## Модели тетраэдрических "редкоземельных" кластеров в кристаллах фторида кадмия и парамагнитный резонанс

© В.А. Важенин, В.А. Чернышев, В.Б. Гусева, А.П. Потапов, М.Ю. Артёмов

Уральский государственный университет, 620083 Екатеринбург, Россия E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 2 августа 2007 г.)

В суперпозиционном приближении проведена оценка параметров начального расщепления ионов  $Gd^{3+}$ , локализованных в трех типах тетраэдрических кластеров, структура которых определялась путем минимизации энергии кристалла со встроенным кластером. На этой основе интенсивный моноклинный спектр с  $b_{20} = -345 \text{ MHz}$  отнесен к кластеру [CdY<sub>2</sub>CdF<sub>26</sub>], менее интенсивный ( $b_{20} \approx -600 \text{ MHz}$ ) — к [Cd<sub>2</sub>YGdF<sub>26</sub>]. Различие в абсолютных значениях расчетных и экспериментальных параметров  $b_{20}$  объясняется формированием экспериментального спектра ионами гадолиния в кластерах, входящих в ассоциации.

Работа выполнена при поддержке грантов программы CRDF BRHE и Рособразования (Y3-EP-05-10, Y4-P-05-01).

PACS: 76.30.-v, 76.30.Kg

1. Известно, что спектр электронного парамагнитного резонанса содержит уникальную информацию о структуре ближайшего окружения примесного иона в кристалле. Объем этой информации, заключенный в величинах начальных расщеплений (или тонкой структуры), растет с увеличением спина парамагнитного дефекта. Симметрийный анализ высокоспинового ЭПР-спектра (построение спинового гамильтониана) позволяет определить класс, а в присутствии анизотропных внешних воздействий — и группу симметрии позиции парамагнитного иона.

К сожалению, именно для высокоспиновых редкоземельных ионов с основным S-состоянием существует большое количество микроскопических механизмов начальных расщеплений как в ионной модели [1,2], так и обусловленных эффектами перекрывания и ковалентности [3,4]. Эти механизмы, приводящие к сравнимой величине расщеплений, дают разные знаки расщеплений, поэтому построение адекватной микроскопической модели, описывающей связь между структурой окружения дефекта и величиной параметров его начальных расщеплений, в настоящее время проблематично. В связи с этим уже давно делаются попытки иного, хотя бы частичного, решения указанной задачи. К ним надо отнести создание эмпирических моделей начального расщепления основного состояния [5-8], а также исследования топологических свойств экспериментального спинового гамильтониана с целью определения направлений связей металл-лиганд и локализации наблюдаемых низкосимметричных центров в кристаллической решетке [9–12]. Все перечисленные подходы требуют знания координат релаксировавшего окружения парамагнитного дефекта.

**2.** В наших работах [13,14] при исследовании спектра ЭПР монокристаллов фторида кадмия, легированного иттрием и гадолинием,  $Y_x Gd_y Cd_{1-x-y} F_{2+x+y}$  (x = 0.03,  $y \le 0.001$ ), были обнаружены (наряду с известным ку-

бическим спектром) тригональный и два моноклинных центра Gd<sup>3+</sup>, не наблюдавшиеся ранее в кристаллах структуры флюорита с примесью гадолиния. Параметры спиновых гамильтонианов вида [15], но записанных в системе координат  $\mathbf{z} \parallel C_3$ ,  $\mathbf{y} \parallel C_2$  и поэтому содержащих операторы Стивенса только типа  $O_{nm}$ , приведены в табл. 1. Для малоинтенсивного моноклинного спектра ( $C_s$ -2) удалось оценить лишь величину  $b_{20}$ . Знак диагонального параметра  $b_{20}$  интенсивного моноклинного спектра определен из низкотемпературных измерений, о выборе знаков  $b_{20}$  других центров см. далее.

**Таблица 1.** Параметры спинового гамильтониана наблюдаемых в  $Y_x Gd_y Cd_{1-x-y} F_{2+x+y}$  центров  $Gd^{3+}$  (среднеквадратичное отклонение f и параметры  $b_{nm}$  приведены в MHz, T = 300 K)

|          | <i>C</i> <sub>s</sub> -1 | $C_{3v}$ | <i>C</i> <sub><i>s</i></sub> -2 |
|----------|--------------------------|----------|---------------------------------|
| $g_x$    | 1.988(6)                 | 1.992(5) | 1.992                           |
| $g_{v}$  | 1.991(6)                 | 1.992(5) | 1.992                           |
| $g_z$    | 1.991(3)                 | 1.992(5) | 1.992                           |
| $b_{20}$ | -345(4)                  | -200(6)  | -600                            |
| $b_{21}$ | 287(24)                  |          |                                 |
| $b_{22}$ | 87(14)                   |          |                                 |
| $b_{40}$ | 25(2)                    | 80(3)    |                                 |
| $b_{41}$ | 3(12)                    |          |                                 |
| $b_{42}$ | 17(10)                   |          |                                 |
| $b_{43}$ | -554(40)                 | 2300(60) |                                 |
| $b_{44}$ | -30(15)                  |          |                                 |
| $b_{60}$ | -2.4(15)                 | -17(3)   |                                 |
| $b_{61}$ | -7(14)                   |          |                                 |
| $b_{62}$ | -4(14)                   |          |                                 |
| $b_{63}$ | 1(30)                    | -270(50) |                                 |
| $b_{64}$ | -5(20)                   |          |                                 |
| $b_{65}$ | -60(80)                  |          |                                 |
| $b_{66}$ | 7(25)                    | 490(50)  |                                 |
| f        | 12                       | 25       |                                 |

Следует отметить, что при повороте системы координат вокруг оси у величина  $(b_{21}^2 + b_{22}^2)$  интенсивного моноклинного спектра демонстрирует минимум в районе ориентации с углами Эйлера  $\alpha = 0$ ,  $\beta = -7.2^{\circ}$ ,  $\gamma = 0$  ( $b_{21}$  меняет знак), тогда как  $|b_{20}|$  при этом имеет максимум (354 MHz). Обращение в нуль параметра спинового гамильтониана  $b_{21}$  и максимизация абсолютной величины  $b_{20}$  определяют ориентацию оси псевдосимметрии тензора тонкой структуры второго ранга. Близость этой оси к  $C_3$  свидетельствует, скорее всего, о том, что наблюдаемый моноклинный центр представляет собой результат искажения центра с симметрией  $C_{3\nu}$ , например из-за компенсации заряда дефектом, локализованным вне оси  $C_3$ , но в плоскости симметрии.

Авторами [16,17] методами рентгеноструктурного анализа было показано, что в кристаллах  $CdF_2$  с примесью 10 mol%  $RF_3$  ( $R = Sm \div Lu$ , Y) образуются тетраэдрические редкоземельные (или иттриевые) кластеры (см. рисунок). При этом в кластере возможно неполное замещение катионов матрицы редкоземельными (или иттриевыми) ионами, в результате чего для части кластеров решается проблема компенсации избыточного заряда.

На основании этих результатов и с учетом ориентации плоскости симметрии моноклинных центров ( $\sigma \perp C_2$ ) нами был сделан вывод, что обнаруженные центры обусловлены ионами Gd<sup>3+</sup> в тетрамерных кластерах типа [Y<sub>3</sub>GdF<sub>26</sub>]<sup>+</sup> ( $C_{3v}$ ), [CdY<sub>2</sub>GdF<sub>26</sub>]<sup>0</sup> ( $C_s$ ), [Cd<sub>2</sub>YGdF<sub>26</sub>]<sup>-</sup> ( $C_s$ ), где в круглых скобках приведена группа симметрии иона Gd<sup>3+</sup>, а верхние индексы указывают разность зарядов дефектного кластера и замещаемого им фрагмента решетки. Наблюдаемый тригональный центр Gd<sup>3+</sup> естественно отнести к кластеру [Y<sub>3</sub>GdF<sub>26</sub>], тогда как решить вопрос о соответствии между двумя моноклинными центрами и двумя типами кластеров (и следовательно, определить, какой тип кластера в исследованных кристаллах вероятнее) без расчетов параметров тонкой структуры невозможно.

При решении такой задачи для тетраэдрических кластеров в работе [14] нами была использована суперпозиционная модель начального расщепления основного состояния в аппроксимации работы [6], в которой обосновывается аддитивность лигандных вкладов в параметры второго ранга редкоземельных ионов в *S*-состоянии,

$$b_{2m} = \sum_{d} K_{2m}(\theta_d, \varphi_d) \cdot \bar{b}_2(R_d),$$
  
$$\bar{b}_2(R_d) = Z_d \, \bar{b}_{2p}(R_0)(R_0/R_d)^3 + \bar{b}_{2s}(R_0)(R_0/R_d)^n, \quad (1)$$

)

где первый и второй члены отвечают за вклады электростатического поля точечного заряда лиганда и близкодействующего взаимодействия металл—лиганд соответственно,  $K_{2m}(\theta_d, \varphi_d)$  — угловой структурный фактор,  $R_d$ ,  $\theta_d$ ,  $\varphi_d$  — сферические координаты лигандов,  $\bar{b}_{2p} = -\chi_p \bar{A}_{2p}$ ,  $\bar{b}_{2s} = \chi_s \bar{A}_{2s}$  — внутренние параметры модели,  $n \approx 10$  [6,7],  $\chi_p = -2.14$ , для фторового окружения  $\chi_s = -2.70$ ,  $Z_d$  — заряд лиганда. Величины  $\bar{A}_{2p,2s}$ ,



Тетраэдрический редкоземельный кластер. В искаженных согласно [16] кубах располагаются ионы  $Y^{3+}$ ,  $Gd^{3+}$  или  $Cd^{2+}$ . В общей для четырех кубов вершине ион  $F^-$  отсутствует. *1* — основные ионы фтора, *2* — междоузельные, *3* — релаксирующие [16].

согласно [6], определяют параметры кристаллического поля

$$\begin{aligned} A_{2m} &= \sum_{d} K_{2m}(\theta_{d}, \varphi_{d}) \\ &\times \left[ \bar{A}_{2p}(R_{0}) / (R_{0}/R_{d})^{3} + \bar{A}_{2s}(R_{0})(R_{0}/R_{d})^{n} \right]. \end{aligned} \tag{2}$$

Корреляция штарковских расщеплений основного и возбужденного состояний редкоземельных ионов в *S*-состоянии, отражающаяся в выражениях (1), (2), подробно обсуждается авторами [6,8].

По данным работы [6] параметры модели, учитывающей кроме близкодействия только точечные заряды ближайших ионов F<sup>-</sup>, следующие:  $\bar{b}_{2p} =$ = 6210 MHz,  $\bar{b}_{2s} =$  4273 MHz при  $R_0 =$  2.37 Å. Отрицательный знак  $\bar{A}_{2p}$  в работе [6] обусловлен включением в этот параметр знака заряда иона фтора. Расчеты, проведенные нами в [14], не позволили объяснить измеренные параметры начального расщепления, что неудивительно, поскольку в них не учитывались ни эффект заряженных дефектов в катионном окружении, ни сильная поляризация ионов. Необходимость учета катионного окружения в заметно более простых и симметричных дефектных структурах обосновывается, например, в работе [10].

**3.** В настоящей работе, как и в [14], структура тетрамерных кластеров во фториде кадмия, в которых локализованы ионы Gd<sup>3+</sup>, была получена в результате минимизации энергии решетки со встроенным кластером. Расчет проводился с использованием приближения парных ионных взаимодействий [18] и в оболочечной модели, позволяющей учесть поляризацию решетки, что особенно важно в случае заряженных примесных дефектов. Следует отметить, что такой подход к моделированию структуры октаэдрических иттриевых кластеров

**Таблица 2.** Результаты расчета констант начального расщепления  $b_{20}~({\rm B~MHz})$ ионов  ${\rm Gd}^{3+}$ с внутренними параметрами работы [6]

| Кластер                                                                     | <ul> <li>b<sub>20</sub> (точечные заряды</li> <li>11 ионов фтора)</li> </ul> | b <sub>20</sub> (точечные<br>заряды и диполи<br>11 ионов<br>фтора) | <ul> <li>b<sub>20</sub> (точечные</li> <li>заряды и диполи</li> <li>11 ионов фтора</li> <li>и 12 катионов)</li> </ul> |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \mathrm{CdY}_{3}\mathrm{F}_{26} \\ (C_{3v}) \end{array}$  | 820                                                                          | -3191                                                              | -93                                                                                                                   |
| $\begin{array}{c} \mathrm{GdY_2CdF_{26}} \\ (C_s) \end{array}$              | 1086                                                                         | -2732                                                              | -120                                                                                                                  |
| $\begin{array}{c} \mathrm{GdYCd}_{2}\mathrm{F}_{26} \\ (C_{s}) \end{array}$ | 1328                                                                         | -2236                                                              | -121                                                                                                                  |

во фториде кальция успешно использовался авторами [19,20].

Расчет энергии кулоновского взаимодействия ионов выполнялся методом Эвальда. Параметры взаимодействия F<sup>-</sup>-F<sup>-</sup> получены неэмпирически [21], близкодействующее взаимодействие ионов металла между собой вследствие значительной их удаленности не учитывалось. Параметры близкодействующего отталкивания Cd<sup>2+</sup>-F<sup>-</sup>, а также параметр взаимодействия остов-оболочка k для Cd<sup>2+</sup> были определены из условия наилучшего совпадения рассчитанных и экспериментальных характеристик CdF<sub>2</sub>, включающих постоянную решетки, диэлектрические проницаемости  $\varepsilon_0$  и  $\varepsilon_{\infty}$ , упругие постоянные  $C_{11}, C_{12}$  и  $C_{44}$ , частоты фундаментальных колебаний  $\omega_{TO}$  и  $\omega_R$ . Аналогичные параметры для Y<sup>3+</sup> получены в результате оптимизации расчетной кристаллической структуры YF<sub>3</sub> относительно экспериментальной. Параметры взаимодействия Cd<sup>3+</sup>-F<sup>-</sup> определены из условия наилучшего воспроизведения положений анионов второй-четвертой координационных сфер простых кубических центров, найденных в ДЭЯР-экспериментах [18]. Для зарядов остовов использовались следующие значения:  $X_{\rm F} = +5$ ,  $X_{\rm Cd} = +8$ ,  $X_{\rm YGd} = +11$ . При моделировании дефекта использовался метод Мотта-Литтлтона, вблизи парамагнитной примеси допускалась релаксация  $\approx 500$  ионов. Используемые параметры парных взаимодействий и полученные координаты анионного окружения Gd<sup>3+</sup> в кластерах типа [Y<sub>3</sub>GdF<sub>26</sub>], [CdY<sub>2</sub>GdF<sub>26</sub>] приведены в работе [14]. Самый большой электрический дипольный момент ( $\approx 0.3 \, \text{eÅ}$ ) индуцируется на четырех междоузельных ионах фтора, образующих тетраэдрическую группировку вокруг центра кластера (см. рисунок). Среди катионов наибольшую поляризацию (0.03-0.08 eÅ) обнаруживают ионы иттрия в кластере  $[Y_3GdF_{26}]$ , а также ионы  $Y^{3+}$ и ионы Cd<sup>2+</sup>, замещающие место иттрия в кластеpax  $[CdY_2GdF_{26}]$ ,  $[Cd_2YGdF_{26}]$ .

Результаты расчетов аксиальных констант  $b_{20}$  спектров ионов  $\mathrm{Gd}^{3+}$ , локализованных в кластерах трех ти-

пов, по формулам (1) с использованием внутренних параметров работы [6] и найденных координат анионного и катионного окружения приведены в табл. 2. Вклад дипольных полей учитывался суммированием по зарядам остовов и оболочек. Недиагональные параметры спинового гамильтониана, значения которых зависят и от азимутальных координат лигандов, не рассчитывались. Вообще говоря, использование в расчетах, оперирующих с поляризованным анионным и катионным окружением, суперпозиционных параметров [6], полученных для модели, учитывающей лишь неполяризованные ближайшие анионы, неправомерно. Однако данные табл. 2 очень наглядно показывают соотношение вкладов от точечных зарядов, дипольных полей и катионного окружения. При этом обращает на себя внимание существенное влияние на результаты расчетов поляризации анионного окружения. Вклад в  $b_{20}$  от близкодействия для трех типов центров меняется в пределах 1500-1680 MHz. Существенный вклад поляризации ионов в константу кристаллического поля второго ранга (2) отмечался авторами [2,3]. В то же время результаты вычисления ковалентного вклада в  $b_{20}$  центров Gd<sup>3+</sup> [4] в кристаллах LiCaAlF<sub>6</sub> и YBa<sub>2</sub>CuO<sub>6.91</sub> хорошо коррелировали с экспериментальными величинами начального расщепления, свидетельствуя о компенсации остальных вкладов.

4. Для определения эмпирических (и, надеемся, более адекватных) параметров модели (1) нами использовались экспериментальные данные о начальных расщеплениях хорошо исследованных тетрагональных и тригональных центров  $Gd^{3+}$ , возникающих во фторидах кальция, стронция, бария вследствие компенсации избыточного заряда ионом F<sup>-</sup> в ближайшем или следующем междоузлиях [22–25]. Структура этих центров была рассчитана описанным в разделе 3 методом, координаты ближайшего анионного окружения для двух типов центров Gd<sup>3+</sup> в сравнении со структурой бездефектного кристалла приведены в табл. 3. Характер релаксации окружения при реализации тетрагонального центра качественно согласуется с результатами работ [2,26].

**Таблица 3.** Расчетные координаты анионного окружения позиции  $M^{2+}$  в чистом кристалле и иона  $Gd^{3+}$ , заместившего  $M^{2+}$ , в присутствии междоузельного иона фтора

| Матариал                                | $M^{2+}$       | ${\rm Gd}^{3+} - {\rm F}^{-}$ |                |
|-----------------------------------------|----------------|-------------------------------|----------------|
| материал                                | $\theta$ , deg | R,Å                           | $\theta$ , deg |
| CaF <sub>2</sub>                        | 54.7 (4 иона)  | 2.45                          | 63.2           |
| $(R = 2.37 \text{ Å}, z \parallel C_4)$ | 125.3 (4 иона) | 2.35                          | 129.3          |
|                                         | Междоузлие     | 2.43                          | 0              |
| $SrF_2$                                 | 0              | 2.24                          | 0              |
| $(R = 2.50 \text{ Å}, z \parallel C_3)$ | 70.6 (3 иона)  | 2.42                          | 70.4           |
|                                         | 109.4 (3 иона) | 2.37                          | 108.8          |
|                                         | 180            | 2.37                          | 180            |
|                                         | Междоузлие     | 4.80                          | 0              |

**Таблица 4.** Экспериментальные и расчетные константы начального расщепления центров  $Cd^{3+}-F^-$  с суперпозиционными параметрами  $\bar{b}_{2p} = 13670 \text{ MHz}$ ,  $\bar{b}_{2s} = 5670 \text{ MHz}$ 

| Материал                                                                                                                                                 | $b_{20}$ (exp), MHz                                                 | $b_{20}$ (cal), MHz              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|
| $\begin{array}{c} \operatorname{CaF}_2(C_{4v})\\ \operatorname{SrF}_2(C_{4v})\\ \operatorname{SrF}_2(C_{3v})\\ \operatorname{BaF}_2(C_{3v}) \end{array}$ | -4452 (3) [22]<br>-3367 (25) [23]<br>-406 (2) [24]<br>-407 (3) [25] | $-4500 \\ -3200 \\ -280 \\ -470$ |

**Таблица 5.** Результаты расчета констант  $b_{20}$  (в MHz) ионов Gd<sup>3+</sup> в тетраэдрических кластерах с эмпирическими суперпозиционными параметрами  $\bar{b}_{2p} = 13\,670$  MHz,  $\bar{b}_{2s} = 5670$  MHz (значения  $b_{20}$  для структуры, полученной с параметрами парных потенциалов из [27], приведены в скобках)

| Кластер                                                                     | <ul> <li>b<sub>20</sub> (точечные заряды</li> <li>11 ионов фтора)</li> </ul> | b <sub>20</sub> (точечные<br>заряды и диполи<br>11 ионов<br>фтора) | <ul> <li><i>b</i><sub>20</sub> (точечные</li> <li>заряды и диполи</li> <li>11 ионов фтора</li> <li>и 12 катионов)</li> </ul> |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \mathrm{CdY}_{3}\mathrm{F}_{26} \\ (C_{3v}) \end{array}$  | 483                                                                          | -8342                                                              | -1525 (-1567)                                                                                                                |
| $\begin{array}{c} \mathrm{GdY_2CdF_{26}} \\ (C_s) \end{array}$              | 950                                                                          | -7450                                                              | -1704 (-1825)                                                                                                                |
| $\begin{array}{c} \mathrm{GdYCd}_{2}\mathrm{F}_{26} \\ (C_{s}) \end{array}$ | 1450                                                                         | -6393                                                              | -1740 (-1822)                                                                                                                |

Уравнения, полученные с помощью формул (1) при учете близкодействия и электростатического взаимодействия с поляризованными 11 ионами фтора, а также вкладов остовов и оболочек 12 катионов с полученными координатами, удалось решить (методом наименьших квадратов) при следующих значениях внутренних параметров:  $\bar{b}_{2p} = 13670 \text{ MHz}, \ \bar{b}_{2s} = 5670 \text{ MHz}.$  Качество описания этими параметрами экспериментов [22-25] отображено в табл. 4. Результаты расчетов с этими параметрами констант  $b_{20}$  тонкой структуры ионов Gd<sup>3+</sup>, локализованных в трех тетрамерных кластерах, приведены в табл. 5. Параметры, рассчитанные без учета влияния катионного окружения и дипольного взаимодействия, в табл. 5 приведены для сравнения и оценки величины вкладов. Следует отметить, что величина близкодействия находится в диапазоне 2000-2230 MHz.

В работе [27] при моделировании когерентных гетероструктур на основе  $CdF_2$  и  $CaF_2$  параметры близкодействующего отталкивания между оболочками ионов  $Cd^{2+}$ и  $F^ g_{ik}(r) = C_{ik} \exp(-D_{ik}r)$  и параметр взаимодействия остов-оболочка иона  $Cd^{2+}$  в отличие от подхода раздела 3 ( $C_{ij} = 268.940$ ,  $D_{ij} = 2.0342$ , k = 8.2402, в атомных единицах) находились из условия воспроизведения в первую очередь постоянной решетки  $CdF_2$ . В результате были получены следующие значения:  $C_{ij} = 254.516$ ,  $D_{ij} = 2.0574$ , k = 10.6329. Расчеты с этими параметрами привели к структурам тетраэдрических кластеров с отличающимися от полученных в разделе 3 как радиальными ( $\approx 0.03$  Å), так и угловыми координатами ( $\leq 2^{\circ}$ ) ионов ближайшего окружения. Константы  $b_{20}$ , вычисленные для ионов Gd<sup>3+</sup> в кластерах такой структуры, приведены в табл. 5 в скобках, вклад близкодействия в этом случае  $\approx 3000$  MHz. Видно, что заметные изменения параметров парных взаимодействий и, следовательно, координат лигандов не привели к существенным возмущениям величин  $b_{20}$ .

Наборы расчетных параметров  $b_{20}$  ионов Gd<sup>3+</sup> в трех типах кластеров, приведенные в табл. 2 и 5, демонстрируют небольшой диапазон абсолютных значений и постоянство знаков. В связи с этим параметрам  $b_{20}$  (табл. 1) слабоинтенсивных центров Gd<sup>3+</sup>, у которых вряд ли возможно прямое определение порядка энергетических уровней, нами был присвоен отрицательный знак.

Как видно (табл. 5), расчетные параметры  $b_{20}$ , абсолютные значения которых в несколько раз превышают данные табл. 1, не могут объяснить эксперимент. Тем не менее можно предполагать, что естественные погрешности используемых моделей в первую очередь приводят к сильному общему сдвигу вычисляемых параметров, оставляя постоянной тенденцию изменения по ряду кластеров. Тогда интенсивный моноклинный спектр  $Gd^{3+}$  с  $b_{20} = -345 \text{ MHz}$  следует отнести к кластеру [CdY2GdF26], заряд которого совпадает зарядом замещаемого фрагмента флюоритовой с структуры, а менее распространенный моноклинный центр — к [Cd<sub>2</sub>YGdF<sub>26</sub>]. Этот вывод в части концентрации кластеров противоречит результатам [17], полученным на других и сильнолегированных кристаллах  $Y_{0.1}Cd_{0.9}F_{2.1}$  и  $Gd_{0.1}Cd_{0.9}F_{2.1}$ , но согласуется с измерениями на  $Tb_x Cd_{1-x} F_{2+x}$  (x = 0.1) [16].

В работе [13] было показано, что существование в кристаллах  $Y_x Gd_y Cd_{1-x-y} F_{2+x+y}$  (x = 0.03,  $y \le 0.001$ ) кубического центра  $Gd^{3+}$ , характерного для слаболегированного  $CdF_2$ , можно объяснить только в предположении достаточно больших ассоциаций кластеров. В этом случае в первую очередь будут детектироваться ЭПР-спектры, принадлежащие ионам гадолиния в кластерах, имеющих в ближайшем окружении другие кластеры. При моделировании структуры тетраэдрических кластеров учет влияния сосседних кластеров весьма нетривиален, поскольку кроме решения вычислительных проблем требует построения модели ассоциации. В настоящей работе эти задачи не решались, и, по-видимому, именно это является главной причиной плохого согласия результатов раздела 4 и эксперимента.

5. Автор [10], обсуждая использование суперпозиционного приближения для объяснения начального расщепления основного состояния парамагнитного иона, локально компенсированного дефектом в катионной сфере окружения, предложил вводить два типа внутренних параметров: для первой и второй сферы. Это было сделано для расширения возможностей модели [5], в которой не разделяются вклады электростатики и близкодействия, в связи с чем радиальный диапазон аппроксимации парных взаимодействий крайне мал. Тем не менее мы и в рамках модели [6], разделяющей вклады, попробовали ввести дополнительный внутренний параметр  $\bar{b}_{2n,c}$ , отвечающий за взаимодействие с катионами,

$$b_{20} = \sum_{a} K_{20}(\theta_{a}) Z_{a} \bar{b}_{2p,a}(R_{0})(R_{0}/R_{a})^{3} + \sum_{a} K_{20}(\theta_{a}) \bar{b}_{2s}(R_{0})(R_{0}/R_{a})^{10} + \sum_{c} K_{20}(\theta_{c}) Z_{c} \bar{b}_{2p,c}(R_{0})(R_{0}/R_{c})^{3}.$$
(3)

В первом и последнем слагаемых приведенного выражения суммирование ведется по остовам и оболочкам ионов фтора и катионов соответственно.

Система четырех уравнений, построенных на основе формулы (3) и включающих, как и в разделе 4, аксиальные константы тетрагональных и тригональных фторовых центров, хорошо удовлетворяется, параметры имеют следующие значения:  $\bar{b}_{2p,a} = 11\,188, \ \bar{b}_{2s} = 4776,$  $\bar{b}_{2p,c} = 5812 \text{ MHz}$ . Однако указанные центры, не имея в окружении катионных дефектов, не могут быть качественными объектами для оценки величины  $b_{2nc}$ . Для более эффективного учета в процедуре определения внутренних параметров влияния заряженных катионных дефектов упомянутая система уравнений была расширена за счет использования экспериментальных данных [28-30]. В этих работах исследованы центры Gd<sup>3+</sup> в CaF<sub>2</sub>, ассоциированные с ионами Na<sup>+</sup>  $(b_{20} = 28.4 \text{ MHz})$  и  $\overline{\text{K}^+}$   $(b_{20} = 699 \text{ MHz})$ , расположенными в позиции ближайшего иона  $Ca^{2+}$  на оси  $C_2$ .

Структура ромбических центров (Gd<sup>3+</sup>-щелочной ион) моделировалась методом, описанныым в разделе 3. Координаты некоторых окружающих парамагнитный дефект лигандов в сравнении с результатами [30], полученными при учете 44 релаксирующих ионов, приводятся в табл. 6. В этих расчетах для окрестностей центра Gd<sup>3+</sup>-K<sup>+</sup> характеры сдвигов ионов очень близки, хотя в среднем величина сдвигов, полученных в [30], больше. В случае центра Gd<sup>3+</sup> – Na<sup>+</sup> небольшие сдвиги иона Na<sup>+</sup> в двух подходах различаются знаком, имеются различия и в направлениях движения ионов F<sup>-</sup>, ближайших к оси гадолиний-натрий. Система шести уравнений удовлетворяется параметрами  $\bar{b}_{2p,a} = 11604$ ,  $\bar{b}_{2s} = 4925$ ,  $\bar{b}_{2p,c} = 7110 \text{ MHz}$ , хуже всего этими параметрами описывается аномально малое начальное расщепление центра  $Gd^{3+}$  – Na<sup>+</sup> ( $b_{20}$  (cal) = 144 MHz). Константы тонкой структуры ионов Gd<sup>3+</sup>, локализованных в трех типах тетраэдрических кластеров, предсказываемые двумя триадами внутренних параметров, приведены в табл. 7.

Последний вариант заметно хуже, чем результаты табл. 5, согласуется с нашими экспериментальными

**Таблица 6.** Расчетные сферические координаты некоторых лигандов в дипольных центрах  $CaF_2$  (ион  $Gd^{3+}$  в позиции  $Ca^{2+}$  при наличии иона  $M^+$  в положении ближайшего  $Ca^{2+}$  на оси  $C_2$ ; ось *z* направлена от  $Gd^{3+}$  к  $M^+$ ; координаты аналогичных позиций окружения иона  $Ca^{2+}$  в чистом  $CaF_2$  следующие:  $R(Ca^{2+}) = 3.86$  Å,  $R(F^-) = 2.37$  Å,  $\theta(F^-) = 35.26^\circ$ )

| Центр           | Пиганл                                                       | [30]                 |                   | Наст. раб.           |                   |
|-----------------|--------------------------------------------------------------|----------------------|-------------------|----------------------|-------------------|
| цетр            | 2 IIII ulig                                                  | R,Å                  | $\theta$ , deg    | R,Å                  | $\theta$ , deg    |
| $Cd^{3+} - K^+$ | ${K^+ \atop {Ca^{2+}}}$ 2 иона ${ m F}^-$                    | 3.97<br>3.99<br>2.26 | 0<br>180<br>38.91 | 3.91<br>3.89<br>2.29 | 0<br>180<br>38.97 |
| $Cd^{3+}-Na^+$  | Na <sup>+</sup><br>Ca <sup>2+</sup><br>2 иона F <sup>-</sup> | 3.90<br>4.02<br>2.25 | 0<br>180<br>36.78 | 3.83<br>3.97<br>2.30 | 0<br>180<br>33.97 |

**Таблица 7.** Расчетные значения констант  $b_{20}$  (в MHz) ионов Gd<sup>3+</sup> в тетраэдрических кластерах для двух наборов суперпозиционных параметров

| Кластер                                                                                           | $ar{b}_{2p,a} = 11\ 188, \ ar{b}_{2s} = 4776, \ ar{b}_{2p,c} = 5812\ \mathrm{MHz}$ | $ar{b}_{2p,a} = 11604 \ ar{b}_{2s} = 4925, \ ar{b}_{2p,c} = 7110\mathrm{MHz}$ |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| $GdY_{3}F_{26}(C_{3v})$<br>$GdY_{2}CdF_{26}(C_{s})$<br>$GdYCd_{2}F_{26}(C_{s})$<br>Близкодействие | $-3881 \\ -3602 \\ -3200 \\ +1800$                                                 | -3495<br>-3292<br>-2962<br>+1800                                              |  |  |

данными (табл. 1) как значениями b<sub>20</sub>, так и тенденцией их изменений в ряду кластеров. Это можно было бы объяснить вероятными ошибками в параметрах ромбических центров [28,29], поскольку в этих работах непонятен способ определения абсолютных знаков b<sub>nm</sub>. Однако существование набора внутренних параметров и соответствующих им констант b<sub>20</sub>, достаточно близких к этому варианту (табл. 7), но полученных без учета характеристик ромбических центров, склоняет нас к иному выводу. Естественно, в уравнениях для внутренних параметров кроме экспериментальных ошибок имеются погрешности, обусловленные приближенностью используемых моделей. Скорее всего, увеличение числа неизвестных (за счет сомнительно необходимого  $\bar{b}_{2nc}$ ) ведет к неоправданной свободе и, следовательно (вместо небольшой корректировки), к сильному изменению искомых параметров.

**6.** В заключение работы сформулируем основные выводы.

В оболочечной модели и приближении парных ионных взаимодействий в результате минимизации энергии кристалла с дефектным кластером рассчитаны структуры тетрагональных и тригональных центров ( $Gd^{3+}-F^{-}$ ) во фторидах кальция, стронция и бария, ромбических центров ( $Gd^{3+}-M^{+}$ ) в CaF<sub>2</sub>, а также тетраэдрических

кластеров  $[Y_3GdF_{26}]^{1+}$ ,  $[CdY_2GdF_{26}]^0$ ,  $[Cd_2YGdF_{26}]^{1-}$  во фториде кадмия. Эмпирические параметры суперпозиционной модели, найденные на основе экспериментальных данных для тетрагональных, тригональных и ромбических центров, использованы для расчета величин начального расщепления иона Gd<sup>3+</sup> в трех типах тетраэдрических кластеров.

В результате сравнения поведения рассчитанных и экспериментальных величин  $b_{20}$  центров, наблюдаемых в  $Y_x Gd_y Cd_{1-x-y} F_{2+x+y}$  ( $x = 0.03, y \le 0.001$ ), сделан вывод, что тригональный спектр Gd<sup>3+</sup> принадлежит кластеру [Y<sub>3</sub>GdF<sub>26</sub>], интенсивный моноклинный — [CdY<sub>2</sub>GdF<sub>26</sub>], а слабый моноклинный — [Cd<sub>2</sub>YGdF<sub>26</sub>].

Предполагается, что основной причиной весьма приблизительного описания абсолютных значений  $b_{20}$  наблюдаемых центров используемым подходом является неучтенное влияние кластеров, ассоциированных с рассчитываемым.

Получены аргументы в пользу отсутствия необходимости в случае аппроксимации суперпозиционного приближения, предложенной в [6], введения отдельного параметра модели для катионов.

Авторы выражают искреннюю благодарность А.Д. Горлову и А.Е. Никифорову за полезные дискуссии, а А.В. Фокину за помощь в обработке результатов.

## Список литературы

- [1] B.G. Wybourne. Phys. Rev. 148, 317 (1966).
- [2] Э.Х. Ивойлова, А.А. Корниенко, А.М. Леушин. ФТТ 20, 1403 (1978).
- [3] М.В. Ерёмин. В сб.: Спектроскопия кристаллов. Наука, Л. (1989). С. 30.
- [4] M.V. Eremin, I.I. Antonova. J. Phys.: Cond. Matter 10, 5567 (1998).
- [5] D.J. Newman, W. Urban. Adv. Phys. 24, 793 (1975).
- [6] L.I. Levin. Phys. Stat. Sol. (b) **134**, 275 (1986).
- [7] Л.И. Левин, В.И. Черепанов. ФТТ 25, 700 (1983).
- [8] L.I. Levin, A.D. Gorlov. J. Phys.: Cond. Matter 4, 1981 (1992).
- [9] Czeslaw Rudovicz. Phys. Rev. B 37, 27 (1988).
- [10] Czeslaw Rudovicz. Solid State Commun. 65, 631 (1988).
- [11] И.М. Низамутдинов, Н.М. Хасанова, Г.Р. Булка, В.М. Винокуров, И.С. Рез, В.М. Гармаш, Н.И. Павлова. Кристаллография **32**, 695 (1987).
- [12] И.М. Низамутдинов, Н.М. Хасанова, А.А. Галеев, Г.Р. Булка, В.М. Винокуров, В.А. Аккерман, Г.А. Ермаков. Кристаллография 34, 893 (1989).
- [13] В.А. Важенин, А.П. Потапов, А.Д. Горлов, А.Е. Никифоров, С.А. Казанский, А.И. Рыскин. ФТТ 47, 1398 (2005).
- [14] В.А. Важенин, А.П. Потапов, А.Д. Горлов, В.А. Чернышев, С.А. Казанский, А.И. Рыскин. ФТТ 48, 644 (2006).
- [15] М.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). С. 121.
- [16] Е.А. Рыжова, В.Н. Молчанов, А.А. Артюхов, В.И. Симонов, Б.П. Соболев. Кристаллография 49, 1 (2004).
- [17] Е.А. Сульянова, А.П. Щербаков, В.Н. Молчанов, В.И. Симонов, Б.П. Соболев. Кристаллография 50, 235 (2005).

- [18] V.A. Chernychev, A.D. Gorlov, A.A. Mekhonoshin, A.E. Nikiforov, A.I. Rokeakh, S.Yu. Shashkin, A.Yu. Zaharov. Appl. Magn. Res. 14, 37 (1998).
- [19] А.Е. Никифоров, А.Ю. Захаров, М.Ю. Угрюмов, С.А. Казанский, А.И. Рыскин, Г.С. Шакуров. ФТТ 47, 1381 (2005).
- [20] S.A. Kazanskii, A.I. Ryskin, A.E. Nikiforov, A.Yu. Zaharov, M.Yu. Ougrumov, G.S. Shakurov. Phys. Rev. B 72, 014127 (2005).
- [21] А.Е. Никифоров, С.Ю. Шашкин. В сб.: Спектроскопия кристаллов. Наука, Л. (1989). С. 44.
- [22] K. Zdansky, A. Edgar. Phys. Rev. 3, 2133 (1971).
- [23] J. Sierro. Helv. Phys. Acta 36, 505 (1963).
- [24] A. Edgar, D.J. Newman. J. Phys. C: Solid State Phys. 8, 4023 (1975).
- [25] L.A. Boatner, R.W. Reynolds, M.M. Abraham. J. Chem. Phys. 52, 1248 (1970).
- [26] И.Б. Айзенберг, М.П. Давыдов, Б.З. Малкин, А.И. Смирнов, А.Л. Столов. ФТТ 15, 1345 (1973).
- [27] В.А. Чернышев, А.В. Абросимов, В.П. Володин. В сб.: Проблемы спектроскопии и спектрометрии. УГТУ-УПИ, Екатеринбург (2006). В. 21. С. 33.
- [28] E.J. Bijvank, H.W. den Hartog, J. Andriessen. Phys. Rev. B 16, 1008 (1977).
- [29] A.N. Lefferts, E.J. Bijvank, H.W. den Hartog. Phys. Rev. B 17, 4214 (1978).
- [30] E.J. Bijvank, H.W. den Hartog. Phys. Rev. B 22, 4133 (1980).