Влияние температурных полей на ориентационную релаксацию в гибридных жидкокристаллических ячейках

© А.В. Захаров, А.А. Вакуленко

Институт проблем машиноведения Российской академии наук, 199178 Санкт-Петербург, Россия

E-mail: avak@microm.ipme.ru

(Поступила в Редакцию 19 июня 2007 г. В окончательной редакции 16 августа 2007 г.)

Релаксация поля директора $\hat{\mathbf{n}}$ и поля скорости v, а также сдвиговых и нормальных компонент тензора напряжений в гибридной жидкокристаллической (ГЖК) ячейке с неодинаково нагретыми ограничивающими поверхностями исследованы теоретически. Численно решена система нелинейных гидродинамических уравнений, описывающих переориентацию директора с учетом поля v, инициируемого, с одной стороны, переориентацией поля директора, а с другой — градиентом температуры. Время релаксации и влияние поля скорости на процессы релаксации исследованы для ряда гидродинамических режимов, возникающих в ГЖК под действием поля температуры.

PACS: 61.30.Cz, 64.70.Md

1. Введение

Технологический прогресс в производстве современных электронных приборов, таких как портативные компьютеры, мобильные телефоны или органайзеры, ключевым элементом которых являются жидкокристаллические (ЖК) дисплеи, связан кроме всего прочего с созданием ультрабыстрых оптических переключателей (УБОП). Основным элементом таких УБОП являются ЖК-ячейки, и изучению воздействия внешних условий на структурные и релаксационные свойства ЖК-ячеек, время жизни и устойчивость этих электронных приборов придается огромное значение. Прочие важные внешние воздействия, которым подвержены УБОП, такие как электрические и магнитные поля, температурные градиенты, обусловленные незначительным перепадом температур на поверхностях ЖК-ячеек, могут также сильно повлиять как на структурные и релаксационные свойства этих ячеек, так и на время активной жизни ЖК-дисплеев. А поскольку в процессе активной эксплуатации любого электронного прибора с неизбежностью возникают перепады температур, изучение воздействия температурных полей на релаксационные и структурные характеристики ЖК-ячеек становится более чем актуальным. Необходимо также отметить, что вопросу о влиянии температурных полей на релаксационные и динамические свойства ЖК-фаз уделяется неоправданно мало внимания [1], поэтому мы попытаемся в какой-то степени восполнить этот пробел. Будучи возмущенным под действием градиента температуры, поле директора $\hat{\mathbf{n}}(t, \mathbf{r})$ в ЖК-ячейке релаксирует к равновесному состоянию $\hat{\mathbf{n}}_{eq}(\mathbf{r})$, при котором директор образует равновесный угол $\theta_{eq}(\mathbf{r})$ с нормалью по отношению к ограничивающим поверхностям ЖК-ячейки. В рамках классической гидродинамики ЖК Эриксена–Лесли [2,3] эволюцию угла $\theta(t, \mathbf{r})$ к его равновесному значению можно рассчитать, основываясь на балансе моментов, действующих на единичный элемент ЖК-фазы. Однако всякий физический процесс, обусловленный переориентацией директора, инициирует поле скоростей v(t, r) в ЖК-ячейке, которое в свою очередь взаимодействует с полем директора $\hat{\mathbf{n}}(t, \mathbf{r})$ и полем температуры $T(t, \mathbf{r})$. Это так называемый эффект обратного течения [4]. Точное исследование эффекта обратного течения может быть осуществлено в рамках гидродинамического описания системы, построенной на балансе вращательных моментов, линейных моментов (аналога уравнения Навье-Стокса) и уравнения теплопроводности для такой анизотропной среды, как нематический ЖК. Наличие градиента температуры $\nabla T(t, \mathbf{r})$ приводит к появлению дополнительных, к уже существующим гидродинамическим напряжениям, касательных термомеханических напряжений [5], a также дополнительного вклада в баланс моментов и к необходимости учета уравнения теплопроводности для ЖК-фазы с двумя коэффициентами теплопроводности вдоль и поперек направления директора $\hat{\mathbf{n}}(t, \mathbf{r})$. При этом экспериментально было показано [6], что наличие градиента температуры в гибридной ЖК (ГЖК) ячейке ведет к возникновению гидродинамического потока, направленного параллельно горизонтальным ограничивающим поверхностям. Однако к настоящему времени отсутствует удовлетворительное описание процесса возникновения и эволюции этих потоков и деформаций поля директора в различных условиях, обусловленных различными температурными режимами и характером сцепления ЖК-молекул с ограничивающими поверхностями. В настоящей работе исследована переориентация поля директора и поля скоростей, а также релаксация поля температур к его равновесному распределению в ГЖК-ячейках в зависимости от характера градиента температур и сцепления ЖК-молекул со стенками ячейки.

Основные гидродинамические уравнения и их решение

Состояние ГЖК-ячейки, находящейся под влиянием градиента поля температуры $\nabla T(t, \mathbf{r})$, определяется балансом упругого Telast, вязкого Tvis, термомеханического T_{tm} моментов, действующих на единицу объема ЖК-фазы, аналогом уравнения Навье-Стокса для поля скорости $\mathbf{v}(t, \mathbf{r})$ и уравнением теплопроводности для такой анизотропной системы, как нематический жидкий кристалл (НЖК). Гибридная ориентация ЖК-ячейки предполагает, что на одной из ограничивающих поверхностей ячейки достигается гомеотропная ориентация директора, например $\hat{\mathbf{n}} \parallel \hat{\mathbf{k}} (z = 0)$, в то время как на другой — планарная ориентация директора, $\hat{\mathbf{n}} \perp \mathbf{k} (z = d)$. Здесь вектор **k** совпадает с осью *z* и направлен ортогонально обеим ограничивающим поверхностям ЖК-ячейки толщиной d, в то время как вектор $\mathbf{i} \perp \mathbf{k}$ совпадает с направлением оси *x*, а вектор \mathbf{j} ортогонален обоим векторам і и к. В дальнейшем будем полагать, что n в процессе переориентации остается в плоскости, образованной направлением директора, для случая планарной ориентации, совпадающим с осью x, и направлением градиента температуры, совпадающим с осью z. Это позволяет нам считать все физические величины зависящими только от координаты z. С учетом изложенного выражение для директора принимает вид $\hat{\mathbf{n}} = \sin \theta(t, z) \mathbf{i} + \cos \theta(t, z) \mathbf{k}$, а уравнение Навье–Стокса может быть записано в виде

$$\rho_m \partial_t v_i(t, z) = \partial_z \sigma_{zi} \quad (i = x, z), \tag{1}$$

где $\partial_t = \partial/\partial t$, ρ_m — плотность материала, $\mathbf{v} = v_x(t, z)\hat{\mathbf{i}}$ $+v_z(t,z)$ к — скорость, σ_{ij} (i, j = x, z) — компоненты тензора напряжений несжимаемого НЖК, которые выражаются через компоненты директора, градиентов вектора скорости и температуры [2-5]. Момент силы, действующей на единицу объема ЖК, обусловленный упругими силами Франка, может быть записан в виде [2] $\mathbf{T}_{\text{elast}} = -\left[-\frac{1}{2}\mathscr{G}_{\theta}\theta_z^2 + \left(\mathscr{G}(\theta)\theta_z\right)_z\right]\hat{\mathbf{j}},$ где $\mathscr{G}(\theta) =$ $=\partial^2 \theta(t,z)/\partial z^2$, $K_1(T)$ и $K_3(T)$ — упругие постоянные Франка, соответствующие поперечному и продольному изгибам, которые в настоящей работе зависят от температуры. Момент гидродинамических сил может быть записан в виде [3,4] $\mathbf{T}_{\text{vis}} = \left[\gamma_1(T) \theta_t - \frac{1}{2} \left(\gamma_1(T) - \gamma_2(T) \cos 2\theta \right) v_{x,z}(t,z) \right] \hat{\mathbf{j}},$ где $\gamma_1(T)$ и $\gamma_2(T)$ — коэффициенты вращательной вязкости НЖК, зависящие от температуры. В рамках нашей задачи кроме указанных двух моментов мы должны учесть вклад момента, обусловленного градиентом поля температуры ∇T , который принимет вид $\mathbf{T}_{tm} = \xi \theta_z T_z [1/2 + \sin^2 \theta] \mathbf{j}$, где ξ — термомеханическая постоянная [5], имеющая размерность [J/m · K], а $T_z = \partial T(t, z) / \partial z$. Последнее выражение T_{tm} является следствием пространственной инвариантности относительно вращений вокруг оси $\hat{\mathbf{n}}$ и одновременно замены $\hat{\mathbf{n}} \rightarrow -\hat{\mathbf{n}}$, что позволило нам записать термомеханическую часть диссипационной функции в виде

$$R_{\rm tm} = \xi \theta_t \theta_z T_z (1/2 + \sin^2 \theta) - \xi T_z v_{x,z} \theta_z \sin^2 \theta \left(1 + \frac{1}{2} \sin^2 \theta \right).$$
(2)

Таким образом, баланс моментов, действующих на единицу объема ЖК-фазы принимает вид

$$\gamma_{1}(T)\theta_{t} = \mathscr{A}(\theta)u_{z} - \frac{1}{2}\mathscr{G}_{\theta}(\theta)\theta_{z}^{2} + \left(\mathscr{G}(\theta)\theta_{z}\right)_{z} - \xi\theta_{z}T_{z}\left(\frac{1}{2} + \sin^{2}\theta\right), \quad (3)$$

где $u \equiv v_x(t, z)$ и $\mathcal{A}(\theta) = \frac{1}{2} (\gamma_1(T) - \gamma_2(T) \cos 2\theta).$

Условие несжимаемости нематика $\nabla \cdot \mathbf{v} = 0$ вместе с условием отсутствия скольжения на границах ГЖК-ячейки $\mathbf{v}_{z=0,d} = 0$ приводит к тому, что в нашей плоской задаче присутствует только одна компонента вектора скорости $\mathbf{v} = v_x \mathbf{i} + v_z \mathbf{k}$, направленная параллельно ограничивающим поверхностям. Таким образом, в уравнениях (1) ненулевыми вкладами являются $u(t, z) = v_x(t, z)$, касательное напряжение σ_{zx} и давление P при (i = z). Сдвиговая компонента σ_{zx} выражается в терминах коэффициентов Лесли α_i (i = 1, ..., 6), зависящими от температуры, и термомеханического коэффициента ξ в виде

$$\sigma_{zx} = h(\theta)u_z - \mathcal{A}(\theta)\theta_t - \xi T_z \theta_z \sin^2 \theta \left(1 + \frac{1}{2}\sin^2 \theta\right), \quad (4)$$

где $u_z = \partial u(t, z)/\partial z$, $h(\theta) = \alpha_1(T) \sin^2 \theta \cos^2 \theta - \frac{1}{2} \mathcal{A}(\theta)$ + $\frac{1}{2} \alpha_4(T) + g(\theta)$ и $g(\theta) = \frac{1}{2} (\alpha_2(T) \cos^2 \theta - \alpha_3(T) \sin^2 \theta)$. В выражении (4) к обычному вязкому сдвиговому напряжению добавлен вклад, обусловленный температурным сдвиговым напряжением, равный $\partial R_{\rm tm}/\partial \theta_t$ [5]. С учетом этих обстоятельств уравнения (1) принимают вид

$$\rho_m \partial_t u(t, z) = \partial_z \sigma_{zx}, \tag{5}$$

$$P_z + \frac{\partial R(t,z)}{\partial \theta_t} \theta_z = 0.$$
 (6)

Последнее уравнение подразумевает, что P > 0 есть сжимающее гидростатическое давление в гибридной ЖК-ячейке, которое состоит из двух слагаемых: вязкого вклада, определяемого величиной $\int_0^z \frac{\partial R(t,z)}{\partial \theta_t} \theta_z dz$, и упругого вклада, представленного потенциалом Франка $\frac{1}{2} (K_1 \sin^2 \theta + K_3 \cos^2 \theta) \theta_z^2$.

Диссипационная функция R(t, z) зависит квадратичным образом от угловой скорости поворота директора θ_t , что приводит (см. (6)) к линейной зависимости вязкого вклада в давление от θ_t . В конечном счете это позволяет использовать уравнение (1) для определения поля давления P(t, z) в гибридной ЖК-ячейке при известных функциях $\theta(t, z)$ и u(t, z). Для определения этих полей нам необходимо уравнение, описывающее теплопроводность анизотропной ЖК-фазы. Принимая во внимание тот факт, что поле температуры T(t, z) релаксирует к его стационарному распределению по толщине гибридной ЖК-ячейки значительно быстрее, чем поле директора и поле скоростей, в дальнейшем рассмотрим только стационарный аналог уравнения теплопроводности, которое принимает вид

$$\left[T_z(\Lambda\cos^2\theta + \sin^2\theta)\right]_z = 0,\tag{7}$$

где $\Lambda = \Lambda_{\parallel}/\Lambda_{\perp}$, Λ_{\parallel} и Λ_{\perp} — коэффициенты теплопроводности вдоль и поперек направления директора. В дальнейшем будем полагать, что градиент температуры создается посредством неодинакового нагрева ограничивающих поверхностей ЖК-ячейки, например $T_{z=0} = T_1$ и $T_{z=d} = T_2$ соответственно. Будем считать, что T_1 и T_2 принадлежат температурному интервалу существования ЖК-фазы. С учетом изложенного уравнение (7) имеет решение

$$T(t,z) = \frac{\Delta T}{I} \int_{0}^{z} \frac{dz}{\Lambda \cos^{2} \theta + \sin^{2} \theta} + T_{1}, \qquad (8)$$

где $I = \int_0^d \frac{dz}{\Lambda \cos^2 \theta + \sin^2 \theta}$, а $\Delta T = T_2 - T_1$.

С целью изучения эволюции угла $\theta(t, z)$ и скорости u(t, z) к их равновесным значениям перейдем к безразмерным аналогам уравнений (3), (5) и (8), которые принимают вид

$$\theta_{\tau} = \overline{\mathscr{A}}(\theta)u_{z} + \left(\overline{\mathscr{G}}(\theta)\theta_{z}\right)_{z} - \frac{1}{2}\overline{\mathscr{G}}_{\theta}\theta_{z}^{2} - \delta_{1}\chi_{z}\theta_{z}\left(\frac{1}{2} + \sin^{2}\theta\right), \qquad (9)$$

$$\delta_2 \partial_\tau u(\tau, z) = \partial_z \overline{\sigma}_{zx}, \qquad (10)$$

$$\chi(\tau, z) = \frac{\Delta \chi}{\overline{I}} \int_{0}^{z} \frac{dz}{\Lambda \cos^{2} \theta + \sin^{2} \theta} + \chi_{1}.$$
 (11)

Здесь $\overline{I} = \int_0^1 [\Lambda \cos^2 \theta + \sin^2 \theta]^{-1} dz$, $\overline{z} = z/d$ — безразмерное расстояние от нижней ограничивающей поверхности гибридной ячейки, $\tau = tK_{10}/\gamma_{10}d^2$ — безразмерное время, γ_{10} и K_{10} — значения вращательной вязкости и поперечного изгиба, соответствующие наименьшим значениям внутри интервала температур $[T_1, T_2]$, $\chi(\tau, z) = T(\tau, z)/T_{NI}$ — безразмерная температура, T_{NI} — значение температуры, соответствующее переходу нематик-изотропная жидкость, $\overline{\mathcal{A}}(\theta) = \mathcal{A}(\theta)/\gamma_{10}$, $\overline{\mathscr{G}}(\theta) = \mathscr{G}(\theta)/K_{10}, a$

$$\overline{\sigma}_{zx} = \frac{\sigma_{zx}}{\gamma_{10}} = \overline{h}(\theta)u_z - \overline{\mathcal{A}}(\theta)\theta_\tau - \delta_1 \chi_z \theta_z \sin^2 \theta \left(1 + \frac{1}{2}\sin^2\right)\theta, \qquad (12)$$

где $\overline{h}(\theta) = h(\theta)/\gamma_{10}$, а $\delta_1 = \xi T_{NI}/K_{10}$ и $\delta_2 = \rho_m K_{10}/\gamma_{10}^2$ являются параметрами системы. Черта над безразмерными переменными в уравнениях (9)–(11) впоследствии опущена.

Рассмотрим ГЖК-ячейку, характеризующуюся сильным и слабым взаимодействиями молекул ЖК с ограничивающими поверхностями. В случае сильного сцепления молекул ЖК с ограничивающими поверхностями граничными условиями являются

$$\theta_{z=0} = 0, \quad \theta_{z=1} = \frac{\pi}{2},$$
(13)

характеризующиеся гомеотропной ориентацией ЖК-молекул на нижней и планарной на верхней ограничивающих поверхностях, и условия

$$\theta_{z=0} = \frac{\pi}{2}, \quad \theta_{z=1} = \pi, \tag{14}$$

характеризующиеся планарной ориентацией ЖК-молекул на нижней и гомеотропной на верхней ограничивающих поверхностях. В случае слабого сцепления директора $\hat{\mathbf{n}}$ с ограничивающей поверхностью энергия этого взаимодействия будет рассматриваться в форме Рапини [7]: $W = 1/2A \sin^2(\theta_s - \theta_0)$, где A — плотность энергии сцепления, θ_s и θ_0 — углы, соответствующие ориентации директора на твердой поверхности $\hat{\mathbf{n}}_s$ и оси преимущественного (легкого) ориентирования $\hat{\mathbf{e}}$. Баланс моментов, перенесенный только на одну, например нижнюю, поверхность, приводит к условию, которому должна удовлетворять ориентация директора на этой поверхности

$$\overline{\mathscr{G}}(\theta) \left(\frac{\partial \theta}{\partial z}\right)_{z=0} = \frac{Ad}{2K_1} \sin 2\Delta\theta, \qquad (15)$$

при этом на другой поверхности сохраним строго гомеотропную ориентацию

$$\theta_{z=1} = 0, \tag{16}$$

где $\Delta \theta = \theta_s - \theta_0$. Начальная ориентация директора распределена перпендикулярно обеим поверхностям $\theta(0, z) = 0$ (0 < z < 1), а затем директор релаксирует к своему равновесному значению $\theta_{eq}(z)$. Граничное условие для поля скорости принимает вид

$$u(z)_{z=0}, \quad u(z)_{z=1} = 0.$$
 (17)

Процесс переориентации поля директора в ГЖКячейке, когда режим релаксации определяется вязкими,

Рис. 1. Релаксация угла $\theta(\tau, z)(a)$, поля скорости $u(\tau, z)(b)$ и поля температуры $\chi(\tau, z)(c)$ к их равновесным распределениям по сечению ГЖК-ячейки. Кривые от $1 \ge 2$ — решения уравнений (9)–(11) с граничными условиями (13) и (17) при $\chi_{z=0} = 0.97$ и $\chi_{z=1} = 0.9862$, соответствующие моментам времени от $\tau(1) = 0.04$ до $\tau(2) = \tau_R = 0.18$.

упругими и температурными силами, с учетом влияния гидродинамических и термомеханических эффектов может быть изучен с помощью решения системы нелинейных дифференциальных уравнений в частных производных (9)–(11). Граничными условиями для угла $\theta(\tau, z)$ для случая сильного сцепления молекул ЖК с ограничивающими поверхностями являются уравнения (13), (14), для случая смешанного (слабо-сильного) сцепления директора — уравнения (15), (16), а для поля скорости — уравнения (17).

Для нематика 4-*n*-пентил-4'-цианобифенил (5ЦБ) в области температур существования нематической фазы $296 < T < 307.5 \,\mathrm{K}$ плотность ЖК $10^3 \,\mathrm{kg/m^3}$, а значения экспериментальных данных для упругой постоянной составляет $K_{10} \sim 9.5 \, \text{pN}$ [8], в то время как экспериментальные данные для А, полученные различными экспериментальными методами [9], имеют порядок $\sim 10^{-7} \, \text{J/m}^2$. В дальнейшем используется значение вязкости $\gamma_{10} = 0.072 \, \text{Pa} \cdot \text{s}$ [10]. Значения шести коэффициентов Лесли (в Ра · s) и двух упругих коэффициентов $K_1(T)$ и $K_3(T)$ были оценены в соответствии с экспериментальными данными [10] и [8], в то время как значение термомеханического коэффициента $\xi \sim 10^{-12} \,\text{J/m} \cdot \text{K}$ [6]. С учетом изложенного два безразмерных параметра равны $\delta_1 \sim 30$ и $\delta_2 \sim 10^{-5}$. Поскольку $\delta_2 \ll 1$, уравнение (10) принимает вид

$$\overline{\sigma}_{zx} = C(\tau), \tag{18}$$

где функция времени $C(\tau)$ находится из условия (17).

Релаксация директора в ГЖК-ячейке к его равновесному положению $\hat{\mathbf{n}}_{eq}$, которая описывается полярным углом $\theta(\tau, z)$, релаксация поля скорости $u(\tau, z)$ и поля температуры $\chi(\tau, z) = T(\tau, z)/T_{NI}$ для случая сильного сцепления молекул ЖК с ограничивающими поверхностями и направления градиента температуры от нижней поверхности ($\chi_{z=0} = 0.97$) к верхней ($\chi_{z=1} = 0.9862$) были исследованы численно методом релаксации [11] и представлены на рис. 1. Кривые на рис. 1, а соответствуют релаксации $\theta(\tau, z)$ по всему сечению ЖК-ячейки от момента времени au = 0.04 ($\sim 2.8\,{
m s}$) (кривая l) и до $\tau_R \sim 0.18~(\sim 12.8~{
m s})$ (кривая 2), для случая, когда безразмерная температура на нижней поверхности ЖКячейки была ниже температуры на верхней поверхности этой же ячейки, а граничные условия удовлетворяли уравнениям (13). Кривые на рис. 1, b и с описывают релаксацию поля скорости $u(\tau, z)$ и температуры $\chi(\tau, z)$ по всему сечению этой же ЖК-ячейки при условии, что граничные условия удовлетворяют уравнениям (13) и (17). Перепад безразмерной температуры $\Delta \chi = 0.0162$ соответствует скачку температуры в 5 К. Результаты вычислений показали, что распределение скорости $u(\tau, z)$ по сечению ЖК-ячейки характеризуется максимумом вблизи верхней (z = 1) более теплой поверхности ЖКячейки, а сам гидродинамический поток направлен в положительном направлении вдоль оси х. Величина этого гидродинамического потока $u(\tau, z)$ образована двумя вкладами: первым, обусловленным переориентацией поля директора $\hat{\mathbf{n}}(\tau, z)$, и вторым, обусловленным градиентом температуры. Первый вклад в общий поток релаксирует к нулю ($\lim_{\tau \to \tau_R} u^h(\tau, z) \to 0$) в то время как второй вклад релаксирует к равновесному распределению $u_{eq}(z)$ по всему сечению ЖК-ячейки. На рис. 2 представлены результаты расчета равновесного поля скорости $u_{eq}(z = 0.5)$ в середине ЖК-ячейки в зависимости от величины перепада температуры $\Delta \chi = \chi_{z=1} - \chi_{z=0}$ на верхней и нижней ограничивающих поверхностях для двух противоположных направлений градиента температуры. На рис. 2, *а* представлена зависимость $u_{eq}(\Delta \chi)$

Рис. 2. Зависимость равновесной скорости u_{eq} (z = 0.5), вычисленной в середине ГЖК-ячейки, от перепада температуры $\Delta \chi$ для двух направлений градиента температуры. В первом случае температурное поле задавалось граничными условиями $\chi_{z=0} = 0.97$ и $\chi_{z=1} = 0.9862$ (*1*), во втором $\chi_{z=0} = 0.9862$ и $\chi_{z=1} = 0.97$ (*2*).

Рис. 3. Распределения равновесного угла $\theta_{eq}(z)$ по сечению ГЖК-ячейки для четырех значений перепадов температуры $\Delta \chi = 0.0162$ (*I*), 0.012 (*2*), 0.008 (*3*) и 0.004 (*4*) и двух направлений градиента температуры. В первом случае температурное поле задавалось граничными условиями $\chi_{z=0} = 0.97$ и $\chi_{z=1} = 0.9862$ (*a*), во втором случае $\chi_{z=0} = 0.9862$ и $\chi_{z=1} = 0.97$ (*b*).

для случая, когда градиент температуры направлен в сторону верхней границы, в то время как на рис. 2, b градиент температуры направлен в противоположную сторону. В первом случае величина $u_{eq}(z = 0.5)$ монотонно растет в зависимости от $\Delta \chi$, в то время как во втором случае зависимость $u_{eq}(\Delta \chi)$ характеризуется слабой осцилляцией в интервале температур 0 < $\Delta\chi$ < 0.008 с последующим монотонным ростом $u_{
m eq}(z=0.5)$ вплоть до значений температур $\Delta \chi = 0.0162$. При этом в области температур $0 < \Delta \chi < 0.004$ обнаружено слабое гидродинамическое течение в положительном направлении, в то время как в области температур $0.004 < \Delta \chi < 0.0162$ мы наблюдаем устойчивый рост величины скорости гидродинамического течения $u_{eq}(z=0.5)$ в отрицательном направлении в зависимости от $\Delta \chi$ (рис. 2, *b*). На рис. 3 представлены равновесные распределения угла $\theta_{eq}(z)$ по сечению ГЖК-ячейки для четырех значений перепада температуры $\Delta \chi = 0.0162$ (кривые 1), 0.012 (кривые 2), 0.008 (кривые 3) и 0.004 (кривые 4) и двух направлений градиента температуры. Первый температурный режим, когда температура на нижней поверхности ГЖКячейки выше температуры на верхней, соответствует рис. 3, а, второй, когда температура на верхней поверхности ГЖК-ячейки выше, чем на нижней, — рис. 3, b. В первом случае с ростом перепада температуры $\Delta \chi$ распределение угла $\theta_{eq}(z)$ становится практически линейным (рис. 3, a), в то время как во втором случае профиль $\theta_{eq}(z)$ практически не меняется и характеризуется областью с отрицательными значениями угла $\theta_{eq}(z)$ вблизи нижней ограничивающей поверхности (рис. 3, b). Такое поведение $\theta_{eq}(z)$ обусловлено тем, что вблизи нижней ограничивающей поверхности ГЖК-ячейки мы имеем дело с небольшим гидродинамическим потоком в отрицательном направлении. Для расчета сдвиговой компоненты тензора напряжений $\overline{\sigma}_{xz}$ воспользуемся соотношением $\overline{\sigma}_{zx} - \overline{\sigma}_{xz} = \frac{\partial \overline{R}}{\partial \theta_r}$, связывающим компоненты тензора напряжений $\overline{\sigma}_{ij}$ и диссипационную функцию Рэлея R [4]. С учетом уравнения (12) последнее соотношение принимает вид

$$\overline{\sigma}_{xz}(\tau,z) = \overline{\sigma}_{zx}(\tau) + \left(\overline{\mathscr{G}}(\theta)\theta_z\right)_z - \frac{1}{2}\,\overline{\mathscr{G}}_{\theta}\theta_z^2,\tag{19}$$

а выражение (6) позволяет найти нормальные компоненты тензора напряжений $\overline{\sigma}_{ii}$ (i = x, z)

$$\overline{\sigma}_{xx}(\tau, z) = -\overline{P}(\tau, z), \qquad (20)$$

$$\overline{\sigma}_{zz}(\tau,z) = -\overline{P}(\tau,z) - \left(\frac{K_1(t)}{K_{10}}\sin^2\theta + \frac{K_3(t)}{K_{10}}\cos^2\theta\right)\theta_z^2,$$
(21)

где $\overline{P} = P d^2 / K_{10}$ — безразмерное давление, полученное в результате интегрирования безразмерного аналога уравнения (6), с учетом решений $u(\tau, z)$ и $\theta(\tau, z)$ соответственно. Численные методы позволяют рассчитать характер релаксации компонент тензора $\overline{\sigma}_{ii}$ (i, j = x, z)в ГЖК-ячейке с учетом гидродинамического и термомеханического эффектов. На рис. 4 и 5 представлены результаты расчетов профилей $\overline{\sigma}_{zx}(z)$, $\overline{\sigma}_{xz}(z)$, $\overline{\sigma}_{xx}(z)$, $\overline{\sigma}_{zz}(z)$ по сечению ЖК-ячейки для четырех значений перепада температуры $\Delta \chi = 0.0162$ (кривые 1), 0.012 (кривые 2), 0.008 (кривые 3) и 0.004 (кривые 4) и двух направлений градиента температуры. Для первого направления, когда температура на нижней поверхности ГЖК-ячейки ниже температуры на верхней, результаты расчета приведены на рис. 4, для второго направления, когда температура на верхней поверхности ГЖК-ячейки ниже, чем на нижней, — рис. 5. В первом случае с ростом перепада температуры $\Delta \chi$ распределение касательных напряжений $\overline{\sigma}_{xz}(z)$ (рис. 4, b) и $\overline{\sigma}_{zx}(z)$ (рис. 4, c) претерпевает качественное изменение.

Отрицательные значения этих напряжений при $\Delta \chi = 0.004$ и 0.008 вблизи нижней и положительные вблизи верхней ограничивающих поверхностей релаксируют к положительным значениям напряжений по всему профилю ЖК-ячейки при $\Delta \chi = 0.012$ и 0.016 с явно выраженным максмумом вблизи верхней поверхности. Физически это означает, что система испытывает растяжение, характеризующееся максимумом вблизи z = 1. Осевое сжатие вдоль оси z (рис. 4, a) возрастает с ростом $\Delta \gamma$ практически равномерно по всему профилю ЖК-ячейки, в то время как напряжение вдоль оси х представляет собой более сложную функцию $\overline{\sigma}_{xx}(z)$ (рис. 4, d). Незначительное растяжение вблизи z = 0 и сжатие вблизи z = 1 при малых $\Delta \chi = 0.004$ сменяются большим растяжением ($\overline{\sigma}_{xx} \sim 10 \; (0.01 \; \mathrm{Pa})$) вблизи верхней границы (z = 1) и практически полным отсутствием растяжения вблизи нижней границы (z = 0) при больших Δ $\chi = 0.0162$. Перепад безразмерной температуры $\Delta \chi = 0.0162$ соответствует скачку температуры в 5 К. Во втором случае, когда температура на верхней поверхности ГЖК-ячейки ниже, чем температура на нижней

Рис. 4. Распределение равновесных напряжений $\overline{\sigma}_{zz}(z)(a), \overline{\sigma}_{xz}(z)(b), \overline{\sigma}_{zx}(z)(c)$ и $\overline{\sigma}_{xx}(z)(d)$ по сечению ГЖК-ячейки для четырех значений перепадов температуры $\Delta \chi = 0.0162$ (1), 0.012 (2), 0.008 (3) и $\Delta \chi = 0.004$ (4) и направления градиента температуры, заданного граничным условием $\chi_{z=0} = 0.97$ и $\chi_{z=1} = 0.9862$.

Рис. 5. То же, что на рис. 4, в случае, когда направление градиента температуры задано граничным условием $\chi_{z=0} = 0.9862$ и $\chi_{z=1} = 0.97$.

Рис. 6. Распределение поля скорости $u(\tau, z)$ в различные моменты времени от $\tau = 0.01$ (1) до $\tau = \tau_R = 0.25$ (2) при релаксации к равновесному распределению $u_{eq}(z)$ по всей толщине ГЖК. a — кривые построены на основании вычислений с помощью уравнений (9)–(11) с граничными условиями (15) при z = 0 и значении угла $\theta_{z=1} = \pi/2$. b — то же, что на части a, при граничных условиях в виде (14), соответствующих жесткому сцеплению ЖК-молекул с ограничивающими поверхностями и граничными условиями для поля температуры $\chi_{z=0} = 0.97$ и $\chi_{z=1} = 0.9862$.

(рис. 5), характер поведения напряжений по сечению ЖК-ячейки меняется. Так, осевое сжатие вдоль оси z возрастает с уменьшением величины Δχ, при этом ГЖКячейка испытывает практически равномерное сжатие (рис. 5, *a*), а осевое напряжение $\overline{\sigma}_{xx}(z)$ представляет собой более сложную функцию z. Вблизи нижней границы (z = 0) система испытывает незначительный перепад напряжений, от растяжения до сжатия (рис. 5, d), в то время как вблизи верхней границы (z = 1) система подвергается сильному осевому растяжению ($\overline{\sigma}_{xx} \sim 17$ (0.017 Ра)). При этом оба касательных напряжения $\overline{\sigma}_{xz}(z)$ и $\overline{\sigma}_{zx}(z)$ ведут себя практически одинаково. Оба профиля $\overline{\sigma}_{xz}(z)$ и $\overline{\sigma}_{zx}(z)$ характеризуются большими отрицательными значениями близи z = 0 и положительными значениями вблизи z = 1. При этом касательное напряжение $\overline{\sigma}_{xz}$ превалирует над $\overline{\sigma}_{zx}$ близи верхней границы ГЖК-ячейки. Переход от граничных условий типа сильного сцепления (13) или (14) к условиям типа слабого сцепления (15) требует переноса баланса моментов на одну из ограничивающих поверхностей. Это приводит к условию, которому должна удовлетворять производная полярного угла на этой поверхности, например

$$\left(\frac{\partial\theta}{\partial z}\right)_{z=0} = \frac{Ad\sin(2\Delta\theta)}{K_1} = 0.1.$$

Качество сцепления несущественно влияет на характер релаксации поля директора, в то время как характер релаксации поля скорости изменяется, во всяком случае вблизи той поверхности z = 0, где реализовано слабое сцепление молекул ЖК-фазы с ограничивающей поверх-

ностью (рис. 6, *a* и *b*). Это проявляется в наличии явно выраженного максимума ~ 15 (~ 21 μ m/s) в распределении профиля равновесной скорости $u_{eq}(z)$ вблизи z = 0 (рис. 6, *a*), а сам поток по всему сечению направлен в положительном направлении.

3. Обсуждение полученных результатов и выводы

Немногие экспериментальные исследования гидродинамических потоков в ГЖК-ячейках, возникающих благодаря поперечным градиентам температуры [6], не позволяет нам в полной мере оценить не только характер и величину этих потоков, но и времена релаксации других динамических процессов, например релаксации компонент тензора напряжений, возникающих в ГЖК-ячейках. Максимум, что удалось извлечь из этих экспериментов — оценить величину термомеханической константы $\xi \sim 10^{-12}$ J/m · K. Тем самым роль теоретических методов, основанных на классических уравнениях гидродинамики ЖК Лесли-Эриксена, трудно переоценить в процессе создания полной картины эволюции поля директора и скоростей, а также компонент тензора напряжений. Все это в полной мере можно описать только теоретически, посредством решения нелинейных дифференциальных уравнений, учитывающих баланс вращательных и линейных моментов, и уравнения теплопроводности для НЖК. Релаксация поля директора, а также сдвиговых и нормальных компонент тензора напряжений была исследована с учетом поля скорости, индуцированного переориентацией директора в присутствии поперечного градиента температуры, возникающего в ГЖК-ячейке благодаря неодинаковому нагреву ограничивающих поверхностей ячейки. Результаты расчетов показали, что характер сцепления ЖК-молекул с ограничивающими поверхностями и направление градиента температуры может не только количественно, но и качественно изменить характер гидродинамических потоков, возникающих в ГКЖ и изменить время релаксации как поля директора, так и компонент тензора напряжений. Все это позволяет нам надеяться, что полученные результаты численного моделирования существенно расширят спектр предполагаемых физических экспериментов с такими системами. Одним из таких экспериментов может быть эксперимент, связанный с возникновением направленного течения в узком или сверхузком канале при наличии поперечного градиента температуры и формирования на верхней ограничивающей поверхности гомеотропной, а на нижней — слабой ориентации директора. Этот эффект может быть использован при конструировании наноскопических насосов. Такие насосы могут быть использованы как в биологических системах, так и в медицине.

Мы надеемся, что настоящая работа некоторым образом освещает пробему описания процссов переориентации поля директора в ЖК-ячейках при наличии поперечного градиента температуры.

Список литературы

- P.G. de Gennes, J. Prost. The physics of liquid crystals. Oxford University Press, Oxford (1995). 349 p.
- [2] J.L. Ericksen. Arch. Ration. Mech. Anal. 4, 231 (1960).
- [3] F.M. Leslie. Arch. Ration. Mech. Anal. 28, 265 (1968).
- [4] I.W. Stewart. The static and dynamic continuum theory of liquid crystals. Taylor and Francis, London (2004). 345 p.
- [5] Р.С. Акопян, Б.Я. Зельдович. ЖЭТФ 87, 1660 (1984).
- [6] Р.С. Акопян, Р.Б. Алавердян, Э.Н. Сантросян, Ю.С. Чилингарян. Письма в ЖТФ 23, 77 (1997).
- [7] A. Rapini, M. Papoular. J. Phys. Colloq. (Paris) 30, 4 (1069).
- [8] P.P. Karat, N.V. Madhusudana. Mol. Cryst. Liq. Cryst. 40, 239 (1977).
- [9] L.M. Blinov, A.Yu. Kabaenkov, A.A. Sonin. Liq. Cryst. 5, 645 (1989).
- [10] A.G. Chmielewski. Mol. Cryst. Liq. Cryst. 132, 339 (1986).
- [11] И.С. Березин, Н.Р. Жидков. Методы вычислений. Физматгиз, М. (1964). 464 с.