Релаксация поля директора в форме бегущей волны в нематических твистовых ячейках

© А.В. Захаров, А.А. Вакуленко

Институт проблем машиноведения Российской академии наук, 199178 Санкт-Петербург, Россия

E-mail: avak@microm.ipme.ru

(Поступила в Редакцию 12 марта 2007 г. В окончательной редакции 1 августа 2007 г.)

Исследуется ориентационная релаксация поля директора к его равновесному положению в форме бегущей волны. Показано, что нелинейный режим релаксации в форме бегущей волны может возникнуть в нематической твистовой ячейке (НТЯ) при определенных условиях, налагаемых как на величину внешнего электрического поля, так и на величины материальных констант, характеризующих нематический жидкий кристалл. Расчет релаксационных процессов в виде бегущих волн показал, что такие нелинейные режимы реализуются в НТЯ лучше, если начальное возмущение директора инициировано вблизи одной из ограничивающих поверхностей ячейки.

PACS: 61.30.Cz, 64.70.Md

Одной из наиболее изученных проблем физики жидких кристаллов (ЖК) является проблема деформаций поля директора в нематических ЖК-ячейках [1]. Однако до сих пор остаются некоторые нерешенные проблемы, например, такие как проблема релаксации поля директора в нематических твистовых ячейках (НТЯ) в форме нелинейных волн. НТЯ являются неотъемлемым элементом плоских ЖК-дисплеев, используемых в ноутбуках и персональных компьютерах, изучение новых релаксационных механизмов, возникающих в таких ячейках, продиктовано запросами ЖК-нанотехнологий и поэтому является актуальным.

Нематическая твистовая ячейка представляет собой ЖК-каплю, помещенную между двумя параллельными поверхностями, разделенными спейсорами и расположенными таким образом, что директор на верхней поверхности ячейки $\hat{\mathbf{n}}_{\perp}$ сориентирован под прямым углом в положению директора на нижней поверхности \hat{n}_{-} , при этом ориентация директора остается всегда в плоскости, параллельной обеим ограничивающим поверхностям. При отсутствии внешнего поля под действием только поверхностных ван-дер-ваальсовых сил в такой НТЯ устанавливается линейное распределение поля директора, характеризующееся азимутальным углом $\Phi = \frac{\pi}{2} z$ [2]. Здесь Ф — азимутальный угол, образованный директором **n** и осью x, также принадлежит этой плоскости, в то время как ось z направлена перпендикулярно ограничивающим поверхностям, а начало отсчета системы координат начинается с нижней поверхности НТЯ (рис. 1). Под действием внешнего электрического поля $\mathbf{E} = E\mathbf{j}$, направленного параллельно обеим ограничивающим поверхностям вдоль оси у, происходит переориентация поля директора в сторону внешнего поля Е. При этом возникает несколько режимов релаксации поля директора $\hat{\mathbf{n}}$ к его равновесному положению $\hat{\mathbf{n}}_{ea}$, направленному вдоль электрического поля Е [2]. До сих пор при исследовании механизмов релаксации поля директора в НТЯ основное внимание было уделено описанию линейных механизмов релаксации [3] или нелинейных, но не в форме бегущих волн $\Phi(z - vt)$. Эти механизмы подразумевают переориентацию директора в плоскости *x* – *y*, параллельной обеим ограничивающим поверхностям, из начального возмущенного по всему объему состояния в конечное равновесное состояние. В настоящей статье будет показано, что вращательные моменты, действующие на единичный элемент нематического жидкого кристалла (НЖК), могут возбуждать бегущие волны $\Phi(z - vt)$, распространяющиеся вдоль оси z, направленной перпендикулярно обеим ограничивающим поверхностям. При этом критическое значение внешнего поля E_{cr}, при котором возможно возникновение нелинейных механизмов релаксации поля директора, в π раз меньше величины порогового значения электрического поля Фредерикса [1] $E_{\rm th} = \frac{\pi}{d} \sqrt{\frac{K_2}{\epsilon_0 \epsilon_a}}$, соответствующего нетвистовой ячейке той же толщины d. Отметим, что пороговое поле Фредерикса E_{th} нетвистовой ячейки это то поле, начиная с которого возникает деформация поля директора в ячейке при условии, что направления

Рис. 1. Геометрия нематической твистовой ячейки.

Динамическое уравнение, описывающее ориентационные деформации в НТЯ, основано на балансе упругих \mathbf{T}_{elast} , электрических \mathbf{T}_{el} и гидродинамических \mathbf{T}_{vis} моментов, действующих на единичный элемент твистовой ячейки. Поскольку директор $\hat{\mathbf{n}} = (n_x(t, z), n_y(t, z), 0)$ $= (\cos \Phi(t, z), \sin \Phi(t, z), 0)$ остается все время в плоскости (x - y), а все пространственные зависимости физических величин, вовлеченных в динамический процесс переориентации директора, сведены к зависимости только от расстояния z, отсчитываемого от нижней ограничивающей поверхности, выражение для баланса моментов принимает вид [2]

$$\gamma_1 \Phi_t(t, z) = K_2 \Phi_{zz}(t, z) + \Delta \sin 2\Phi(t, z), \qquad (1)$$

 $\Phi_t(t,z) = \partial \Phi(t,z)/\partial t, \quad \Phi_{zz}(t,z) = \partial^2 \Phi(t,z)/\partial z^2, \quad \Delta = = \epsilon_0 \epsilon_a E^2/2, \quad \epsilon_0$ — диэлектрическая проницаемость вакуума, $\epsilon_a = \epsilon_{\parallel} - \epsilon_{\perp}$ — коэффициент диэлектрической анизотропии, ϵ_{\parallel} и ϵ_{\perp} — коэффициенты диэлектрической проницаемости НЖК параллельно и перпендикулярно направлению директора **n̂**, а γ_1 — коэффициент вращательной вязкости НЖК. В уравнении (1) левая часть соответствует вкладу в баланс моментов, обусловленному гидродинамическим моментом T_{vis}, в то время как два остальных члена обусловлены упругим T_{elast} и электрическим T_{el} вкладами в баланс моментов. Гидродинамический вклад в форме $\mathbf{T}_{\mathrm{vis}} = -\gamma_1 \Phi_t(t,z) \mathbf{k}$ подразумевает, что переориентация директора n̂ не сопровождается движением точек в НЖК, и уравнение Навье-Стокса для поля скоростей следует рассматривать независимо от уравнения баланса моментов (1).

В случае жесткого сцепления ЖК-молекул с ограничивающими поверхностями баланс моментов, перенесенный на эти поверхности, дает граничные усиловия

$$\Phi(t, z)_{z=0} = 0, \quad \Phi(t, z)_{z=d} = \frac{\pi}{2}, \quad (2)$$

где *d* — толщина НТЯ. Начальное условие предполагает, что в момент времени t = 0 директор сориентирован ортогонально (вдоль оси x) направлению внешнего поля $\mathbf{E} = E\mathbf{j}$ в форме гауссова распределения $\Phi(0, z) = \varphi(z_1, \sigma)$ со средним z_1 и среднеквадратичным отклонением σ , а затем директору позволено релаксировать к равновесному положению, направленному вдоль электрического поля Е. Поскольку в нашем случае поле **E** = *E***j** параллельно оси *y*, фронт волны $\Phi(z - vt)$ начинает двигаться от одной границы твистовой ячейки (z = d), где директор сориентирован вдоль оси *y*, к другой (z = 0), где директор сориентирован параллельно оси х. Отметим, что начальное возмущение в форме гауссова распределения $\varphi(z_1, \sigma)$ может быть достигнуто с помощью сфокусированного лазерного импульса [4]. В связи с этим возникает несколько вопросов, например как быстро фронт бегущей волны будет распространяться в НТЯ и каково влияние электрического поля и граничных условий на сходство бегущей волны с кинкоподобной волной. На эти и другие вопросы ответ можно получить с помощью численного решения нелинейного уравнения (1) с соответствующими начальным и граничным условиями. Прежде всего минимальная скорость v_m , с которой возможно распространение бегущей волны, может быть определена посредством подстановки $\Phi(z - vt) \sim \exp\left[-E\sqrt{\frac{\epsilon_0\epsilon_a}{K_2}}(z - vt)\right]$ в линеаризованное уравнение (1) [2]. В результате получаем, что минимальная скорость $v_m = 2\sqrt{\frac{\epsilon_0\epsilon_a K_2}{v_1^2}} E$ пропорциональна величине электрического поля E и такая волна может сформироваться в НТЯ толщиной не меньше чем $\kappa = \sqrt{\frac{K_2}{\epsilon_0\epsilon_a}} \frac{1}{E}$. Таким образом, если величина электрического поля больше или равна $E_{\rm cr} = \frac{1}{d}\sqrt{\frac{K_2}{\epsilon_0\epsilon_a}} = \frac{E_{\rm th}}{\pi}$, то

ского поля больше или равна $E_{\rm cr} = \frac{1}{d} \sqrt{\frac{\epsilon}{\epsilon_0 \epsilon_a}} = \frac{m}{\pi}$, то бегущая волна с минимальной скоростью v_m сформируется в НТЯ толщиной в κ , где $\kappa = dE_{\rm cr}/E$. Для того чтобы исследовать эту проблему подробнее, перепишем уравнение (1) в безразмерном виде

$$\Phi_{\tau}(\tau, \bar{z}) = \Phi_{zz}(\tau, \bar{z}) + \frac{1}{2}\sin 2\Phi(\tau, \bar{z}), \qquad (3)$$

где $\tau = \frac{\epsilon_0 \epsilon_a E^2}{\gamma_1} t$ — безразмерное время, а $\bar{z} = \sqrt{\frac{\epsilon_0 \epsilon_a E^2}{K_2}} z$ $\equiv \frac{z}{\kappa}$ — безразмерная координата.

Следует отметить, что ряд проблем может быть описан с помощью диффузионного уравнения $\Phi_{\tau} = \Psi_{zz}$ $+ f(\Psi)$, где $f(\Psi)$ нелинейный функционал, характеризующийся, как минимум, двумя положениями равновесия [5,6]. В конце 30-х годов Колмогоровым и др. [7] было показано, что строго локализованное начальное возмущение может асимптотически эволюционировать в форме бегущей волны $\Phi(z - vt)$ от одного положения равновесия (неустойчивого) к другому (устойчивому). Это состояние реализуется для широкого класса функционалов $f(\Psi)$ при одном условии: чтобы выполнялось f(0) = 0 и f'(0) = 0. При этом скорость распространения бегущей волны удовлетворяет неравенствам $2\sqrt{\left[\frac{\partial f(\Psi)}{\partial \Psi}_{\Psi=0}
ight]} \le v \le 2\sqrt{\left[\sup_{\Psi\in[0,1]}\frac{f(\Psi)}{\Psi}
ight]}$. В предельном случае эта скорость равна 2 и бегущая волна распространяется в бесконечном интервале $(-\infty, +\infty)$. Но в нашем случае мы имеем дело с ограниченным интервалом [0, 1], и бегущая волна сначала должна сформироваться (режим I), а затем распространяться от одного края ячейки (z = d) к другому (z = 0) (режим II) со скоростью $v \ge v_m$. Таким образом, наша цель изучить численными методами процесс формирования бегущей волны в ограниченном пространстве и исследовать влияние, которое оказывают внешнее поле и граничные условия на величину времени релаксации τ_R начального возмущения поля директора к его равновесному значению. В движущейся системе координат $q = \bar{z} - v\tau \equiv \frac{E}{E_{cr}} \frac{z}{d} - v\tau$ — безразмерное уравнение,

Рис. 2. *а*) Эволюция азимутального угла $\Phi\left(\frac{E}{E_{cr}}\frac{z}{d}-v\tau\right)$ от верхней ограничивающей поверхности твистовой ячейки к нижней, рассчитанная с помощью уравнения (4), при условии жесткого сцепления молекул ЖК с обеими поверхностями (5) и значении внешнего электрического поля $E/E_{cr} = 10$. При этом начальное гауссово возмущение имеет параметры $q_3 = 9.75$ и $\sigma = 0.25$. *b*) То же, что на части *a*, при $E/E_{cr} = 2.2$, $q_3 = 2.0$ и $\sigma = 0.02$. *c*) То же, что на части *a*, в случае другого положения начального возмущения $\Phi(0, q) = \varphi(q_3, \sigma)$, $q_3 = 1.3$ и $\sigma = 0.25$.

описывающее эволюцию азимутального угла к равновесному значению и соответствующее уравнению (3), примет вид

$$v\Phi_q(\tau, q) + \Phi_{qq}(\tau, q) + \frac{1}{2}\sin 2\Phi(\tau, q) = \Phi_\tau(\tau, q).$$
 (4)

Релаксация директора $\hat{\mathbf{n}}$ к его равновесному положению $\hat{\mathbf{n}}_{\rm eq}$ будет описываться эволюцией угла $\Phi(\tau, q)$. Начальное возмущение, выбранное перпендикулярно направлению электрического поля \mathbf{E} , принимает вид $\Phi(0, q) = \varphi(q_3, \sigma)$, где $\varphi(q_3, \sigma)$ — гауссиан со средним q_3 и среднеквадратичным отклонением σ $((q_1 + q_2)/2 < q_3 \le q_2))$, и локализовано вблизи верхней ограничивающей поверхности $q_2 = E/E_{\rm cr} - v\tau$. Граничные условия (2) и начальное условие записываются в виде

$$\Phi(\tau, q)_{q=q_1} = 0, \quad \Phi(\tau, q)_{q=q_2} = \pi/2,$$

$$\Phi(\tau, q)_{\tau=0} = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(q-q_3)^2}{2\sigma^2}\right). \tag{5}$$

Здесь $q_1 = -v\tau$ соответствует положению нижней ограничивающей поверхности, а точка q_3 выбрана так, что находится вблизи q_2 . Решение уравнения (4) с начальным и граничными условиями (5) было получено методом релаксации [7], при этом критерий релаксации директора был выбран в виде $\epsilon = |(\Phi(\tau_R) - \Phi_{eq})/\Phi_{eq}|$; вычислительный процесс прекращался при достижении $\epsilon = 10^{-4}$. Результаты вычислений для ряда динамических режимов представлены

на рис. 2. Во всех этих случаях начальное возмущение директора $\Phi(0,q) = \varphi(q_3,\sigma)$ было выбрано перпендикулярно границам ячейки, при этом величина электрического поля изменялась от значения $E = 10.0E_{\rm cr}$ (рис. 2, *a*) до значения $E = 2.2E_{cr}$ (рис. 2, *b*). При этом скорость бегущей волны, распространяющейся вдоль нормали к обеим поверхностям, была равна v = 2. Следует отметить, что с ростом величины электрического поля Е возрастало сходство бегущей волны с кинкоподобной волной, характеризующейся постоянным профилем. Вычисления показали, что начальное возмущение $\Phi(0, q) = \varphi(q_3, \sigma)$ при наличии сильного поля $E \geq 10.0 E_{\rm cr}$ трансформируется под действием электрического, упругого и гидродинамического моментов в кинкоподобную волну (рис. 2, a). Рассмотрим теперь случай слабого сцепления молекул ЖК с ограничивающими поверхностями. Сильное сцепление директора сохраняется на верхней поверхности ячейки $\hat{\mathbf{n}}_{\perp}$, в то время как на нижней реализуется случай слабого сцепления, при этом энергия сцепления записывается в форме [1] $W_{az} = \frac{1}{2}A\sin^2(\Phi_s - \Phi_0)$, где A — плотность энергии сцепления, а углы Φ_s и Φ_0 отвечают азимутальным углам положения директора на нижней поверхности n и ориентации легкой оси ориенирования ê соответственно. При этом баланс моментов, перенесенный на нижнюю поверхность, дает граничное условие в виде

$$\frac{\partial \Phi(\tau, q)}{\partial q}_{q=q_1} = \frac{A\kappa}{2K_2} \sin 2\Delta\Phi,$$
$$\Phi(\tau, q)_{q=q_2} = \pi/2, \tag{6}$$

где $\Delta \Phi = \Phi_s - \Phi_0$. Для случая молекул 4-*n*-октил-4'цианобифенил (8ЦБ) при температуре $T = 307 \, \text{K}$ вдали от температуры фазового перехода нематик-смектик А $(T_{NA} \sim 313 \, {\rm K})$ значение коэффициента упругости равно $K_2 \sim 8 \, \text{pN}$ [8], а значение коэффициента A варьируется между 10^{-4} и 10^{-6} J/m². В случае, когда $\Delta \Phi < 10^{\circ}$ [2] и толщина НТЯ $d \sim 10 \,\mu m$, комбинация $A\kappa \sin(2\Delta \Phi)/2K_2$ варьируется между значениями 0.1 и 1.0. Результаты вычислений показали, что величина плотности энергии A слабо влияет на время релаксации директора τ_R к его равновесному положению. Так, с ростом величины $A\kappa \sin(2\Delta\Phi)/2K_2$ на один порядок, с 0.1 до 1.0, безразмерное время релаксации τ_R возросло всего на 0.01 (с 5.87 до 5.88 соответственно), а для случая жесткого сцепления ЖК-молекул с обеими поверхностями это время составило ~ 5.94. Необходимо также отметить, что в нашем случае релаксационный режим может быть разделен на два этапа. Первый этап (I) соответствует релаксации начального возбуждения $\Phi(0, q) = \phi(q_3, \sigma)$ к состоянию, когда бегущая волна превращается в кинкоподобную волну (рис. 3, a и b), в то время как на втором этапе (II) сформировавшаяся кинкоподобная волна, характеризующаяся постоянным профилем и скоростью пробега, завершает релаксацию директора к его равновесному положению (рис. 3, с). Вычисления показали, что время, которое система тратит на

Рис. 3. Три стадии эволюции азимутального угла $\Phi(q)$ в НТЯ рассчитанные с помощью уравнения (4) и граничных условий (6), параметр $A\kappa \sin(2\Delta\Phi)/2K_2 = 1.0$, электрическое поле $E/E_{\rm cr} = 10$.

Рис. 4. Скорости релаксации директора к равновесному положению в зависимости от величины электрического поля E/E_{cr} . I — минимальная скорость движения кинкоподобной волны v_m от верхней границы НТЯ к нижней, 2 и 3 — средние скорости релаксации директора $v_{III,IV}$, соответствующие твистовой и нетвистовой ориентации директора на поверхностях НТЯ, 4 и 5 — средняя скорость релаксации директора в НТЯ u_R при условии слабого и жесткого сцепления молекул НЖК с поверхностями ячейки соответственно.

формирование кинкоподобной волны ($\tau_1 + \tau_2 \sim 3.56$ (режим I), рис. 3, *а* и *b*), больше, чем время пробега кинкоподобной волны ($\tau_3 \sim 2.31$ (режим II), рис. 3, *c*) до достижения равновесной ориентации. Таким образом, общее время релаксации системы состоит из двух вкладов и равно $\tau_R = \tau_1 + \tau_2 + \tau_3 \sim 5.87$. Это позволяет рассчитать среднюю размерную скорость релаксации директора $u_R = d/t_R = \frac{\epsilon_0 \epsilon_a E^2 d}{\gamma_1 \tau_R}$ к его равновесному положению. Прежде всего величина средней скорости релаксации пропорциональна E^2 , размеру ячейки *d* и обратно пропорциональна величине коэффициента

вращательной вязкости γ_1 . Результаты расчета величины средней скорости релаксации директора *u_R* к его равновесному положению в зависимости от величины электрического поля Е приведены на рис. 4. Факт слабого влияния величины плотности энергии сцепления А на среднюю скорость релаксации директора *u*_R в зависимости от величины поля *E* отражен в поведении кривых 4 и 5 (рис. 4). Незначительное расхождение в значениях u_R , рассчитанных для случаев слабого $A\kappa \sin(2\Delta\Phi)/2K_2 = 1.0$ (рис. 4, кривая 4) и сильного (рис. 4, кривая 5) сцеплений молекул ЖК-фазы с ограничивающими поверхностями, отмечено лишь при значениях электрического поля $E \sim 9.0 E_{\rm cr}$. Кривая 1 (рис. 4) соответствует значению минимальной скорости распространения кинкоподобной волны в НТЯ (v_m). Таким образом, из-за потерь, обусловленных формированием кинкоподобной волны, соответствующей режиму I ($\tau_1 + \tau_2$), общая средняя скорость u_R примерно в 1.5 раза ниже минимальной скорости v_m . На рис. 4 представлены также результаты сравнения исследованных скоростей v_m и u_R со скоростями распространения релаксационных режимов, рассчитанных не в форме бегущей волны $\Phi(z - v\tau)$, а в форме обычного релаксационного режима $\Phi(\tau, z)$, исследованного в работе [2]. Полученные в этой работе времена релаксации как для случая сильного сцепления ЖК-фазы с обеими ограничивающими молекул поверхностями в форме $\Phi(\tau, 0) = 0$, $\Phi(\tau, d) = \pi/2$ (режим III), так и в форме $\Phi(\tau, 0) = \Phi(\tau, d) = 0$ (режим IV) позволили нам рассчитать среднюю скорость релаксации $v_{\text{IILIV}} = d/t_{\text{IILIV}}$ в зависимости от величины внешнего поля Е. Результаты этих расчетов представлены на рис. 4 кривыми 2 и 3 соответственно. Величины этих скоростей $v_{\rm III IV}$ оказались примерно в 3 раза ниже значений минимальной скорости пробега кинкоподобной волны. Важно отметить, что положение начального возмущения $\Phi(0,q) = \varphi(q_3,\sigma)$ влияет на механизм формирования бегущей волны и таким образом на величину времени релаксации директора.

Так, если начальное возмущение находилось вблизи нижней границы $q_1 < q_4 \leq (q_1 + q_2)/2$ (рис. 1, *c*), релаксационный режим в форме бегущей волны достигал нижней границы ячейки и дальнейшая эволюция протекала в релаксационном режиме $\Phi(\tau, z)$. В случае же положения начального возмущения вблизи верхней границы после формирования бегущей волны, характеризующегося динамическим режимом I, эта волна достигала нижней границы ячейки в динамическом режиме II (рис. 2, *b*). В первом случае (рис. 1, *c*) время, необходимое для того, чтобы директор достиг равновесной ориентации под действием электрического поля $E = 10.0E_{\rm cr}$ при значении $A\kappa \sin(2\Delta\Phi)/2K_2 = 1.0$, равно 5.91, в то время как во втором случае (рис. 2, *b*) оно равно 5.88.

Процесс релаксации директора к его равновесному положению также удобно описывать с помощью диссипационной функции D [3], которая в случае квазидвумерной геометрии и учета только твистовых деформаций принимает вид $D(q) = \Phi_r^2(q)$. Давление P (P > 0 —

Рис. 5. Эволюция профиля давления P от верхней поверхности ячейки к нижней, рассчитанная с помощью выражения (7) для двух режимов релаксации. a — жесткое сцепление (5), b — слабое сцепление (6) молекул ЖК с обеими поверхностями НТЯ. В обоих случаях $E/E_{\rm cr} = 10$, а начальное возмущение директора инициировано вблизи верхней границы НТЯ, $q_3 = 9.75$.

сжатие) в такой системе может быть записано в виде проинтегрированного уравнения Навье-Стокса

$$P(q) = P_{\rm el}(q) - P_{\rm elast}(q) - \int_{0}^{q} \frac{\partial D(q)}{\partial \Phi_{\tau}} \Phi_{q}(q) dq, \qquad (7)$$

где $P_{\rm el}(q) = \frac{1}{2} \sin^2 \Phi(q)$ и $P_{\rm elast}(q) = -\frac{1}{2} \Phi_q^2(q)$ — вклады в полное выражение для давления P, обусловленные электрическими и упругими силами. С учетом выражения для диссипационной функции D(q) и уравнения (3) получим окончательное выражение для давления в НТЯ $P(q) = -\Phi_q^2(q)$. Результаты расчетов для случаев жесткого (5) и слабого (6) граничных сцеплений молекул ЖК с ограничивающими поверхностями и наличия внешнего электрического поля $E = 10.0E_{\rm cr}$ в зависимости от $q = \frac{E}{E_{\rm cr}} \frac{z}{d} - v\tau$ представлены на рис. 5. Результаты расчетов показали, что благодаря влиянию электрического поля E абсолютная величина P(q) быстро растет практически с 0 до 8 в случае сильного сцепления молекул ЖК-фазы с ограничивающими поверхностями (рис. 5, a) и до 6.5 в случае слабого сцепления (рис. 5, b). Безразмерные величины P(q) = 8 и P(q) = 6.5отвечают размерным значениям $\frac{K_2}{\kappa^2} P(q)$, равным 64 и $52\,\mathrm{pN}/\mu\mathrm{m}^2$ соответственно. Расчеты также показали, что профиль давления P(q), вычисленный с учетом баланса вкладов, обусловленных упругими, электрическими и гидродинамическими силами, эволюционирует, начиная с верхней ограничивающей поверхности и достигая нижней поверхности за время релаксации т_R. Это как раз то время, которое система тратит на переориентацию начального возмущения под действием внешнего поля к равновесной ориентации директора. Физически это означает, что в случае формирования релаксационного режима в форме бегущей волны $\Phi(z - vt)$ начальное возмущение поля директора вблизи верхней ограничивающей поверхности достигает основания ячейки спустя время τ_R и оказывает давление ~ 64 pN/ μ m² в случае жесткого сцепления ЖК-молекул с поверхностями или ~ 52 pN/ μ m² в случае слабого сцепления. Таким образом, эффект слабого сцепления молекул ЖК на нижней поверхности ячейки приводит к уменьшению давления ~ 17% по сравнению со случаем сильного сцепления. Измерение ударного давления на нижней поверхности ячейки при заданных внешних условиях на НТЯ позволяет судить о реализации нелинейного релаксационного механизма в форме бегущей волны.

Экспериментальное наблюдение релаксационного режима в форме бегущей волны, по-видимому, возможно с помощью поляризационного микроскопа. Поскольку переориентация поля директора имеет место в очень узкой области ЖК-фазы (имеется в виду ширина бегущей волны), под действием внешнего электрического поля $E \ge 10.0 E_{\rm cr}$ или $2 \cdot 10^{-4} \,{
m C/m}^2$ для случая НТЯ толщиной 10 µm в поляризованном свете могут возникнуть темные бегущие полосы, представляющие собой не что иное как области переориентации поля директора. Учитывая то, что скорость этих полос $\sim 100 \,\mu m/s$, их легко можно зафиксировать с помощью обычной фотокамеры. В заключение следует отметить, что настоящее исследование релаксационных процессов, возникающих в НТЯ, применимо в области температур Т, далеких от точек фазового перехода типа нематик-смектик $A(T_{NA})$. Вблизи температуры T_{NA} материальные коэффициенты K_2 и γ_1 демонстрируют аномальный рост величин [9], и как результат время релаксации неограниченно растет, а скорость процесса релаксации и_R стремится к нулю. Такое изменение времени релаксации τ_R согласуется с результатами работы [2], в которой показано, что при $T \to T_{NA} \ \tau_R \sim \left(\frac{T_{NA}}{T - T_{NA}} \right)^{0.1}.$

Мы надеемся, что настоящее исследование позволит лучше понять релаксационные процессы, протекающие в твистовых нематических ячейках.

Список литературы

- [1] P.G. de Gennes, J. Prost. The physics of liquid crystals. Oxford University Press, Oxford (1995). 349 p.
- [2] A.V. Zakharov, A.A. Vakulenko. Phys. Rev. E 72, 021712 (2005).
- [3] I.W. Stewart. The static and dynamic continuum theory of liquid crystals. Taylor and Francis, London (2004). 345 p.
- [4] T. Matsui, M. Ozaki, K. Yoshino. Phys. Rev. E 69, 061715 (2004).
- [5] D.C. Aronson, H.F. Weinberger. Lect. Notes Math. 446, 3 (1975).
- [6] W. van Saarlos. Phys. Rev. A 37, 211 (1987).
- [7] И.С. Березин, Н.Р. Жидков. Методы вычислений. Физматгиз, М. (1964). 464 с.
- [8] P.P. Karat, N.N. Madhusudana. Mol. Cryst. Liq. Cryst. 40, 239 (1977).
- [9] D. Kamada, K. Okimoto, A. Sugimura, G.R. Luckhurst, B.A. Timimi, H. Zimmermann. Mol. Cryst. Liq. Cryst. 441, 129 (2005).