Структура и электротранспортные свойства катиондефицитных образцов перовскитных феррокупратов RBaCuFeO_{5+ δ} (R = Y, La)

© А.И. Клындюк, Е.А. Чижова

Белорусский государственный технологический университет, 220050 Минск, Белоруссия

E-mail: kai@bstu.unibel.by

(Поступила в Редакцию 8 августа 2007 г.)

Изучены структура, термическое расширение и электрические свойства катиондефицитных феррокупратов RBaCuFeO_{5+ δ} (R = Y, La), являющихся полупроводниками *p*-типа. Величина коэффициента линейного термического расширения (КЛТР) феррокупрата иттрия–бария уменьшается при образовании вакансий в его *A*-подрешетке (Y, Ba), а параметры элементарной ячейки практически не изменяются при образовании катионных вакансий в различных подрешетках (Y, Ba, Cu/Fe) его структуры. На основании результатов измерения термоэдс сделано предположение о том, что феррокупрат YBaCuFeO_{5+ δ} представляет собой "нанокомпозит", состоящий из нанообластей фаз Y₂Cu₂O₅ и BaFeO_{3- δ}. Недостаток лантана приводит к увеличению элементарной ячейки LaBaCuFeO_{5+ δ} и практически не влияет на его КЛТР и электрические свойства. Образование катионных вакансий в протяженных [Ba(Cu,Fe)₂O₅]-блоках фазы LaBaCuFeO_{5+ δ} приводит к тетрагональному искажению ее кубической структуры, уменьшению КЛТР и увеличению электросопротивления образцов, причем последнее вызвано главным образом возрастанием энергии переноса носителей заряда в (Cu,Fe)O₂-слоях LaBaCuFeO_{5+ δ}.

Работа выполнена при поддержке ГКПНИ "Кристаллические и молекулярные структуры" (задание 33) и Белорусского республиканского фонда фундаментальных исследований (гранты X03M-049, X06M-002).

PACS: 61.72.Yi, 65.40.De, 74.25.Fy

1. Введение

В последние годы интенсивно исследуются слоистые перовскитные оксиды, представителями которых являются сверхпроводящие купраты $RBa_2Cu_3O_{7-\delta}$ (R = Y, редкоземельный элемент) [1], магнеторезистивные манганиты $RBaMn_2O_{6-g}$ [2] и кобальтиты $RBaCo_2O_{5+\delta}$ [3], а также феррокупраты $RBaCuFeO_{5+\delta}$, в том числе феррокупрат иттрия–бария, впервые описанный в работе [4].

Структура тетрагонального феррокупрата YBaCuFeO_{5+δ} образована двойными (Cu.Fe)₂O₅слоями соединенных вершинами пирамид CuO₅ и FeO₅, ориентированных перпендикулярно оси c; ионы Ba²⁺ расположены внутри двойных слоев, а ионы Y³⁺ между ними. Удвоение перовскитной ячейки происходит вследствие упорядочения катионов Ba²⁺ и Y³⁺ вдоль оси с [4]. Из-за статистического распределения близких по размерам катионов La^{3+} и Ba^{3+} ($R_{La^{3+}} = 1.32$ Å, $R_{\text{Ba}^{2+}} = 1.60 \text{ Å}$ для КЧ = 12 [5]) по А-позициям феррокупрата LaBaCuFeO₅₊₆ структура последнего является почти кубической [6,7] с параметром перовскитной ячейки $a_p = 3.9256(6)$ [6], 3.92330(5) [7], 3.924 Å [8]; результаты нейтронографии указывают на то, что при низких температурах ($T = 15 \,\mathrm{K}$) ячейка LaBaCuFeO_{5+ δ} орторомбически искажена $(a > b \approx \sqrt{2}a_p, c \approx 2a_p,$ a = 5.5586(8), b = 5.5550(9), c = 7.8155(2) Å [7].

Слоистые феррокупраты $RBaCo_2O_{5+\delta}$ представляют интерес в качестве материалов для химических катализаторов [9] или полупроводниковых сенсоров газов [10,11], при этом улучшения каталитических или сенсорных свойств этих фаз можно добиться путем частичного гетеровалентного замещения катионов, входящих в их состав. Одним из способов регулирования свойств функциональных материалов на основе перовскитов является их самолегирование — направленное создание в них катионной нестехиометрии [12,13]. Способ базируется на способности перовскита (ABO_3) сохранять свою кристаллическую структуру при образовании до 5–10% катионных вакансий в его *A*- или *B*-подрешетке [12]. Преимущество данного способа заключается в том, что настройка свойств функциональных материалов производится без увеличения числа компонентов, входящих в их состав, т. е. без химического усложнения системы.

В настоящей работе исследовано влияние дефицита A- и B-катионов на кристаллическую структуру, термическое расширение и электрические свойства слоистых кислороддефицитных перовскитных феррокупратов иттрия-бария $YBaCo_2O_{5+\delta}$ и лантана-бария $LaBaCo_2O_{5+\delta}$.

2. Методика эксперимента

Поликристаллические образцы $R_{0.95}$ BaCuFeO_{5+ δ}, $RBa_{0.95}$ CuFeO_{5+ δ}, $RBaCu_{0.95}$ FeO_{5+ δ}, $RBaCuFe_{0.95}O_{5+\delta}$ (R = Y, La) получали керамическим методом. Оксиды Y_2O_3 (Ит-OB), La₂O₃ (XЧ), Fe₂O₃ (OCЧ 9–2), CuO (OCЧ 9–2) и карбонат BaCO₃ (Ч), взятые в необходимых молярных соотношениях, смешивали в агатовой ступке с добавлением небольшого количества этилового спирта. Полученные смеси прессовали в таблетки и отжигали на воздухе при 1173 К в течение 40 h. Для изучения термического расширения, электросопротивления и термоэдс из полученных порошков под давлением $(1-3) \cdot 10^3$ kg/cm² прессовали таблетки диаметром 9 mm и толщиной 3-5 mm и бруски размером $5 \times 5 \times 30$ mm, которые затем спекали на воздухе при 1273 К в течение 5-10 h.

Рентгенофазовый анализ (РФА) полученных образцов проводили на дифрактометрах ДРОН-3 и Вruker D8 XRD (Си K_{α} -излучение). Погрешность определения параметров элементарной ячейки феррокупратов составляла $\Delta a = \pm 0.004$ Å, $\Delta c = \pm 0.008$ Å. Инфракрасные спектры поглощения феррокупратов записывали в таблетированных смесях с KBr (ХЧ) на Фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот 300–1500 сm⁻¹. Погрешность определения частот колебаний не превышала ± 2 сm⁻¹. Содержание в образцах избыточного кислорода δ определяли иодометрически с точностью $\Delta \delta = \pm 0.01$.

Термическое расширение спеченной керамики исследовали на кварцевом дилатометре собственной конструктуции с вертикально расположенным кварцевым толкателем на воздухе в интервале температур 300-1100 K в динамическом режиме со средней скоростью нагрева-охлаждения 3-5 K/min. Значения коэффициента линейного термического расширения (КЛТР) α образцов рассчитывали из линейных участков зависимостей $\Delta l/l_0 = f(T)$ с погрешностью $\delta(\alpha) \leq \pm 5\%$.

Электросопротивление ρ керамики измеряли четырехконтактным методом на постоянном токе на воздухе при $T = 300 - 1100 \, \text{K}$ в динамическом режиме со скоростью нагрева и охлаждения 3-5 K/min $(\Delta \rho < 5\%)$. Найденные экспериментально значения электросопротивления керамики ρ_P пересчитывали на нулевую пористость ($\rho_{P=0}$), используя соотношение $\rho_{P=0} = \rho_P ((1+P^{2/3})/(1+P^{2/3}+P))$ [14]. Пористость Р спеченных образцов определяли по формуле $P = (d_{X-\text{ray}} - d_{\exp})/d_{\exp}$, где $d_{X-\text{ray}}$ — рентгенографическая, а d_{exp} — кажущаяся плотность, определенная по массе и геометрическим размерам образцов. Коэффициент термоэдс S феррокупратов определяли относительно серебра на воздухе в интервале температур 300-1000 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 K/min с погрешностью $\delta(S) \leq \pm 10\%$. Градиент температур между горячим и холодным концами образца в ходе измерений поддерживали на уровне 20-25 К. Значения энергий активации электропроводности E_A и термоэдс E_S образцов находили из линейных участков зависимостей соответственно $\ln(\rho/T) = f(1/T)$ и S = f(1/T) (коэффициент корреляции R ≥ 0.999). Перед измерениями электрофизических свойств на поверхности образцов формировали Ag-электроды путем вжигания серебряной пасты при 1073 К в течение 15 min. Для измерения температуры использовали хромель-алюмелевые термопары.

Таблица 1. Параметры элементарных ячеек феррокупратов иттрия (лантана)-бария

А.И. Клындюк, Е.А. Чижова

Образец	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$
YBaCuFeO _{5.04}	3.875	7.669	115.2
Y _{0.95} BaCuFeO _{4.97}	3.876	7.674	115.3
YBa _{0.95} CuFeO _{4.99}	3.875	7.666	115.1
YBaCu _{0.95} FeO _{4.99}	3.873	7.661	114.9
YBaCuFe _{0.95} O _{4.96}	3.874	7.666	115.1
LaBaCuFeO _{5.47}	3.924	_	60.42
La0.95BaCuFeO5.43	3.928	_	60.61
LaBa _{0.95} CuFeO _{5.45}	3.924	7.803	120.1
LaBaCu _{0.95} FeO _{5.44}	3.925	7.794	120.1
LaBaCuFe _{0.95} O _{5.42}	3.922	7.793	119.9
	•	•	•

3. Результаты и их обсуждение

Синтезированный в работе феррокупрат иттриябария YBaCuFeO_{5.04} имел тетрагональную структуру (пр. гр. симм. Р4/ттт, рис. 1, а) с параметрами ячейки a = 3.875 Å, c = 7.669 Å, что хорошо согласуется с литературными данными: a = 3.867, c = 7.656 Å [4], a = 3.872. $c = 7.681 \,\text{\AA}$ [9], a = 3.8740(2), c == 7.6676(5) Å [15], a = 3.878, c = 7.672 Å [16]. Образцы катиондефицитных феррокупратов иттриябария были однофазными и имели тетрагональную структуру, соответствующую структуре YBaCuFeO_{5 $\pm\delta$} (рис. 1, *a*), с параметрами ячейки a = 3.873 - 3.882 Å и c = 7.661 - 7.674 Å(табл. 1), что в пределах погрешности совпадает с размерами элементарной ячейки фазы YBaCuFeO_{5.04}. Содержание кислорода в образцах по данным иодометрии изменялось с пределах $4.96 \le (5 + \delta) \le 4.99$, т.е. образование катионных вакансий в феррокупрате иттрия-бария сопровождалось образованием в нем вакансий по кислороду. Содержание Cu³⁺ в катиондефицитных образцах и YBaCuFeO_{5.04} было одинаковым ($[Cu^{3+}] = 8 \text{ at.}\%$).

Феррокупрат лантана-бария LaBaCuFeO5 47 имел кубическую структуру (пр. гр. симм. Рт3т, рис. 1, b) с параметром ячейки a = 3.924 Å, что согласуется с данными [6-8]. Катиондефицитные образцы феррокупрата лантана-бария после отжига при 1273 К были однофазными и имели структуру перовскита. Содержание кислорода в этих образцах было близко к таковому для базовой фазы (табл. 1), из чего следует, что образование катионных вакансий в феррокупрате лантанабария сопровождается увеличением степени окисления меди (от +2.94 для LaBaCuFeO_{5.47} до \approx +3.00 для остальных образцов). Феррокупрат La_{0.95}BaCuFeO_{5.43}, как и фаза LaBaCuFeO_{5.47}, был кубическим (рис. 1, b), причем образование катионных вакансий в слоях LaO_δ приводило к закономерному увеличению размера перовскитной ячейки а (табл. 1).

Образование катионных вакансий в $[Ba(Cu,Fe)_2O_5]$ блоках феррокупрата LaBaCuFeO_{5+ δ} приводило к тетрагональному искажению его кубической структуры, на

Образец	$\alpha \cdot 10^5$, K ⁻¹		<i>T</i> * K	E_A , eV		$T^{\#}$ K
	$300 \text{K}{-}T^*$	$T^*-1100 \mathrm{K}$, n	$300 \text{K} - T^{\#}$	$T^{\#}$ -1100 K	., .
$YBaCuFeO_{5+\delta}$	1.43		_	0.24		_
$Y_{0.95}BaCuFeO_{5+\delta}$	0.96	1.51	525	0.19	0.44	440
$YBa_{0.95}CuFeO_{5+\delta}$	0.96	1.33	525	0.16	0.65	380
$YBaCu_{0.95}FeO_{5+\delta}$	1.35		_	0.16	0.47	385
$YBaCuFe_{0.95}O_{5+\delta}$	1.45		—	0.34		-

Таблица 2. Значения КЛТР *α* и энергии активации электропроводности *E*_A катиондефицитных образцов феррокупрата иттриябария

что указывает усложнение вида дифрактограмм катиондефицитных образцов. Так, например, в диапазоне углов $2\theta = 46-47^{\circ}$ для этих образцов вместо синглета (200) кубической фазы наблюдается дублет (200) + (004), характерный для слоистых тетрагональных феррокупратов (рис. 1). Возрастание средней степени окисления меди приводило к сжатию перовскитной ячейки образцов в направлении, перпендикулярном (Cu,Fe)O₂-слоям (табл. 1).

На ИК-спектрах поглощения иттрийсодержащих образцов (рис. 1, *a*) наблюдаются полосы поглощения

Рис. 1. Порошковые рентгенограммы составов YBaCuFeO_{5.04} (*a*) и LaBaCuFeO_{5.47} (*b*). На вставках рефлексы 200 и 004 и ИК-спектры поглощения для образцов YBaCuFeO_{5.04} (*1*), Y_{0.95}BaCuFeO_{4.97} (*2*), YBa_{0.95}CuFeO_{4.99} (*3*), LaBaCuFeO_{5.47} (*4*), La_{0.95}BaCuFeO_{5.43} (*5*), LaBa_{0.95}CuFeO_{5.45} (*6*), LaBaCu₉₅FeO_{5.44} (*7*).

с экстремумами при 374–380 (ν_1), 577–580 (ν_2) и 652–654 сm⁻¹ (ν_3), соответствующие валентным (ν_2) и деформационным (ν_1) колебаниям связей металлкислород в плоскости [Cu(Fe)O₂], а также валентным колебаниям апикального кислорода Cu–O–Fe-связей (ν_3) в структуре YBaCuFeO_{5+ δ} [17]. Близость значений $\nu_1-\nu_3$ катиондефицитных образцов и фазы YBaCuFeO_{5+ δ} позволяет заключить, что энергия металл-кислородных связей в слоистом феррокупрате иттрия–бария практически не изменяется при образовании катионных вакансий в его структуре.

ИК-спектры поглощения лантансодержащих образцов (рис. 1, b) содержат две выраженные полосы поглощения с экстремумами при 350-360 (ν_1) и 567-604 сm⁻¹ (ν_2), отвечающие деформационным (v1) и валентным колебаниям (v₂) связей (Cu,Fe)-O-(Cu,Fe) в их структуре [8,17]. ИК-спектры поглощения фаз LaBaCuFeO_{5 47} и La_{0.95}BaCuFeO_{5.43} практически совпадают, что подтверждает сделанный выше на основании данных РФА вывод о слабом влиянии дефектности подрешетки лантана на структуру феррокупрата лантана-бария. Положение максимума полосы поглощения v2 для остальных феррокупратов LaBa0.95CuFeO5.45, LaBaCu0.95FeO5.44, LaBaCuFe_{0.95}O_{5.42} по сравнению с фазой LaBaCuFeO_{5+δ} последовательно смещается в сторону меньших частот. На ИК-спектрах поглощения этих фаз появляется дополнительная полоса поглощения с максимумом при $650 \,\mathrm{cm}^{-1}$ (v_3), интенсивность которой растет при уменьшении содержания кислорода в образцах. Другими словами, образование катионных вакансий в [Ba(Cu,Fe)₂O₅]-блоках LaBaCuFeO_{5+б} приводит к искажению образующих эти блоки полиэдров ВО_n (B = Cu, Fe; n = 5, 6), т.е. к сжатию этих полиэдров вдоль выделенного направления. Таким образом, результаты РФА и ИК-спектроскопии поглощения слоистых феррокупратов согласуются между собой и приводят к одним и тем же выводам.

Зависимости $\Delta l/l_0 = f(T)$ образцов YBaCu_{0.95}FeO_{5+ δ}, YBaCuFe_{0.95}O_{5+ δ} в интервале температур 310–1100 K были линейными, а величина их КЛТР была близка к КЛТР фазы YBaCuFeO_{5+ δ} (табл. 2). КЛТР образцов Y_{0.95}BaCuFeO_{5+ δ}, YBa_{0.95}CuFeO_{5+ δ} при $T^* = 525$ K возрастал от $\approx 1.0 \cdot 10^{-5}$ K⁻¹ до $(1.3-1.5) \cdot 10^{-5}$ K⁻¹ (табл. 2). Уменьшение КЛТР феррокупрата иттрия–

Образец	$lpha \cdot 10^5$, K ⁻¹		T* K	E. eV	Ec. eV	F eV
	$300 \text{K}{-}T^*$	$T^*-1100 \mathrm{K}$	1, K	E_A, cv	<i>ES</i> , <i>C v</i>	L_m, CV
LaBaCuFeO $_{5+\delta}$	1.41	2.04	650	0.07	0.02	0.04
$La_{0.95}BaCuFeO_{5+\delta}$	1.26	2.09	725	0.11	0.03	0.08
$LaBa_{0.95}CuFeO_{5+\delta}$	1.40	1.92	720	0.17	0.02	0.15
LaBaCu _{0.95} FeO _{5+δ}	1.10	1.81	685	0.16	0.03	0.13
LaBaCuFe _{0.95} O _{5+δ}	1.06	1.68	630	0.17	0.03	0.14

Таблица 3. Значения КЛТР *α* и энергий активации процессов электропереноса *E_A*, *E_S*, *E_m* катиондефицитных образцов феррокупрата лантана–бария

бария при образовании в нем вакансий иттрия, бария (*А*-позиции) согласуется с результатами работы [18], в которой было показано, что КЛТР перовскитного феррокобальтита лантана-стронция уменьшается при образовании катионных вакансий в его *А*-подрешетке.

На зависимостях $\Delta l/l_0 = f(T)$ для феррокупратов лантана-бария наблюдалась аномалия в виде излома при $T^* = 630-725$ К (табл. 3), вызванная перестройкой их кислородной подрешетки, сопровождающейся выделением кислорода [8]. Величина T^* для *B*-дефицитных образцов (630–685 K) близка к T^* для LaBaCuFeO_{5+ δ} (650 K), а для *A*-дефицитных смещена в сторону более высоких температур (720–725 K). Значения α для

феррокупратов при $T < T^*$ меньше, чем при $T > T^*$, поскольку при $T > T^*$ дополнительный вклад в расширение LaBaCuFeO_{5+ δ} вносит образование кислородных вакансий в его структуре. Величины α для катиондефицитных феррокупратов лантана-бария были меньше, чем для LaBaCuFeO_{5+ δ} (табл. 3), что сильнее выражено при $T < T^*$, и согласуется с данными [18], согласно которым образование катионных вакансий в структуре перовскита La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3- δ} приводит к уменьшению его КЛТР.

Все исследованные феррокупраты являлись полупроводниками *p*-типа (рис. 2), электросопротивление которых закономерно увеличивалось вследствие образования

Puc. 2. Температурные зависимости электросопротивления (a, b) и термоэдс (c, d) керамики состава YBaCuFeO_{5+δ} (1), Y_{0.95}BaCuFeO_{5+δ} (2), YBa_{0.95}CuFeO_{5+δ} (3), YBaCu_{0.95}FeO_{5+δ} (4), YBaCuFe_{0.95}O_{5+δ} (5), LaBaCuFeO_{5+δ} (6), La_{0.95}BaCuFeO_{5+δ} (7), LaBa_{0.95}CuFeO_{5+δ} (8), LaBaCu_{0.95}FeO_{5+δ} (9), LaBaCuFe_{0.95}O_{5+δ} (10).

катионных вакансий (рис. 2, *a*, *b*). В случае феррокупратов лантана–бария характер электросопротивления изменялся от полупроводникового ($\partial \rho / \partial T < 0$) к металлическому ($\partial \rho / \partial T > 0$) (рис. 2, *b*), а коэффициент термоэдс *S* начинал резко увеличиваться вблизи 750 К (рис. 2, *d*), что объясняется термической диссоциацией этих фаз, на воздухе начинающейся при $T \approx 670$ K [8].

Величины кажущейся энергии активации электропроводности E_A феррокупратов иттрия—бария приведены в табл. 2. Как видно из табл. 2, образование катионных вакансий в структуре YBaCuFeO_{5+ δ} приводит к росту E_A керамики (в 2–2.5 раза при $T^* < T$), т. е. перенос заряда в дефектных феррокупратах иттрия—бария протекает со значительными энергетическими затруднениями.

Варьирование катионного состава феррокупрата иттрия–бария оказывало сильное влияние как на величину его коэффициента термоэдс S, так и на вид зависимости S = f(T) (рис. 2, c), при этом практически одинаковое или близкое влияние на термоэдс образцов оказывало образование вакансий в позициях иттрия и меди (образцы Y_{0.95}BaCuFeO_{5+ δ}, YBaCu_{0.95}FeO_{5+ δ}), бария и железа (образцы YBa_{0.95}CuFeO_{5+ δ}, YBaCuFe_{0.95}O_{5+ δ}). Объяснить полученные результаты можно, предположив, что феррокупрат иттрия–бария YBaCuFeO_{5+ δ} представляет собой "нанокомпозит", состоящий из нанообластей фаз Y₂Cu₂O₅ и BaFeO_{3- δ}.

Величины электросопротивления фаз $La_{0.95}BaCuFeO_{5+\delta}$ и LaBaCuFeO_{5+\delta} были близки, особенно при повышенных температурах, тогда как значения ρ феррокупратов LaBa $_{0.95}$ CuFeO $_{5+\delta}$, LaBaCu $_{0.95}$ FeO $_{5+\delta}$, LaBaCuFe_{0.95}O_{5+δ} во всем исследованном интервале температур были значительно выше и близки друг к другу (рис. 2, b). Из полученных результатов следует, что наиболее сильное (и практически одинаковое) влияние на величину ρ слоистого феррокупрата лантана-бария оказывает образование катионных дефектов (вакансий) в проводящих [Ba(Cu,Fe)₂O₅]-блоках. Значения коэффициента термоэдс феррокупратов лантана-бария, кроме LaBaCuFe $_{0.95}O_{5+\delta}$, во всем исследованном интервале температур были близки между собой (рис. 2, d). Относительно высокие величины S железодефицитного феррокупрата лантана-бария обусловлены, вероятно, наибольшей степенью дефектности его кислородной подрешетки (табл. 1).

Значения энергии активации электропроводности ЕА катиондефицитных феррокупратов лантана-бария, рассчитанные из линейных участков зависимостей $\ln(\rho/T) = f(1/T)$ (T < 750 K, $\delta \approx \text{const}$), приведены в табл. 3. Образование катионных вакансий в структуре феррокупрата лантана-бария приводит к росту ЕА в 1.5−2.5 раза: от 0.07 eV для LaBaCuFeO_{5+δ} до 0.17 eV для LaBa_{0.95}CuFeO_{5+δ}. Значения энергии активации термоэдс (E_S) катиондефицитных феррокупратов лантана-бария составляли 0.02-0.03 eV, что близко к величине $E_S = 0.02 \,\mathrm{eV}$ базовой фазы LaBaCuFeO_{5+ δ} (табл. 3).

Описывая электротранспортные свойства слоистого феррокупрата лантана-бария в рамках модели поляронов малого радиуса (ПМР) [19], из результатов измерений электросопротивления и термоэдс можно определить параметры процессов переноса заряда: энергию возбуждения носителя заряда ПМР (E_S) и энергию активции переноса ПМР ($E_m = E_A - E_S$). Как видно из данных, приведенных в табл. 3, образование катионных дефектов (вакансий) в структуре LaBaCuFeO_{5+ δ} слабо влияет на величину энергии возбуждения носителей заряда, приводя к значительному (в 2–3 раза) увеличению энергии активации их переноса, наиболее выраженному для образцов с дефектами в проводящих [Ba(Cu,Fe)₂O₅]блоках структуры слоистого феррокупрата лантана– бария.

4. Заключение

В работе изучено влияние дефицита катионов на структуру и свойства слоистых феррокупратов иттриябария YBaCuFeO_{5+δ} и лантана-бария LaBaCuFeO_{5+δ}. Установлено, что параметры элементарной ячейки фазы YBaCuFeO_{5+δ} практически не изменяются, величина KЛTP значительно уменьшается при образовании вакансий в *A*-подрешетке, а электросопротивление возрастает при образовании катионных вакансий в различных позициях ее структуры. Результаты измерения термоэдс указывают на то, что феррокупрат YBaCuFeO_{5+δ} наноструктурирован и состоит из нанообластей купрата иттрия $Y_2Cu_2O_5$ и феррита бария BaFeO_{3-δ}.

Найдено, что недостаток лантана в образцах приводит к увеличению размера элементарной ячейки LaBaCuFeO_{5+ δ} и слабо влияет на его термическое расширение и электрические свойства. Образование катионных вакансий в [Ba(Cu,Fe)₂O₅]-блоках феррокупрата лантана-бария приводит к тетрагональному искажению его кубической структуры, уменьшению КЛТР образцов и увеличению их электросопротивления. Показано, что уменьшение проводимости образцов обусловлено увеличением энергии переноса носителей заряда в (Cu,Fe)O₂-слоях феррокупрата лантана–бария дантана–бария LaBaCuFeO_{5+ δ}.

Список литературы

- [1] Ю.Д. Третьяков, Е.А. Гудилин. Успехи химии 69, 3 (2000).
- [2] И.О. Троянчук, С.В. Труханов, Г. Шимчак. Кристаллография 47, 716 (2002).
- [3] S. Roy, I.S. Dubenko, M. Khan, E.M. Condon, J. Craig, N. Ali. Phys. Rev. B 71, 024419 (2005).
- [4] L. Er-Rakho, C. Michel, Ph. LaCorre, B. Raveau. J. Solid State Chem. 73, 531 (1988).
- [5] R.D. Shannon, C.T. Prewitt. Acta Cryst. B 25, 946 (1969).
- [6] L. Er-Rakho, C. Michel, F. Studer, B. Raveau. J. Phys. Chem. Sol. 48, 377 (1987).
- [7] H. Rando, W.A. Ortiz, F.M. Araujo-Moreira, L. Suescun, B. Toby, E. Quagliata, C.A. Negreira, K. Prassides, A.W. Mombru. Physica C 313, 105 (1999).

- [8] А.И. Клындюк, Е.А. Чижова. Неорган. материалы **42**, 611 (2006).
- [9] T. Rentschler. Thermochim. Acta 284, 367 (1996).
- [10] A. Klyndziuk, G. Petrov, S. Kurhan, Ye. Chizhova, A. Chabatar, L. Kunitski, L. Bashkirov. Chem. Sens. 20 B (Suppl.), 854 (2004).
- [11] А.И. Клындюк, Е.А. Чижова, И.А. Таратын. Тр. БГТУ. Сер. III. Химия и технол. неорган. веществ. Минск. XIII, 54 (2005).
- [12] Т.Н. Кольцова, Г.Д. Нипан. ЖНХ 41, 1944 (1996).
- [13] И.О. Троянчук. ФТТ 48, 653 (2006).
- [14] A.K. Tripathi, H.B. Lal. Mater. Res. Bull. 15, 233 (1980).
- [15] M.J. Ruiz-Aragon, E. Maron, U. Amador, J.L. Martinez, N.H. Andersen, H. Ehrenberg. Phys. Rev. B 58 II, 6291 (1998).
- [16] J. Linden, M. Kochi, K. Lehmus, T. Pietari, M. Karppinen, H. Yamauchi. J. Solid State Chem. 166, 118 (2002).
- [17] Y.K. Atanasssova, V.N. Popov, G.G. Bogachev, M.N. Iliev, C. Mitros, V. Psycharis, M. Pissas. Phys. Rev. B 47, 15 201 (1993).
- [18] G.Ch. Kostogloudis, Ch. Ftikos. Solid State. Ion. 126, 143 (1999).
- [19] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982). 368 с.