Люминесценция CdMgTe с ультратонкими нанослоями CdMnTe

© В.Ф. Агекян, И.А. Пономарева, А.Ю. Серов, Н.Г. Философов, G. Karczewski*

Научно-исследовательский институт физики им. В.А. Фока Санкт-Петербургского государственного университета, 198504 Санкт-Петербург, Петергоф, Россия

* Institute of Physics, Polish Academy of Sciences,

02-668 Warsaw, Poland

E-mail: avf@VA4678.spb.edu

(Поступила в Редакцию 18 июня 2007 г.)

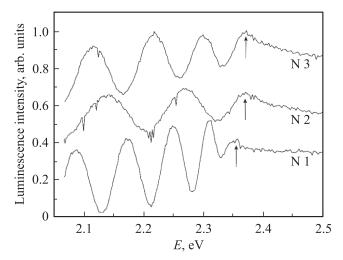
В люминесценции сверхрешеток $Cd_{0.75}Mn_{0.25}Te/Cd_{1-y}Mg_y$ Те с узкозонными нанослоями $Cd_{0.75}Mn_{0.25}$ Те, имеющими номинальную толщину 0.5, 1.5 и 3.0 монослоя, наблюдаются полосы экситонного излучения барьеров $Cd_{1-y}Mg_y$ Те и нанослоев, а также внутрицентровая люминесценция ионов Mn^{2+} . Во всех образцах излучение нанослоев $Cd_{0.75}Mn_{0.25}$ Те состоит из двух полос, которые на основании зависимости люминесценции от толщины нанослоя и температуры отнесены к экситонам, локализованным на двумерных и нульмерных потенциалах. Во внутрицентровом излучении Mn^{2+} $Cd_{0.75}Mn_{0.25}$ Те толщиной 3.0 монослоя заметно проявляется миграция возбуждения.

Работа выполнена при поддержке Министерства науки и образования Российской Федерации (грант РНП 2.1.1.362 по развитию научного потенциала высшей школы).

PACS: 71.35.-y, 71.70.Ch, 78.55.Et, 78.67.De

1. Введение

К настоящему времени выполнено много работ по спектрам излучения объемных широкозонных кристаллов группы II-VI с планарными включениями узкозонной изоэлектронной компоненты с номинальными толщинами от десятых долей монослоя (МС) до нескольких МС. В частности, подробно исследованы системы CdTe/ZnTe [1], CdSe/ZnSe [2,3], ZnS/ZnTe [4] (см. также ссылки [5-30] в статье [2]). Изучалась локализация экситонов не только на отдельных слоях узкозонной компоненты, но и на последовательностях близкорасположенных слоев. Малая толщина узкозонных включений, как правило, обеспечивает хорошее качество структур даже при существенном различии параметров решетки базовых бинарных соединений. Вводя в матрицу узкозонные слои и изменяя их толщины, можно проследить переход от локализации на малых кластерах, на островковых включениях с различными латеральными размерами и на сплошных нанослоях минимальной толщины к квазидвумерной локализации в узких квантовых ямах и в квантовых точках, имеющих уровни размерного квантования.


В нашей работе исследуется излучение матрицы $\mathrm{Cd}_{1-y}\mathrm{Mg}_y\mathrm{Te}$, содержащей слои $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$. Присутствие в слоях ионов марганца с максимально возможным магнитным моментом недостроенной 3d-оболочки делает эту систему интересной для изучения магнитной анизотропии при приложении внешнего поля вдоль слоев $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{Te}$ и перпендикулярно им.

2. Образцы для исследований

Сверхрешетки $Cd_{0.75}Mn_{0.25}Te/Cd_{1-y}Mg_y$ Те изготовлены методом МПЭ без прерывания роста после нанесения узкозонного слоя. На подложке (100) GaAs

последовательно выращивались буферные CdTe $(4\mu m)$ и $Cd_{1-\nu}Mg_{\nu}$ Te $(1.4\mu m)$, сверхрешетка $Cd_{0.75}Mn_{0.25}Te/Cd_{1-v}Mg_{v}Te$ И защитный $Cd_{1-y}Mg_y$ Te (50 nm). Сверхрешетки образцов № 1,2 и 3 содержат слои $Cd_{0.75}Mn_{0.25}Te$ номинальной толщиной 0.5, 1.5 и 3.0 МС соответственно, разделенные барьерами $Cd_{1-\nu}Mg_{\nu}$ Те толщиной 50 MC. Число периодов в сверхрешетках равно 60 (№ 1), 40 (№ 2) и 20 (№ 3). Величина у несколько изменяется от образца к образцу (в пределах 0.42 < y < 0.46), ее точное значение устанавливается по положению экситонного пика в спектрах отражения и спектрах возбуждения люминесценции барьеров (матрицы). Ожидается, что тонкие слои Cd_{0.75}Mn_{0.25}Te напряжены однородно и псевдоморфны.

Матрица $Cd_{1-y}Mg_y$ Те является твердым раствором, в котором различие ионных радиусов катионов является значительным (0.082 nm для Mg^{2+} и 0.114 nm для Cd^{2+}), однако постоянные решетки CdTe и MgTe отличаются друг от друга менее чем на 1% (для СdТе и МnТе — 2%). Тем не менее объемные кристаллы $Cd_{1-\nu}Mg_{\nu}$ Те и $Cd_{1-x-y}Mn_xMg_y$ Те, выращенные по методу Бриджмена, содержат структурные дефекты. Причиной их образования может быть переход сфалерит-вюртцит, который происходит в этих твердых растворах при определенном соотношении концентраций катионных компонент. Методом дифракции рентгеновских лучей было установлено, что в кристаллах $Cd_{1-\nu}Mg_{\nu}$ Те и $Cd_{1-x-\nu}Mn_{x}Mg_{\nu}$ Те есть тенденция к упорядоченному размещению катионных атомов и к микродвойникованию [5]. Вследствие невысокого качества объемных кристаллов квантовый выход экситонной люминесценции в них низок [6]. Методом МПЭ выращиваются гораздо более совершенные кристаллические слои этих твердых растворов, и в образцах № 1-3 при низких температурах наблюдается яркая люминесценция широкозонной матрицы $Cd_{1-\nu}Mg_{\nu}Te$. Высокому квантовому выходу люминес-

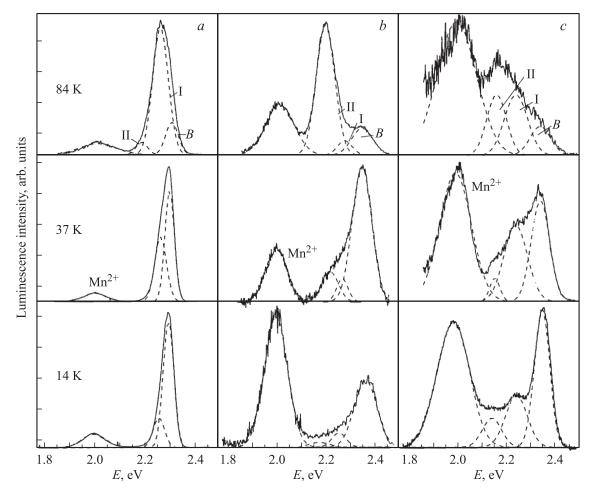
Рис. 1. Спектры отражения $Cd_{0.75}Mn_{0.25}Te/Cd_{1-y}Mg_yTe$ (образцы № 1, 2 и 3) при T=84 К. Стрелками указан экситонный максимум $Cd_{1-y}Mg_yTe$.

цении способствуют сильные флуктуации случайного потенциала в $Cd_{1-y}Mg_y$ Те, эффективно локализующие носители и экситоны даже при сравнительно высоких температурах. Большая величина флуктуаций может быть обусловлена значительным различием электронных поляризуемостей ионов Cd^{2+} и Mg^{2+} ($10.9 \cdot 10^{-4}$ и $0.94 \cdot 10^{-4}$ nm³ соответственно [7]).

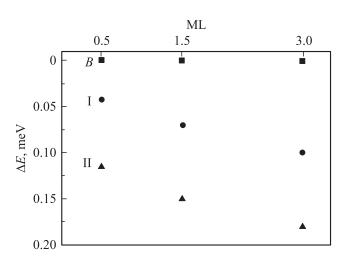
В спектре отражения образцов наблюдается интерференция, параметры которой определяются в основном толщиной широкозонных компонент структур—буферных слоев и матрицы $Cd_{1-y}Mg_y$ Te, однако определенную роль играет и толщина встроенных в матрицу узкозонных слоев. Интерференционная картина с высокоэнергетической стороны ограничена краем экситонного поглощения $Cd_{1-y}Mg_y$ Te (рис. 1).

3. Люминесцения локализованных экситонов

В спектрах люминесценции образцов № 1–3 при надбарьерном возбуждении аргоновым лазером с плотностью мощности $0.1~\rm W/cm^2$ присутствуют полосы экситонов, локализованных в барьере $\rm Cd_{1-y}Mg_yTe~(\it B)$ и на включениях $\rm Cd_{0.75}Mn_{0.25}Te~(I, II)$, а также полоса $\rm 3\it d$ -излучения $\rm Mn^{2+}$. При нагревании от $\rm 14~\rm K$ люминесценция всех образцов ослабляется, и сильно изменяется относительная интенсивность полос излучения.


Образец № 1 (рис. 2,a). Интегральная интенсивность люминесценции при $80\,\mathrm{K}$ на порядок больше, чем в образцах № 2 и 3. При низких температурах эффективность переноса возбуждения на нанослои $\mathrm{Cd}_{0.75}\mathrm{Mn}_{0.25}\mathrm{Te}$ мала, и излучательная рекомбинация идет в основном через экситоны локализованные в матрице $\mathrm{Cd}_{1-y}\mathrm{Mg}_y\mathrm{Te}$. Люминесценцию слоев $\mathrm{Cd}_{0.75}\mathrm{Mn}_{0.25}\mathrm{Te}$ при $14\,\mathrm{K}$ выделить трудно вследствие ее сравнительно малой интенсивности и близости по энергии к яркому излучению

 $Cd_{1-y}Mg_y$ Те. При T>80 К люминесценция барьеров относительно ослабляется и доминирует экситонное излучение полосы I $Cd_{0.75}Mn_{0.25}$ Те.


Образец № 2 (рис. 2, *b*). В температурном интервале $10-40\,\mathrm{K}$ полосы излучения $\mathrm{Cd}_{1-y}\mathrm{Mg}_y\mathrm{Te}$ (*B*) и $\mathrm{Cd}_{0.75}\mathrm{Mn}_{0.25}\mathrm{Te}$ (I) близки по интенсивности, выше $40\,\mathrm{K}$ резко усиливается полоса II, при $T=84\,\mathrm{K}$ она на порядок интенсивнее излучения $\mathrm{Cd}_{1-y}\mathrm{Mg}_y\mathrm{Te}$.

Образец № 3 (рис. 2, c). Несмотря на значительную номинальную толщину $Cd_{0.75}Mn_{0.25}$ Те, при низких температурах также преобладает излучение матрицы $Cd_{1-y}Mg_y$ Те. При $T=84\,\mathrm{K}$ полосы I и II близки по интенсивности и значительно сильнее излучения $Cd_{1-y}Mg_y$ Те.

На рис. 3 представлены энергии локализации экситонов $E_{\rm I}$ и $E_{\rm II}$ на узкозонной компоненте ${\rm Cd}_{0.75}{\rm Mn}_{0.25}{\rm Te}$, отсчитанные от полосы В излучения экситона барьера и соответствующие максимумам полос I и II. Замещение магния марганцем является "мягким" в том смысле, что в твердых растворах $Cd_{1-y-x}Mn_xMg_y$ Те ширина запрещенной зоны почти одинаково зависит от х и у: $E_g(x, y) = E_g(GdTe) + 1.55x + 1.80y$ при T = 77 К [6]. Таким образом, влияние элементарного состава на величину локализующего потенциала определяется в основном разностью значений х в нанослоях и у матрице. Энергии локализации $E_{\rm I}$ и $E_{\rm II}$ возрастают с увеличением номинальной толщины $Cd_{0.75}Mn_{0.25}Te$. Ширины гауссовских контуров полос I и II на половине их высоты составляет около 0.1 eV; они определяются как обычным неоднородным уширением, свойственным твердому раствору, так и флуктуациями толщины Сd_{0.75}Mn_{0.25}Te. Экситонный радиус в $Cd_{1-\nu}Mg_{\nu}$ Те составляет несколько нанометров, так что экситон взаимодействует с негладким интерфейсом. С ростом температуры ослабляется локализация экситонов в барьере $Cd_{1-\nu}Mg_{\nu}Te$ и относительно усиливается излучение экситонов, локализованных на Cd_{0.75}Mn_{0.25}Te. Несмотря на большое различие номинальных толщин Cd_{0.75}Mn_{0.25}Te, в спектрах всех образцов присутствуют две полосы I и II, что отражает реальную структуру узкозонных нанослоев (два типа локализующих потенциалов). Вид спектра зависит не только от количества потенциальных ям того или иного типа, но и от подвижности локализованных экситонов (или носителей) в плоскости нанослоя Cd_{0.75}Mn_{0.25}Te (отметим, что в образце № 1 включения Cd_{0.75}Mn_{0.25}Te являются островковыми). При низких температурах между экситонами, соответствующими полосам B, I и II, не устанавливается термодинамического равновесия, но по мере нагревания образцов полоса II относительно усиливается. Энергии $E_{\rm I}$ и $E_{\rm II}$ настолько сильно отличаются друг от друга (рис. 3), что их нельзя отнести, например, для образца № 3 к экситонам, локализованным на участках Cd_{0.75}Mn_{0.25}Te толщиной в 2 и 3 (или 3 и 4) МС. Поэтому следует принять, что Cd_{0.75}Mn_{0.25}Te в образцах № 2 и 3 является двумерным слоем, содержащим значительные утолщения с малыми латеральными размерами типа квантовых точек. Вследствие малой концентрации этих утолщений и ограниченной подвижности

Рис. 2. Люминесценция $Cd_{0.75}Mn_{0.25}Te/Cd_{1-y}Mg_y$ Те (образцы № 1 (a), 2 (b) и 3 (c)) при различных температурах. B — излучение матрицы $Cd_{0.75}Mn_{0.25}Te$, I и II — излучение слоев $Cd_{1-y}Mg_y$ Те, Mn^{2+} — внутрицентровое излучение марганца. Спектры нормированы по максимальной интенсивности.

Рис. 3. Энергии локализации E_1 и $E_{\rm II}$ экситонов в образцах ${\rm Cd_{0.75}Mn_{0.25}Te/Cd_{1-y}Mg_yTe}$ с номинальными толщинами ${\rm Cd_{0.75}Mn_{0.25}Te}$ 0.5 (№ 1), 1.5 (№ 2) и 3.0 (№ 3) МС, отсчитанные от максимума B экситонной люминесценции ${\rm Cd_{1-y}Mg_yTe}$. $T=84\,{\rm K}$.

экситонов, локализованных двумерным слоем, возбуждение не успевает за время жизни релаксировать из состояний I в состояния II. При высокой температуре в люминесценции образцов № 2 и 3 хорошо проявляются состояния II благодаря большей энергии локализации электронного возбуждения и температурной устойчивости излучательной рекомбинации нульмерных систем. В образце № 1 слои $Cd_{0.75}Mn_{0.25}$ Те настолько тонки, что состояния типа II проявляются слабо при всех температурах.

4. Внутрицентровая люминесценция ионов Mn²⁺

В спектрах всех образцов наблюдается полоса люминесценции 3d-оболочки ионов $\mathrm{Mn^{2+}}$ (переход $^1T_4-^6A_1$) с максимумом около $2.0\,\mathrm{eV}$. Из строения образцов $\mathrm{No}\ 2$ и 3 следует, что число ионов $\mathrm{Mn^{2+}}$ в них одинаково, однако 3d-люминесценция в образце $\mathrm{No}\ 2$ намного интенсивнее. Ослабление 3d-люминесценции в образце $\mathrm{No}\ 3$ можно объяснить тем, что при увеличении толщины слоя

 $Cd_{0.75}Mn_{0.25}Te$ усиливается миграция 3d-возбуждения по ионам марганца и возбуждение достигает тушащих центров. Максимум 3d-люминесценции в образце N_{2} 3 смещен в сторону низких энергий по сравнению с образцами № 1 и 2. Это согласуется с направлением сдвига полосы 3*d*-люминесценции, наблюдавшимся в объемных кристаллах $Cd_{1-x-y}Mn_xMg_y$ Те при изменении отношения x/y (влияние величины кристаллического поля на энергию излучающего уровня 4T_1) [8]. Однако основной причиной смещения максимума является миграции возбуждения по ионам марганца, которая сопровождается понижением энергии уровня ${}^{4}T_{1}$ в пределах его неоднородного уширения. В образце № 1 число ионов марганца вдвое меньше; кроме того, слабый захват экситонов включениями $Cd_{0.75}Mn_{0.25}$ Те препятствует передаче возбуждения от зонных состояний в пространственно сильно ограниченную 3*d*-оболочку марганца.

Таким образом, В люминесценции $Cd_{1-\nu}Mg_{\nu}Te$, содержащих узкозонные нанослои $Cd_{0.75}Mn_{0.25}Te$ с номинальными тощинами 0.5, 1.5 и 3.0 МС, присутствуют две полосы экситонов, локализованных на этих слоях, что соответствует их реальному строению. Соотношение интенсивностей излучения матрицы Cd_{1-v}Mg_vTe и узкозонных нанослоев резко зависит от температуры выше 40 К вследствие делокализации экситонов в $Cd_{1-\nu}Mg_{\nu}$ Те. Свойства 3*d*-люминесценции свидетельствуют о существенной миграции внутрицентрового возбуждения ионов Mn²⁺ в слое $Cd_{0.75}Mn_{0.25}$ Те толщиной 3 MC.

Список литературы

- [1] V.S. Bagaev, V.V. Zaytsev, V.V. Kalinin, S.R. Oktyabrskii, A.F. Plotnikov. Solid State Commun. 88, 777 (1993).
- [2] A. Klochikhin, A. Reznitsky, B. Dal Don, H. Priller, H. Kalt, C. Klingshirn, S. Permogorov, S. Ivanov. Phys. Rev. B 69, 085 308 (2004).
- [3] A.M. Kapitonov, U. Woggon, D. Kayser, D. Hommel, T. Iroh. J. Lumin. 112, 177 (2005).
- [4] J.S. Kim, H.M. Kim, H.L. Park, J.C. Choi. Solid State Commun. 137, 15 (2006).
- [5] А.А. Вайполин. ФТТ 35, 789 (1993).
- [6] V.F. Aguekian, L.K. Gridneva, A.Yu. Serov. Solid State Commun. 87, 635 (1993).
- [7] Sang Ho Sohn, Y. Hamakawa. J. Phys. Soc. Jap. 61, 2129 (1992).
- [8] В.Ф. Агекян, Н.Н. Васлиьев. А.Ю. Серов, Н.Г. Философов. ФТТ 42, 816 (2000).