях, когда выполняется условие $r_0 < a$, зависимость анизотропии электропроводности от постоянной решетки становится немонотонной (рис. 4).

4. Заключение

Получены аналитические выражения для продольной и поперечной компонент времени релаксации, которые можно использовать в дальнейшем при вычислении конкретных кинетических коэффициентов. Установлено, что продольная и поперечная компоненты времени релаксации растут с увеличением энергии поперечного движения — произведения $k_{\perp}r_0$. В поведении продольной и поперечной компонент времени релаксации в зависимости от продольного волнового вектора наблюдается существенное различие. При увеличении произведения $k_{\perp}r_0$ поперечное время релаксации τ_{\perp} уменьшается, а продольное τ_{\parallel} увеличивается, приближаясь друг к другу. Произведен численный расчет анизотропии электропроводности в зависимости от соотношения между уровнем Ферми и шириной мини-зоны для различных значений отношения радиуса экранирования r₀ к постоянной решетки а. Отмечен рост анизотропии электропроводности с ростом отношения r_0/a , т.е. при заданной постоянной решетки величина анизотропии электропроводности определяется концентрацией примесей.

Список литературы

- [1] K. Hess. Appl. Phys. Lett. 35, 484 (1979).
- [2] B.K. Ridley. J. Phys. C: Solid State Phys. 15, 5899 (1982).
- [3] A. Gold. Phys. Rev. B 35, 723 (1987).
- [4] S. Das Sarma, E.H. Hwang. Phys. Rev. Lett. 83, 164 (1999).
- [5] J. Lee, H.N. Spector, V.K. Arora. Appl. Phys. 54, 6995 (1983).
- [6] A.B. Henriques. Phys. Rev. B 64, 045 319 (2001).
- [7] S.R. Eric Yang, S. Das Sarma. Phys. Rev. B 37, 10090 (1988).
- [8] С.И. Борисенко. ФТП 37, 588; 1117 (2003).
- [9] R.C. Fivaz. Nuovo Cimento B 63, 10 (1969).
- [10] В.Ф. Гантмахер, И.Б. Левинсон. Рассеяние носителей тока в металлах и полупроводниках. Наука, М. (1984). 370 с.
- [11] B.M. Askerov. Electron transport phenomena in semiconductors. World Scientific, Singapore (1993). 384 p.
- [12] B.M. Askerov, B.I. Kuliev, S.R. Figarova, I.R. Gadirova. J. Phys.: Cond. Matter 7, 843 (1995).
- [13] Б.М. Аскеров, Б.И. Кулиев, С.Р. Фигарова, И.Р. Гадирова. ФТТ **39**, 1857 (1997).