Электрон-фононное взаимодействие в состоянии квантовой ямы системы 1 ML Na/Cu (111)

© С.В. Еремеев*, Г.Г. Русина*, С.Д. Борисова*, Е.В. Чулков**,***

^{*} Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, 634021 Томск, Россия
^{**} Donostia International Physics Center (DIPC), 20018 San Sebastián / Donostia, Spain
^{***} Depto. de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 20018 San Sebastián / Donostia, Spain

E-mail: eremeev@ispms.tsc.ru

(Поступила в Редакцию 22 марта 2007 г.)

Представлены результаты теоретического исследования электрон-фононного взаимодействия в состоянии квантовой ямы, образованном монослойным покрытием Na на Cu (111). Расчеты показали, что константа электрон-фононной связи λ в этом состоянии уменьшается незначительно ($\approx 1\%$) в сравнении со значением λ для чистой поверхности меди. Соответствующий электрон-фононный вклад во время жизни состояния квантовой ямы τ увеличивается в 1.5 раза по отношению к τ на чистой поверхности Cu (111).

Работа выполнена при поддержке Сибирского отделения РАН (интеграционный проект № 216).

PACS: 73.21.Fg, 63.20.Kr, 72.15.Lh

1. Введение

Адсорбция атомов щелочных металлов на металлических поверхностях вызывает кардинальное изменение их свойств. В частности, она приводит к формированию на поверхности сложных кристаллических структур [1], обладающих совершенно новыми свойствами, к возникновению электронных состояний индуцированных адсорбатом [2–6], а также к появлению новых вибрационных состояний, связанных с адатомами [7–11]. Образование адсорбционных структур на металлических поверхностях также влияет на электрон-электронное и электронфононное рассеяние возбужденных электронных и дырочных состояний, что часто приводит к изменению механизмов затухания возбужденных электронов и дырок [12].

Динамика возбужденных электронов и дырок в состояниях квантовых ям в ультратонких пленках на металлических поверхностях в последнее время является предметом интенсивных экспериментальных исследований [13-16]. В ряде теоретических работ была предпринята попытка оценить многочастичные электронэлектронные и электрон-фононные вклады в рассеяние дырок в состояниях квантовой ямы для адсорбированного монослоя натрия на поверхности Cu (111) [16,17]. Однако электрон-фононное взаимодействие рассматривалось с использованием простых моделей фононного спектра: модели Эйнштейна [17] или модели Дебая [16]. В настоящей работе мы рассмотрели влияние адсорбата на затухание состояния квантовой ямы с использованием полного фононного спектра, рассчитанного с учетом многочастичных потенциалов межатомного взаимодействия.

2. Метод расчета

Для описания электрон-фононного взаимодействия в поверхностных структурах мы используем следующий подход: определяем невозмущенную электронную систему как решения одночастичного уравнения Шредингера

$$-\frac{1}{2}\frac{d^2}{dz^2}\varphi_{\mu}(z) + V(z)\varphi_{\mu}(z) = \varepsilon^{0}_{\mu}\varphi_{\mu}(z)$$
(1)

с модельным потенциалом V(z). Этот модельный потенциал является постоянным в плоскости параллельной поверхности и воспроизводит экспериментально наблюдаемую ширину щели и ее положение в центре поверхностной зоны Бриллюэна (ЗБ). Он также воспроизводит экспериментальные значения энергий состояния квантовой ямы и первого состояния изображения для изучаемой системы. В случае адсорбции натрия на меди часть параметров модельного потенциала берутся такими же, как для потенциала подогнанного для чистой поверхности Сu(111) [18], остальные параметры подгоняются [16] под энергию состояния Е₀ и энергию первого состояния изображения Е1, полученные из измерений методом сканирующей туннельной микроскопии [15] и двухфотонной фотоэмиссии [4] для системы $Na(3/2 \times 3/2)/Cu(111)$ [19].

Электрон-фононный вклад Γ_{e-p} во времена жизни электронных состояний может быть выражен через спектральную функцию Элиашберга $\alpha^2 F(\omega)$ [20]. Для электронного состояния с волновым вектором \mathbf{k}_i и энергией $\varepsilon_{\mathbf{k},n_i}$ параметры электрон-фононного взаимодействия λ и

Ге-р определяются выражениями

$$\begin{split} \Gamma_{\mathrm{e}-\mathrm{p}}(\varepsilon_{\mathbf{k}_{i},n_{i}}) &= 2\pi \int_{0}^{\omega_{\mathrm{max}}} \left\{ \alpha^{2} F^{E}_{\mathbf{k}_{i},n_{i}}(\omega) \left[1+n(\omega) \right. \\ &\left. - f\left(\varepsilon_{\mathbf{k}_{i},n_{i}}-\omega\right) \right] + \alpha^{2} F^{A}_{\mathbf{k}_{i},n_{i}}(\omega) \left[n(\omega) + f\left(\varepsilon_{\mathbf{k}_{i},n_{i}}+\omega\right) \right] \right\} d\omega, \end{split}$$
(2)
$$\lambda(\varepsilon_{\mathbf{k}_{i},n_{i}}) &= \int_{0}^{\omega_{\mathrm{max}}} \frac{\alpha^{2} F^{E}_{\mathbf{k}_{i},n_{i}}(\omega) + \alpha^{2} F^{A}_{\mathbf{k}_{i},n_{i}}(\omega)}{\omega} d\omega,$$
(3)

где $n(\omega)$ и $f(\omega)$ — функции распределения Бозе и Ферми соответственно, $\alpha^2 F^E_{\mathbf{k}_i,n_i}(\omega)$ и $\alpha^2 F^A_{\mathbf{k}_i,n_i}(\omega)$ функции Элиашберга для процессов эмиссии и абсорбции фононов. Функция Элиашберга для электронного (дырочного) состояния с энергией $\varepsilon_{\mathbf{k}_i}$ в приближении квазиупругого рассеяния, когда $\delta(\varepsilon_{\mathbf{k}_in_i} - \varepsilon_{\mathbf{k}_fn_f} \pm \omega_{\mathbf{q}\nu}) \approx$ $\approx \delta(\varepsilon_{\mathbf{k}_in_i} - \varepsilon_{\mathbf{k}_fn_f})$, может быть записана в виде

$$\alpha^2 F_{\mathbf{k}_i}(\omega) = \frac{1}{(2\pi)^2} \int d\mathbf{q} \sum_{\nu,n} |g_n^{\nu}(\mathbf{q})|^2 \delta(\varepsilon_{\mathbf{k}_i} - \varepsilon_{\mathbf{k}_f}) \delta(\omega - \omega_{\mathbf{q}\nu}).$$
(4)

В данном приближении Γ_{e-p} и λ вычисляются с единой функцией Элиашберга ($\alpha^2 F^E_{\mathbf{k}_i,n_i}(\omega) = \alpha^2 F^A_{\mathbf{k}_i,n_i}(\omega)$). Матричный элемент электрон-фононного взаимодействия имеет вид

$$g_{if}^{\nu}(\mathbf{q}) = \frac{1}{\sqrt{2M\omega_{\nu}(\mathbf{q})\Omega_{0}}} \times \left\langle \varphi_{n_{i}}(\mathbf{r}) \middle| \sum_{\alpha} \mathbf{u}_{\mathbf{q},\nu}(\mathbf{R}_{\alpha}) \cdot \nabla_{\mathbf{R}_{\alpha}} V_{s}(\mathbf{r} - \mathbf{R}_{\alpha}) \middle| \varphi_{n_{f}}(\mathbf{r}) \right\rangle,$$
(5)

где $\mathbf{u}_{\mathbf{q},\nu}(\mathbf{R}_{\alpha})$ и $\omega_{\nu}(\mathbf{q})$ — фононные векторы поляризации и энергии; $\nabla_{\mathbf{R}_{\alpha}}V_{s}(\mathbf{r}-\mathbf{R}_{\alpha})$ — градиент экранированного электрон-ионного потенциала; M — масса иона. Индексы *i* и *f* обозначают начальное и конечное состояния. Для одномерной модели выражение (5) принимает вид

$$g_{if}^{\nu}(\mathbf{q}_{\parallel}) = \frac{1}{\sqrt{2M\omega_{\nu}(\mathbf{q}_{\parallel})\Omega_{0}}} \int \varphi_{n_{i}}(z)G_{\mathbf{q}_{\parallel}\nu}(z)\varphi_{n_{f}}(z)dz,$$
(6)

где

$$G_{\mathbf{q}_{\parallel}\nu}(z) = \sum_{\alpha} \mathbf{u}_{\mathbf{q}_{\parallel}\nu}(\mathbf{R}_{\alpha}) F_{2D} \lfloor \nabla_{\mathbf{R}_{\alpha}} V_{s}(\mathbf{r} - \mathbf{R}_{\alpha}) \rfloor.$$
(7)

Здесь $F_{2D}[\nabla_{\mathbf{R}_{\alpha}}V_s(\mathbf{r}-\mathbf{R}_{\alpha})]$ обозначает двумерное Фурьепреобразование экранированного потенциала. В качестве ионных потенциалов применялись псевдопотенциалы Ашкрофта [21]. Экранированный псевдопотенциал получался с использованием диэлектрической функции Томаса–Ферми. Проведение обратного преобразования Фурье в *z*-направлении позволяет получить требуемый в модели одномерный экранированный ионный потенциал.

В выражении для функции Элиашберга интегрирование проводится по всей ЗБ. В случае системы

Рис. 1. Поверхностная ЗБ для (1×1) (изображенный штриховой линией гексагон) и (3×3) поверхностных ячеек. Неприводимая часть (3×3) ЗБ показана штриховкой.

 $Na(3/2 \times 3/2)/Cu(111)$ 3Б в 9 раз меньше, чем для исходной ячейки (1×1) (рис. 1). Это означает, что точки исходной 3Б сворачиваются в те же симметричные точки меньшей ЗБ как

$$(3 \times 3) \begin{cases} \overline{\Gamma}, \ \overline{K}, 2/3\overline{\Gamma}\overline{M} \to \overline{\Gamma}', \\ \overline{M}, 1/3\overline{\Gamma}\overline{M}, 1/2\overline{\Gamma}\overline{K} \to \overline{M}', \\ 1/3\overline{\Gamma}\overline{K}, 2/3\overline{\Gamma}\overline{K}, 1/3\overline{M}\overline{K} \to \overline{K}'. \end{cases}$$
(8)

Для рассматриваемой системы выражение (6) матричного элемента электрон-фононного взаимодействия представляется в виде суммы двух слагаемых:

$$g_{if}^{\nu}(\mathbf{q}_{\parallel}) = g_{if}^{\nu(\mathrm{Cu})}(\mathbf{q}_{\parallel}) + g_{if}^{\nu(\mathrm{Na})}(\mathbf{q}_{\parallel})$$

$$= \frac{1}{\sqrt{2M_{\mathrm{Cu}}\omega_{\nu}(\mathbf{q}_{\parallel})\Omega_{0}}} \int \varphi_{n_{i}}(z)G_{\mathbf{q}_{\parallel}\nu}^{(\mathrm{Cu})}(z)\varphi_{n_{f}}(z)dz$$

$$+ \frac{1}{\sqrt{2M_{\mathrm{Na}}\omega_{\nu}(\mathbf{q}_{\parallel})\Omega_{0}}} \int \varphi_{n_{i}}(z)G_{\mathbf{q}_{\parallel}\nu}^{(\mathrm{Na})}(z)\varphi_{n_{f}}(z)dz, \quad (9)$$

где

$$G_{\mathbf{q}_{\parallel}\nu}^{(\mathrm{Cu})}(z) = \sum_{\alpha_{\mathrm{Cu}}} \mathbf{u}_{\mathbf{q}_{\parallel}\nu} \left(\mathbf{R}_{\alpha_{\mathrm{Cu}}} \right) F_{2D} \left[\nabla_{\mathbf{R}_{\alpha_{\mathrm{Cu}}}} V_{s}^{\mathrm{Cu}} \left(\mathbf{r} - \mathbf{R}_{\alpha_{\mathrm{Cu}}} \right) \right]$$
(10)

И

$$G_{\mathbf{q}_{\parallel}\nu}^{(\mathrm{Na})}(z) = \sum_{\alpha_{\mathrm{Na}}} \mathbf{u}_{\mathbf{q}_{\parallel}\nu} \left(\mathbf{R}_{\alpha_{\mathrm{Na}}} \right) F_{2D} \Big[\nabla_{\mathbf{R}_{\alpha_{\mathrm{Na}}}} V_s^{\mathrm{Na}} \left(\mathbf{r} - \mathbf{R}_{\alpha_{\mathrm{Na}}} \right) \Big].$$
(11)

Здесь суммирование проводится по координатам атомов меди и натрия, а $V_s^{\text{Cu(Na)}}$ — экранированные псевдопотенциалы Cu и Na соответственно.

исследования различных свойств чистой поверхности металлов, поверхностей с адсорбатами, а также поверхностных сплавов [6–11]. В МПА потенциальная энергия имеет вид

$$E = 1/2 \sum_{ij} \varphi(r_{ij}) + \sum_{i} F_i \left[\sum_{j \neq i} \rho_j^a(r_{ij}) \right].$$
(12)

В этом выражении первое слагаемое представляет собой парный потенциал взаимодействия атомов, где r_{ij} — расстояние между атомами *i* и *j*. Второе слагаемое описывает многочастичные эффекты. Функция погружения F_i задана в узле r_i и определяется электронной зарядовой плотностью, которая задается в виде суперпозиции электронных плотностей всех остальных атомов, расположенных в узлах r_j , ρ_j^a получаются из решения задачи для свободного атома в приближении функционала локальной плотности. Параметры метода подгонялись под экспериментальные данные для меди и натрия по равновесному объему, энергии сублимации, модулю упругости, энергии образования вакансии. Форма парного потенциала Cu-Na взята в виде, предложенном в работе [23]:

$$\varphi_{\text{Cu-Na}}(r) = \frac{1}{2} \left[\frac{\rho_{\text{Na}}(r)}{\rho_{\text{Cu}}(r)} \varphi_{\text{Cu}}(r) + \frac{\rho_{\text{Cu}}(r)}{\rho_{\text{Na}}(r)} \varphi_{\text{Na}}(r) \right], \quad (13)$$

где φ_{Cu} и φ_{Na} — парные потенциалы меди и натрия.

Расчет фононного спектра проводился путем нахождения собственных значений динамической матрицы. Для построения последней использовалась пленочная модель, в которой в плоскости поверхности налагаются периодические граничные условия, а в направлении нормали к поверхности задается конечное число атомных слоев. Инверсионно-симметричная пленка содержала 31 слой Cu (111), на нее с обеих сторон наносился монослой Na со структурой ($3/2 \times 3/2$). Данное количество слоев является достаточным для исключения взаимодействия противоположных поверхностей пленки. Равновесная конфигурация поверхностных слоев находилась методом молекулярной динамики при нулевой температуре.

3. Результаты

3.1. Чистая поверхность Cu (111). Для чистой поверхности Cu (111) равновесные значения первого и второго межплоскостных расстояний характеризуются небольшим поджатием по отношению к идеальному межплоскостному расстоянию в объеме и составляют $\Delta_{12} = -1.05\%$ и $\Delta_{23} = -0.07\%$. Полученная релаксация поверхности хорошо согласуется с имеющимися

Рис. 2. Локальная плотность фононных состояний для поверхности Cu (111).

Рис. 3. Функция Элиашберга для поверхностного состояния в точке Г для поверхности Cu (111). Сплошной линией показан вклад от всех фононных мод, штриховой — вклад от рэлеевской моды.

экспериментальными [24] и *ab initio* [25] значениями $\Delta_{12} = -1.0\% \pm 0.4\%$ и $\Delta_{1,2} = -1.14\%$ соответственно.

На рис. 2 приведена локальной плотность фононных состояний (ЛПС) для поверхности Cu (111). Она является типичной для чистой поверхности (111) ГЦК-металлов. Максимальный пик плотности состояний в поверхностом слое соответствует рэлеевской моде,

313

ее частоты в симметричных точках двумерной ЗБ $\overline{K}(14.5 \text{ meV})$ и \overline{M} (13.03 meV) находятся в хорошем согласии с экспериментальными данными [26], а также с результатами других расчетов [25,27,28]. Полученные значения энергии фононов и их векторы поляризации используются в расчете электрон-фононного взаимодействия в поверхностном состоянии в центре ЗБ. Полученная согласно (4) спектральная функция Элиашберга для этого состояния показана на рис. 3. Как видно из рисунка, основной пик функции при 13 meV в значительной степени (~ 2/3) определяется вкладом от рэлеевской фононной моды.

Первый момент спектральной функции, согласно (3), дает параметр электрон-фононного взаимодействия λ . Полученное значение λ для поверхностного состояния на Cu (111) равно 0.15, что хорошо согласуется с полученным ранее значением 0.16 [29] и фотоэмиссионными данными (0.14 ± 0.02 в работах [30,31]).

3.2. Поверхность $Na(3/2 \times 3/2)/Cu(111)$. Структура, при которой адатомы натрия формируют насыщенный монослой, имеет гексагональную симметрию с четырьмя атомами натрия на двумерную элементарную ячейку (3 × 3) медной подложки [32,33]. Такая ячейка содержит по девять атомов меди в каждом атомном слое и по четыре адатома натрия с каждой стороны пленки (рис. 4). При этом один атом натрия находится в ГЦК-позиции (атом 1), тогда как остальные располагаются в смещенных положениях (атомы 2, 3 и 4). Полученные после релаксации ближайшие межатомные расстояния ($d_{\text{Na-Cu}} = 2.87 \text{ \AA}$ для адатома находящегося в ГЦК-положениях, $d_{\text{Na-Cu}} = 2.68 \text{ Å}$ для адатомов в смещенных позициях), а также равновесные координаты атомов адсорбированного слоя и подложки находятся в хорошем согласии с величинами, полученными в ab initio в расчете [34].

На рис. 5 представлены ЛПС для адслоя и первого слоя подложки системы $Na(3/2 \times 3/2)/Cu(111)$. Анализ фононного спектра и плотности состояний показал, что все моды, характерные для чистой поверхности меди,

Рис. 4. Атомная структура поверхности $Na(3/2 \times 3/2)/Cu(111)$. Элементарная ячейка отмечена ромбом. Атомы меди показаны серым цветом, атомы натрия — белым.

Рис. 5. Плотность фононных состояний, локализованных на слое натрия и первом слое подложки.

сохраняются. Присутствие адатомов натрия сказывается для них в незначительном повышении энергии высокочастотных мод и понижении энергии низкочастотных мод, в то время как их поляризация полностью сохраняется. Ярко выраженный пик в ЛПС чистой поверхности меди, соответствующий рэлеевской моде, для структуры $Na(3/2 \times 3/2)/Cu(111)$ расщепляется на три, и его интенсивность понижается. Появляется дополнительный пик (по сравнению с ЛПС чистой поверхности) при энергии 31.64 meV, определяемый колебаниями поверхностных атомов меди в сагиттальной плоскости. Возникновение этого состояния полностью определяется присутствием адатомов натрия. Поверхносты на датомах натрия с вертикальными смещениями, проявляются в

виде двух интенсивных пиков ЛПС. Первый пик с энергией 22.1 meV связан с колебаниями адатомов в ГЦК-положениях, в то время как второй пик (энергия 26.3 meV) определяется колебаниями адатомов натрия, расположенных в смещенных положениях адсорбции. Значение 21 meV было получено для вибрационной энергии монослоя натрия с использованием зависимости полной энергии от смещения натриевого слоя относительно жесткой подложки [17], которое и использовалось для оценки электрон-фононного взаимодействия в модели Эйнштейна. Аналогичное расщепление пика ЛПС, обусловленное различием положений адатомов натрия, характерно и для колебаний Na в плоскости поверхности (8.0 и 17.9 meV).

Как и в случае чистой поверхности меди, рассчитанные значения энергии фононных мод и их векторы поляризации используются в расчете электрон-фононного взаимодействия в состоянии квантовой ямы в центре 3Б.

Одноэлектронные состояния для системы Na/Cu (111) рассчитаны в рамках описанной одномерной модели. Полученные волновые функции состояния квантовой ямы находятся в хорошем согласии с *ab initio* расчетами [35], и найденный электронный спектр близок к экспериментальному (рис. 6).

Для системы Na $(3/2 \times 3/2)$ /Cu (111) рассчитанная функция Элиашберга показана на рис. 7, и соответствующее значение λ составило 0.14. Несмотря на то что это значение близко к полученному для чистой поверх-

Рис. 6. Схематическое изображение электронной структуры монослоя Na на Cu (111). Закрашенная область показывает континуум объемных электронных состояний меди, сплошная параболическая линия соответствует состоянию квантовой ямы монослоя Na, штриховая линия — уровеню Ферми.

Рис. 7. Функция Элиашберга для состояния квантовой ямы в точке Г на поверхности Na/Cu(111).

Рис. 8. Температурная зависимость Γ_{e-p} для Na/Cu (111) и Cu (111).

ности Cu (111), для данной системы оно определяется другими фононными модами. Если основной вклад в λ на чистой поверхности определяется рэлеевской модой, то в системе Na($3/2 \times 3/2$)/Cu (111) данный вклад существенно ослабляется и λ в значительной степени определяется вкладами от колебаний локализованных на атомах натрия. Кроме того, основной вклад в λ дают низкочастотные фононы, поляризованные в плоскости поверхности, тогда как *z*-поляризованные колебания,

которые и рассматривались ранее с использованием модели Эйнштейна [17], вносят лишь незначительный вклад.

Как видно из рис. 8, электрон-фононный вклад Γ_{e-p} в уширение спектральной линии поверхностного состояния при нулевой температуре для данной структуры составил 5.4 meV, что в 1.5 раза меньше чем для соответствующего состояния на чистой поверхности Cu (111) (7.8 meV).

4. Заключение

В настоящей работе представлены результаты теоретического описания электрон-фононного взаимодействия в состоянии квантовой ямы в системе $Na(3/2 \times 3/2)/Cu(111)$. Рассчитанные в рамках микроскопического подхода параметры электрон-фононного взаимодействия для поверхностного состояния чистой поверхности меди найдены в хорошем согласии с экспериментальными значениями. Показано, что параметр электрон-фононного взаимодействия λ в состоянии квантовой ямы на поверхности $Na(3/2 \times 3/2)/Cu(111)$ уменьшается незначительно в сравнении со значением для чистой поверхности и в основном определяется вкладами от низкочастотных колебаний, локализованных на атомах натрия и поляризованных в плоскости поверхности. Соответствующий электрон-фононный вклад Ге-р в уширение спектральной линии состояния квантовой ямы при нулевой температуре уменьшается в 1.5 раза по отношению к значению поверхностного состояния на чистой поверхности Си (111).

Список литературы

- [1] R.D. Diehl, R. McGrath. Surf. Sci.Rep. 23, 43 (1996).
- [2] E.V. Chulkov, V.M. Silkin. Surf. Sci. 215, 385 (1989).
- [3] C. Stampfl, K. Kambe, R. Fasel, P. Aebi, M. Sheffler. Phys. Rev. B 57, 15 251 (1998).
- [4] N. Fischer, S. Schuppler, R. Fisher, Th. Fauster, W. Steinmann. Phys. Rev. B 47, 4705 (1993).
- [5] J.M. Carlsson, B. Hellsing. Phys. Rev. B 61, 13973 (2000).
- [6] G. Butti, S. Caravati, G.P. Brivio, M.I. Trioni, H. Ishida. Phys. Rev. B 72, 125 402 (2005).
- [7] G. Benedek, J. Ellis, A. Reichmuth, P. Ruggerone, H. Schief, J.P. Toennies. Phys. Rev. Lett. 69, 2951 (1992).
- [8] T. Nagao, Y. Iizuka, T. Shimazaki, C. Oshima. Phys. Rev. B 55, 10064 (1997).
- [9] G. Witte, J.P. Toennies. Phys. Rev. B 62, R7771 (2000).
- [10] G.G. Rusina, S.V. Eremeev, S.D. Borisova, I.Yu. Sklyadneva, E.V. Chulkov. Phys. Rev. B 71, 245401 (2005).
- [11] I.Yu. Sklyadneva, G.G. Rusina, E.V. Chulkov. Surf. Sci. 416, 17 (1998).
- [12] E.V. Chulkov, A.G. Borisov, J.P. Gauyacq, D. Sánchez-Portal, V.M. Silkin, V.P. Zhukov, P.M. Echenique. Chem. Rev. 106, 4160 (2006).
- [13] M. Milun, P. Pervan, D.P. Woodruff. Rep. Prog. Phys. 65, 99 (2001).

- [14] P.M. Echenique, R. Berndt, E.V. Chulkov, Th. Fauster, A. Goldmann, U. Höfer. Surf. Sci. Rep. 52, 219 (2004).
- [15] J. Kliewer, R. Berndt. Phys. Rev. B 65, 035412 (2001).
- [16] E.V. Chulkov, J. Kliewer, R. Berndt, V.M. Silkin, B. Hellsing, S. Crampin, P.M. Echenique. Phys. Rev. B 68, 195 422 (2003).
- [17] B. Hellsing, J.M. Carlsson, L. Walldén, S.-Å. Lindgren. Phys. Rev. B 61, 2343 (2000).
- [18] E.V. Chulkov, V.M. Silkin, P.M. Echenque. Surf. Sci. 437, 330 (1999).
- [19] J. Kliewer, R. Berndt, E.V. Chulkov, V.M. Silkin, P.M. Echenique, S. Crampin. Science 288, 1399 (2000).
- [20] Г.М. Элиашберг. ЖЭТФ 38, 966 (1960).
- [21] N. Ashcroft, D. Langreth. Phys. Rev. 159, 500 (1966).
- [22] S.M. Foiles, M.I. Baskes, M.S. Daw. Phys. Rev. B 33, 7983 (1986).
- [23] R.A. Johnson. Phys. Rev. B 39, 12554 (1989).
- [24] U. Harten, J.P. Toennies, Ch. Wöll. Faraday Discuss. Chem. Soc. 80, 137 (1985).
- [25] K.P. Bohnen, K.M. Ho. Surf. Sci. Rep. 19, 99 (1993).
- [26] M.H. Mohamed, L.L. Kesmodel, B.M. Hall, D.L. Mills. Phys. Rev. B 37, 2763 (1998).
- [27] Y. Chen, S.Y. Tong, K.P. Bohnen, T. Rodach, K.M. Ho. Phys. Rev. Lett. 70, 603 (1993).
- [28] Г.Г. Русина, И.Ю. Скляднева, Е.В. Чулков. ФТТ 45, 555 (2003).
- [29] B. Hellsing, A. Eiguren, E.V. Chulkov. J. Phys.: Cond. Matter 14, 5959 (2002).
- [30] A. Eiguren, B. Helsing, F. Reinert, G. Nicolay, E.V. Chulkov, V.M. Silkin, S. Hüfner, P.M. Echenique. Phys. Rev. Lett. 88 066 805, (2002).
- [31] R. Matzdorf. Surf. Sci. Rep. 30, 153 (1998).
- [32] D. Tang, D. McIlroy, X. Shi, C. Su, D. Haskett. Surf. Sci. Lett. 255, L497 (1991).
- [33] J. Kliewer, R. Berndt. Surf. Sci. 477, 250 (2001).
- [34] S.-Å. Lindgren, L. Walldén. J. Electron Spectrosc. Relat. Phenom. 64/65, 483 (1993).
- [35] J.M. Carlsson, B. Hellsing. Phys. Rev. B 61, 13973 (2000).