Упругие волны и механизм релаксации Ландау–Румера квазипоперечных фононов в кристаллах GaAs

© И.Г. Кулеев, И.И. Кулеев, И.Ю. Арапова

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: kuleev@imp.uran.ru

(Поступила в Редакцию 2 августа 2007 г.)

В модели анизотропного континуума проанализированы зависимости скоростей релаксации и коэффициентов поглощения ультразвука в кристаллах GaAs от направления волнового вектора квазипоперечных фононов для механизма Ландау–Румера. В расчетах использовались два набора значений экспериментально измеренных различными авторами упругих модулей второго и третьего порядков. Показано, что угловые зависимости скоростей релаксации квазипоперечных фононов и коэффициентов поглощения ультразвука, рассчитанные по этим данным, качественно различаются. Корректность определения упругих модулей третьего порядка, приведенных в литературе, может быть проверена из измерений коэффициента поглощения ультразвука в кристаллах GaAs.

Работа выполнена при поддержке гранта РФФИ № 05-02-16912, программы Президиума РАН № 12, ведущей научной школы № НШ 5869.2006.2, а также "Фонда содействия отечественной науке".

PACS: 62.20.Dc, 62.80.+f, 63.20.-e, 63.20.Kr

В работах [1,2] рассматривались упругие волны и скорости релаксации квазипоперечных фононов в кубических кристаллах для механизма Ландау-Румера. Для кристаллов GaAs использовались значения упругих модулей второго порядка и скоростей звука, приведенные в [3]. Эти значения оказались ошибочны: почти на порядок величины меньше экспериментально измеренных для этого кристалла модулей упругости второго порядка [4,5] (ср. данные табл. 1 и табл. 1 в [1,2]). Следует отметить, что измеренные в [4,5] значения упругих модулей второго порядка практически совпадают, тогда как для модулей упругости третьего порядка, характеризующих ангармоническую энергию кристаллов GaAs, авторы работ [4,5] получили существенно различные результаты. Далее покажем, что использование этих данных приводит к качественно и количественно различным величинам релаксационных характеристик для кристаллов GaAs. Поэтому следует ожидать, что один из двух наборов измеренных для этого кристалла модулей упругости третьего порядка является некорректным. С другой стороны, использование значений упругих модулей второго порядка c_{ii} для кристаллов GaAs, согласно [3], привело к ошибочным результатам в работах [1,2]: GaAs оказался в группе кубических кристаллов с отрицательной анизотропией упругих модулей второго порядка ($\Delta C = c_{12} + 2c_{44} - c_{11} = -0.0245 < 0$) вместе с кристаллами NaCl и KCl [1], а скорость релаксации фононов оказалась на четыре порядка больше, чем в кристаллах Ge и InSb [2]. Однако, согласно данным [4,5], для GaAs величина $\Delta C = c_{12} + 2c_{44} - c_{11} = 0.54 > 0$, и он должен находиться в первой группе кристаллов вместе с Ge, Si, InSb и GaSb (табл. 1). Если учесть, что для GaAs безразмерный параметр $k = \frac{c_{12}+c_{44}}{c_{11}-c_{44}} = 1.9$ и по величине он близок к Ge и InSb, то вид спектра и поведение вектора поляризации колебательных мод в этих кристаллах должны быть близки. Действительно, оценки, проведенные аналогично работе [1] для данных [4,5], показывают, что поперечная компонента квазипродольных колебаний в GaAs мала, и ее максимальная величина составляет примерно 1.3% (рис. 1, кривые I', 2'). При этом продольная компонента квазипоперечных колебаний не является малой. Из сравнения рис. 1 (кривые I и 2) и рис. 2 работы [1] (кривые 2 и 3) видно, что угловые зависимости величины $\delta_{t2} = (e^{t^2}\mathbf{n})$ ($\mathbf{n} = \mathbf{q}/q$ — единичный волновой вектор фонона), характеризующей отклонение вектора поляризации медленной квазипоперечной моды e^{t^2} от чистой моды, для кристаллов GaAs и Ge практически совпадают. Его максимальные значения достигают 16

Таблица 1. Значения термодинамических модулей упругости для исследованных кубических кристаллов в единицах 10¹² dyn/cm² (данные взяты из работ [3–6])

	GaAs [4]	GaAs [5]	Ge	InSh
		Gans [J]	00	11150
c_{11}	1.1904	1.1877	1.289	0.672
C ₁₂	0.5384	0.5372	0.483	0.367
C 44	0.5952	0.5944	0.671	0.302
ΔC	0.54	0.54	0.54	0.3
c_{111}	-6.75	-6.22	-7.10	-3.56
c_{112}	-4.02	-3.87	-3.89	-2.66
c ₁₂₃	-0.04	-0.57	-0.18	-1.0
C 144	-0.7	-0.02	-0.23	0.16
C 155	-3.2	-2.69	-2.92	-1.39
C 456	-0.69	-0.39	-0.53	-0.004
$A_{\rm cub}$	-1.84	0.8	-0.084	1.57
C 155	-1.12	-1.93	-1.63	-1.54
c_{111}	24.19	30.53	28.01	20.96
c_{112}	-2.58	-3.34	-3.25	-1.98

Рис. 1. Угловые зависимости величин δ_{λ} , характеризующих отклонение векторов поляризации от чистых мод, в кристаллах GaAs ($\delta_{\lambda} = \delta_L = 1 - (\mathbf{e}^t \mathbf{n})$ для квазипродольных фононов, $\delta_{t2} = (\mathbf{e}^{t^2} \mathbf{n})$ для квазипоперечных фононов). I', 2' -для квазипродольных мод, I, 2 -для квазипоперечных мод с волновыми векторами фононов, лежащими в плоскости грани куба и в диагональной плоскости соответственно.

и 15.5% для волновых векторов в плоскости грани куба и 18 и 16.5% для волновых векторов в диагональной плоскости для GaAs и Ge соответственно. Следовательно, вид спектра и угловые зависимости векторов поляризации в кристаллах GaAs близки к тем же зависимостям в кристаллах первой группы Ge и InSb.

Обратимся теперь к релаксационным характеристикам фононов в кристаллах GaAs. Рассмотрим скорость релаксации квазипоперечных фононов в механизме Ландау–Румера [7] в соответствии с методом расчета, сформулированным в работе [2]. В длинноволновом приближении при температурах, гораздо меньших температуры Дебая, скорость релаксации имеет вид [2]

$$v^{TLL}(\theta_1, \varphi_1) = B_0^{TLL}(\theta_1, \varphi_1) T_q T^4,$$

$$B_0^{TLL}(\theta_1, \varphi_1) = B_0 J(\theta_1, \varphi_1),$$

$$B_0 = \frac{\pi^3 k_{\rm B}^5}{15\hbar^4 \rho^3 S_t(\theta_1, \varphi_1) \langle S_L \rangle^8}.$$
 (1)

Здесь $T_q \equiv \hbar \omega_{qt}/k_{\rm B}$ — энергия ультразвукового кванта в градусах Кельвина, ρ — плотность, T — температура, $\langle S_L \rangle$ — средняя скорость продольных фононов, $S_t(\theta_1, \varphi_1)$ — фазовая скорость поперечных фононов, функция $J(\theta_1, \varphi_1)$ определена в работе [2], угловые переменные θ_1 и φ_1 определяют направление волнового вектора фонона \mathbf{q}_1 относительно кристаллографических осей. Для анализа зависимостей скоростей релаксации от направления волнового вектора квазипоперечных фононов при точном учете кубической анизотропии в законе сохранения энергии введем безразмерный коэффициент $v_{TLL}^*(\theta_1, \varphi_1)$, характеризующий изменение скорости релаксации относительно направления [001],

$$v_{TLL}^{*}(\theta_{1}, \varphi_{1}) = \frac{v_{TLL}(\theta_{1}, \varphi_{1})}{v_{TLL\,[100]}} = \frac{B_{0}^{TLL}(\theta_{1}, \varphi_{1})}{B_{0\,[100]}^{TLL}}$$
$$= \left(\frac{S_{[100]}^{t}}{S_{t}(\theta_{1}, \varphi_{1})}\right) \frac{J(\theta_{1}, \varphi_{1})}{J_{[100]}}.$$
(2)

Величина $v_{TLL}^*(\theta_1, \varphi_1)$ определяет анизотропию скорости релаксации фононов в механизме Ландау–Румера.

Проанализируем угловые зависимости скорости релаксации квазипоперечных фононов для двух наиболее

Рис. 2. Угловые зависимости приведенных скоростей релаксации фононов $v_{TLL}^*(\theta, \varphi)$ в механизме Ландау–Румера для кристаллов GaAs, рассчитанные согласно данным [4] (1', 2') и [5] (1, 2): *а* — для волновых векторов в плоскости грани куба ($\varphi = 0$), *b* — для волновых векторов в диагональной плоскости ($\varphi = \pi/4$). 1 и 1' — для чистых мод t_1 , 2 и 2' — для квазипоперечных мод t_2 .

Рис. 3. Угловые зависимости приведенных скоростей релаксации фононов $v_{TLL}^*(\theta, \varphi)$ в механизме Ландау–Румера для кристаллов Ge (1', 2') и InSb (1, 2). a — для волновых векторов в плоскости грани куба $(\varphi = 0)$, b — для волновых векторов в диагональной плоскости $(\varphi = \pi/4)$. 1 и 1' — для чистых мод t_1 , 2 и 2' — для квазипоперечных мод t_2 .

актуальных случаев: 1) волновые векторы фононов \mathbf{q}_1 лежат в плоскости грани куба ($\varphi_1 = 0$); 2) волновые векторы фононов \mathbf{q}_1 лежат в диагональной плоскости ($\varphi_1 = \pi/4$). Такие зависимости для модулей упругости второго и третьего порядков, экспериментально измеренных в работах [4,5] (табл. 1), приведены на рис. 2 в полярных координатах. Следует отметить, что для кристаллов GaAs угловые зависимости скорости релаксации квазипоперечных фононов $v_{TLL}^*(\theta_1, \varphi_1)$, рассчитанные по данным [4,5], качественно различаются. В связи с этим для сравнения мы привели на рис. 3 зависимости $v^*_{TLL}(\theta_1, \varphi_1)$ для кристаллов Ge и InSb, рассчитанные в [2]. Как видно из рис. 2 и 3, угловые зависимости скорости релаксации $v_{TLL}^*(\theta_1, \varphi_1)$, рассчитанные согласно данным [4] для GaAs (штриховые кривые на рис. 2), качественно согласуются с зависимостями $v_{TLL}^*(\theta_1, \varphi_1)$, рассчитанными для Ge (штриховые кривые на рис. 3). Напротив, угловые зависимости скорости релаксации $v_{TLL}^*(\theta_1, \varphi_1)$ для GaAs, рассчитанные согласно данным [5] (сплошные кривые на рис. 2), качественно согласуются с зависимостями $v_{TLL}^*(\theta_1, \varphi_1)$, рассчитанными для InSb (сплошные кривые на рис. 3). Так, например, в случае волновых векторов фононов q_1 , лежащих в плоскости грани куба ($\phi_1 = 0$) как для чистой моды t1 с вектором поляризации, перпендикулярным рассматриваемой грани куба, так и для медленной квазипоперечной моды t2 с вектором поляризации в плоскости грани куба расчет функции $v_{TLLt1}^*(\theta_1, 0)$, согласно данным [4], дает четкий максимум в направлениях типа [100], а минимальные значения достигаются в направлениях типа [101]. В противоположность этому для данных [5] функция $v_{TLL}^*(\theta_1, 0)$ для поперечных мод в направлениях типа [100] имеет локальные минимумы, а максимальных значений она достигает при углах $\theta m \cong n\pi/2 \pm \beta_t (n = 0, 1, 2)$, где $\beta_{t1} = 0.16$, $eta_{t2}=0.04$, причем величина $v^*_{TLL\,t1}(heta_m,0)=1.017$, а $v^*_{TLLt2}(\theta_m, 0) = 1.0005$. Минимальные значения для быстрой моды $v_{TLLt1}^*(\pi/4, 0)$, рассчитанные согласно данным [4,5], близки: они составляют 0.65 и 0.67 соответственно. Однако для медленной квазипоперечной моды t_2 минимальные значения $v^*_{TLLt2}(\pi/4, 0)$ для данных [4,5] значительно различаются: они составляют 0.11 и 0.2 соответственно (табл. 2).

Аналогичная ситуация имеет место для квазипоперечных мод с волновыми векторами фононов \mathbf{q}_1 в диагональной плоскости ($\varphi_1 = \pi/4$). Для чистой моды t_1 с вектором поляризации, перпендикулярным диагональной плоскости, поведение скоростей релаксации $v_{TLL_{t1}}^*(\theta_1, \pi/4)$ в кристаллах GaAs, рассчитанных по данным [4,5], качественно не отличается от Ge и InSb, хотя количественные отличия есть. Как и в кристаллах Ge и InSb, функция $v_{TLL_{t1}}^*(\theta_1, \pi/4)$ достигает максимальных значений в направлениях [001] (рис. 2, *b* и 3, *b*, кривые *I* и *I'*). С уменьшением угла θ_1 она уменьшается к минимальным значениям в направлении [110] ($\theta_1 = \pi/2$),

Таблица 2. Значения параметров, определяющих скорости релаксации квазипоперечных фононов, в кристаллах GaAs, Ge и InSb

Кристалл	$\begin{array}{c} B_0 \cdot 10^{24}, \\ cm^4 \cdot dyn^{-2} \cdot s^{-1} \cdot K^{-5} \\ [100] \end{array}$	$ \begin{array}{c} B_0^{TLL}, \\ s^{-1} \cdot K^{-5} \\ [100] \end{array} $	v _{TLLt2} [101]	v_{TLLt1}^{*} [101]	v_{TLL}^* [111]
GaAs [4]	0.33	1.81	0.11	0.65	0.25
GaAs [5]	0.33	0.89	0.2	0.67	0.29
Ge	0.239	0.87	0.15	0.64	0.24
InSb	5.23	2.36	0.13	0.86	0.26

Габлица З.	Коэффициенты	поглощения	поперечного	ультра-
вука в крист	аллах GaAs, Ge	еи InSb		

Кристалл	$A_{[100]}^{TLL} \cdot 10^{-5}, \mathrm{dB/cm} \cdot \mathrm{K}^{-5}$	$lpha^*_{TLLt2}$ [101]	$lpha^*_{TLLt1}$ [101]	$lpha_{TLL}^*$ [111]
GaAs [4]	2.35	0.16	0.65	0.29
GaAs [5]	1.18	0.27	0.67	0.33
Ge	1.06	0.23	0.64	0.31

составляя 0.2 и 0.11 для данных [4,5] соответственно. Однако для квазипоперечной моды t2 с векторами поляризации в диагональной плоскости ($\phi_1 = \pi/4$) зависимости скоростей релаксации $v_{TLLt2}^*(\theta_1, \pi/4)$ в кристаллах GaAs для данных [4,5] в значительной степени различаются. Для данных [4], как и для Ge, функция $v^*_{TLLt2}(\theta_1, \pi/4)$ достигает максимальных значений в направлениях [001]. В то же время для данных [5], как и для кристаллов InSb, в этих направлениях имеют место локальные минимумы, а максимальных значений функция $v_{TLLt2}^*(\theta_1, \pi/4)$ достигает при углах $\theta_1 = n\pi/2 \pm 0.13$, $n\pi/2 \pm 0.22$ и составляет 1.07 и 1.6 для GaAs и InSb соответственно (рис. 2, b и 3, b, кривые 2). Минимальных значений коэффициенты поглощения $v_{TLL t2}^*(\theta_1, \pi/4)$ достигают при углах $\theta_1 \cong \pi/4$ и составляют 0.2, 0.23, 0.19, 0.24 для GaAs [4], GaAs [5], Ge и InSb соответственно. А в направлении [011] ($\theta_1 = \pi/2$) функция $v^*_{TLLt2}(\theta_1, \pi/4)$ имеет локальный максимум для всех кристаллов.

Таким образом, вблизи направлений типа [100] скорости релаксации $v_{TLL}^*(\theta, \phi)$ при малых углах θ_1 для GaAs, рассчитанные согласно данным [4], являются убывающими функциями угла θ_1 , тогда как соответствующие зависимости, рассчитанные для данных [5], являются возрастающими функциями угла θ_1 . Такое поведение скоростей релаксации $v_{TLL}^*(\theta, \varphi)$ в GaAs связано с различным характером анизотропии ангармонической энергии, определенной в соответствии с данными [4,5]. Дело в том, что в скорости релаксации фононов, распространяющихся вдоль ребер куба, вносят вклад только слагаемые, пропорциональные упругим модулям третьего порядка A_{cub} и c_{155} (см. формулу (10) в [2]). Для кристаллов Ge и GaAs [4] они имеют одинаковый (отрицательный) знак. А для GaAs [5] (табл. 1) они имеют противоположные знаки, и их вклады в значительной степени компенсируют друг друга. Поэтому скорости релаксации фононов в этих направлениях для GaAs [5] и InSb могут быть существенно меньше скоростей в Ge и GaAs [4], где такой компенсации не происходит. Поскольку в кристаллах InSb происходит более полная компенсация, чем в GaAs [5], в направлениях типа [100] на зависимостях $v_{TLL}^*(\theta, \varphi)$ для InSb возникает более глубокий минимум. Итак, появление локальных минимумов на скоростях релаксации $v_{TLL}^*(\theta, \phi)$ для направлений [100] в кристаллах InSb, GaAs [5] связано со взаимной компенсацией слагаемых, пропорциональных упругим модулям A_{cub} и c_{155} в матричном элементе трехфононных процессов рассеяния. Следует отметить, что величины скоростей релаксации в направлениях [100], рассчитанные для данных [4,5], хотя и различаются примерно в 2 раза, однако имеют один порядок величины с кристаллами Ge и InSb (табл. 2). Различаются также значения анизотропии скоростей релаксации поперечных мод для данных [4,5] (табл. 2). Отмеченные выше особенности поведения скоростей релаксации, рассчитанных согласно данным [4,5], допускают возможность экспериментальной проверки корректности определения упругих модулей третьего порядка в работах [4,5] из измерений коэффициента поглощения ультразвука в кристаллах GaAs.

При доминирующей роли ангармонических процессов рассеяния для анализа анизотропии коэффициента поглощения ультразвука

$$\alpha_{TLL}(\theta_1, \varphi_1, T) = 8.68 B_0^{TLL}(\theta_1, \varphi_1) T_q T^4 / 2S_t(\theta_1, \varphi_1)$$
$$= A^{TLL}(\theta_1, \varphi_1) T_q T^4 (dB/cm)$$
(3)

можно ввести приведенный коэффициент поглощения $\alpha^*_{TLL}(\theta_1, \varphi_1)$ [8]

$$\alpha_{TLL}^{*}(\theta_{1}, \varphi_{1}, T) = \frac{\alpha_{TLL}(\theta_{1}, \varphi_{1}, T)}{\alpha_{TLL[100]}} = \frac{A^{TLL}(\theta_{1}, \varphi_{1})}{A^{TLL}_{[100]}}$$
$$= \frac{S_{[100]}^{t}}{S_{t}(\theta_{1}, \varphi_{1})} \frac{B_{0}^{TLL}(\theta_{1}, \varphi_{1})}{B_{0}^{TLL}},$$
(4)

который определяет анизотропию коэффициента поглощения. Анализ зависимостей $\alpha^*_{TLL}(\theta_1, \varphi_1)$ показал, что качественно они близки к зависимостям скоростей релаксации $v_{TLL}^*(\theta_1, \varphi_1)$. Поэтому для кристаллов GaAs угловые зависимости коэффициентов поглощения ультразвука $\alpha_{TLL}^*(\theta_1, \varphi_1)$, рассчитанные для упругих модулей третьего порядка согласно данным [4,5], качественно различаются. Из сравнения данных табл. 2 и 3 видно, что количественно анизотропия коэффициентов поглощения ультразвука несколько отличается от анизотропии скоростей релаксации. Следует также отметить, что величины коэффициентов поглощения в направлениях [100], рассчитанные для данных [4,5], различаются примерно в 2 раза (табл. 3). Все это позволяет проверить адекватность экспериментальных данных, полученных в работах [4,5] из измерений коэффициента поглощения ультразвука.

Из измерений коэффициента поглощения поперечного ультразвука [9] в кристаллах GaAs следует, что коэффициент $A_{[100]}^{TLL} = 0.72 \cdot 10^{-5} \text{ dB/cm} \cdot \text{K}^{-5}$; а согласно нашим расчетам по данным [4,5], он равен $2.35 \cdot 10^{-5} \text{ dB/cm} \cdot \text{K}^{-5}$ и $1.18 \cdot 10^{-5} \text{ dB/cm} \cdot \text{K}^{-5}$ соответственно. Казалось бы, можно сделать вывод, что данные работы [5] лучше соответствуют измеренным значениям коэффициента поглощения ультразвука [9]. Однако для анизотропии коэффициента поглощения

результаты, полученные нами для механизма Ландау-Румера, находятся в противоречии с результатами [9]. В направлении [101] относительный коэффициент поглощения α^*_{TLLt2} для медленной поперечной моды t_2 равен 1.8, тогда как из нашего анализа релаксации и чистых t_1 , и квазипоперечных мод t_2 в механизме Ландау-Румера следует, что в этом направлении относительный коэффициент поглощения должен быть меньше единицы (табл. 3). Причем для медленной моды t₂ в направлении [101] он равен 0.16 и 0.27, а для моды t_1 в направлении [011] он равен 0.65 и 0.67 для данных [4,5] соответственно. Такое расхождение результатов расчета с данными [9] может быть связано с тем, что механизм Ландау–Румера $(T_1 + L_2 = L_3)$ не является доминирующим механизмом релаксации для медленной поперечной моды на тепловых продольных фононах. В ряде работ [10-13] уже указывалось, что для этой моды механизм релаксации на тепловых поперечных фононах $(T_1 + T_2 = T_3)$ может вносить более существенный вклад. Для более адекватного сравнения результатов расчета с экспериментальными данными по поглощению поперечного ультразвука необходимо проанализировать этот механизм релаксации, а также учесть затухание на тепловых фононах [14–16].

Авторы выражают благодарность А.П. Танкееву за обсуждение результатов работы и критические замечания.

Список литературы

- [1] И.Г. Кулеев, И.И. Кулеев. ФТТ 49, 422 (2007).
- [2] И.Г. Кулеев, И.И. Кулеев, И.Ю. Арапова. ФТТ 49, 1272 (2007).
- [3] B. Truel, C. Elbaum, B.B. Chick. Ultrasonic methods in solid state physics. Academic press, N.Y.–London (1969).
- [4] J.R. Drabble, A.J. Brammer. Solid State Commun. **4**, 467 (1966).
- [5] H.J. Mcskimin, P.J. Andreatch. J. Appl. Phys. 34, 651 (1963);
 38, 2610 (1967).
- [6] И.Н Францевич, Ф.Ф. Воронов, С.А. Бакута. Упругие постоянные и модули упругости металлов и неметаллов. Наук. думка, Киев (1982).
- [7] L. Landau, J. Rumer. Phys. Z. Sow. 11, 18 (1937).
- [8] И.Г. Кулеев, И.И. Кулеев. ФТТ 49, 1568 (2007).
- [9] M. Pomerantz. Phys. Rev. **139**, A 501 (1965).
- [10] I.C. Simpson. J. Phys. C: Solid State Phys. 8, 399; 1783 (1975).
- [11] Ю.В. Илисавский, В.М. Стернин. ФТТ 27, 385 (1985).
- [12] P.J. King, J. Phys. C: Solid State Phys. 4, 1306 (1971).
- [13] J. de Klerk, P.G. Klemens. Phys. Rev. 147, 585 (1966).
- [14] S. Simons. Proc. Phys. Soc. 82, 401 (1963); 749 (1964).
- [15] H.J. Maris. Phyl. Mag. 9, 901 (1964).
- [16] H.J. Maris. Physical acoustics VIII. Academic Press, N.Y.-London (1971). P. 280.