Расчет электронной структуры и сверхтонких полей в соединениях $Fe_{1-x}Co_xB$, $(Fe_{1-x}Co_x)_2B$ методом Корринга–Кона–Ростокера

© Н.А. Клиндухов, В.С. Касперович, М.Г. Шеляпина, Hlil El Kebir

Научно-исследовательский институт физики им. В.А. Фока Санкт-Петербургского государственного университета, 198504 Санкт-Петербург, Петергоф, Россия

E-mail: Klinduhov@rambler.ru

(Поступила в Редакцию 2 апреля 2007 г. В окончательной редакции 9 июля 2007 г.)

Проведено исследование магнитных свойств разупорядоченных соединений $Fe_{1-x}Co_x B$, $(Fe_{1-x}Co_x)_2 B$ методом Корринга–Кона–Ростокера. Для соединения $Fe_{1-x}Co_x B$ на основе полученных концентрационных зависимостей магнитных моментов и электронной плотности был дан детальный анализ и интерпретация обнаруженного ранее экспериментально перехода из магнитного фазы в немагнитную. На основе анализа рассчитанных сверхтонких полей от различных электронных оболочек на Fe и Co в бориде $(Fe_{1-x}Co_x)_2 B$ предложено описание наблюдаемого в эксперименте явления магнитной анизотропии.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 05-02-16731-а), а также при поддержке по исследовательской схеме MIRA 2004 (region Rhône-Alpes-France).

PACS: 71.20.Lp, 71.20.-b

1. Введение

Железо-кобальтовые бориды напротяжении многих лет являются объектами интенсивных научных исследований в связи с их широким применением при изготовлении металлокерамики с уникальными магнитными свойствами, использованием в качестве катализаторов в реакциях выделения водорода при создании топливных ячеек и многих других приложениях. Бинарные сплавы железа и кобальта являются примером систем с большим разнообразием физических свойств. Например, в твердых растворах Fe_{1-x}Co_x был обнаружен структурный фазовый переход типа порядокбеспорядок (*bcc* \leftrightarrow *B*2) и явление большой магнитострикции в bcc-фазе $Fe_{1-x}Co_x$, обусловленное магнитным порядком [1]. Бинарные и квазибинарные сплавы $(Fe_{1-x}Co_x)_y B$ (y = 1, 2, 3) являются классическими модельными объектами для изучения закономерностей формирования магнитных свойств в зависимости от сорта и концентрации *d*-элемента, параметров и типа кристаллической решетки.

В настоящей работе для изучения закономерностей формирования магнитных свойств в твердых растворах $Fe_{1-x}Co_xB$ и $(Fe_{1-x}Co_x)_2B$ были проведены расчеты электронной структуры из первых принципов, основанные на теории функционала плотности. В настоящее время расчеты такого рода проводились только для боридов железа и железо-кобальтовых сплавов [2,3].

В работе [2] для соединений FeB, Fe₂B и Fe₃B были сделаны расчеты электронной структуры методом линейной комбинации ортогональных атомных орбиталей (OLCAO). Было установлено, что при образовании сплава электронная плотность на атомах бора увеличивается, что приводит к отрицательной поляризации последних. Внешние орбитали 4s-атома железа и 2s-, 2*p*-атома бора, являясь гибридизованными, слабо зависят от ближайшего окружения и симметрии кристалла. Более локализованные 3*d*-зоны железа так же слабо подвержены изменениям. В то же время обменное взаимодействие, приводящее к смещению электронной плотности для спинов вверх относительно плотности для спинов вниз, зависит от концентрации бора, что обусловливает различие величины магнитных моментов железа в различных кристаллах.

Для бинарных сплавов $Fe_{1-r}Co_r$ в работе [3] рассчитана электронная структура методом линейных орбиталей в приближении "muffin-tin" (LMTO), структурный беспорядок учитывался в рамках приближения когерентного потенциала (СРА). Электронная структура была рассчитана также для расширенной ячейки из 144 атомов с помощью локально-самогласованного метода функций Грина. В результате был проведен теоретический анализ магнитных свойств для различных концентраций железа и кобальта и для разных типов кристаллических решеток, таких как кубическая объемно центрированная (bcc), гранецентрированная (fcc) и гексагональная плотно упакованная (hc p). Была получена зависимость среднего магнитного момента от функции заполнения d-зоны. Для структур типа f c c и h c p был обнаружен фазовый переход из высокоспиновой фазы в низкоспиновую в интервале концентраций, в котором наблюдался Инвар-эффект.

Однако подобных вычислений для соединений $Fe_{1-x}Co_x B$ и $(Fe_{1-x}Co_x)_2 B$ не проводилось. Мы попытались восполнить данный пробел, проведя теоретический расчет электронной структуры и магнитных свойств данных соединений. В настоящей работе с помощью спин-поляризованного ралятивистского метода Корринга–Кона–Ростокера в приближении когерентного потенциала (ККР-СРА) были рассчитаны концентрационные зависимости магнитных моментов, величины сверхтонких полей, а также плотности электронных состояний (DOS).

2. Кристаллическая структура

Твердые растворы $Fe_{1-x}Co_x B$ ($0 \le x \le 1$) имеют орторомбическую структуру (пространственная группа *Pnma*), в одной элементарной чейке содержатся 4 формульные единицы. Все атомы переходных металлов кристаллографически эквивалентны.

Железо-кобальтовые бориды $(Fe_{1-x}Co_x)_2B$ $(0 \le x \le 1)$ имеют объемно центрированную тетрагональную слоистую структуру (пространственная группа I4/mcm), в одной элементарной ячейке содержатся две формульные единицы. В этой структуре атомы железа образуют искаженный тетраэдр и кристаллографически эквивалентны.

В нашей работе делалось допущение, что атомы железа и кобальта могут заселять позиции с одинаковой вероятностью (для первого и второго типа соединений соответственно). Оптимизация структурных параметров для данных соединений не проводилась. Для постоянной решетки предполагалась линейная зависимость от концентрации кобальта x (закон Вегарда) в виде $a(x) = (1 - x)a_{\rm Fe} + xa_{\rm Co}$, где $a_{\rm Fe}$ и $a_{\rm Co}$ — параметры решетки "чистых" железо- и кобальтовых боридов соответственно. Для боридов использовались экспериментальные значения постоянных решетки соединений FeB, Fe_{0.5}Co_{0.5}B, Fe₂B и FeCoB.

3. Методы расчетов

Для расчетов наших разупорядоченных сплавов был применен спин-поляризованный релятивистский метод ККР-СРА [4].

В основе даного метода лежит релятивистская версия спиновой теории функционала плотности (SDFT). Это подразумевает, в частности, что соответствующий дираковский гамильтониан \hat{H} имеет вид

$$\hat{H} = \frac{\hbar}{i} \boldsymbol{\alpha} \nabla + \beta mc^2 + V(\mathbf{r}) + \beta \boldsymbol{\sigma} \mathbf{B}_{\text{eff}}(\mathbf{r}),$$

где β и компоненты вектора α являются стандартными 4×4 дираковскими матрицами, σ — оператор матрицы Паули. Потенциал $V(\mathbf{r})$ — спин-независимая часть эффективного потенциала. Зависимая от спина часть потенциала представлена эффективным магнитным полем как вариация функционала $E_{xc}[n, \mathbf{m}]$ обменнокорреляционной энергии (n — зарядовая плотность, \mathbf{m} — плотность спиновой намагниченности) по \mathbf{m}

$$\mathbf{B}_{\text{eff}}(\mathbf{r}) = \frac{\partial E_{xc}[n, \mathbf{m}]}{\partial \mathbf{m}(\mathbf{r})}$$

для случая коллинеарных магнитных структур имеем $\sigma \mathbf{B}_{\mathrm{eff}}(\mathbf{r}) = \sigma_z B_{\mathrm{eff}}(r).$

Далее делается следующее допущение. Для потенциалов V и B предполагается сферическая симметрия внутри областей, ограниченных непересекающимися сферами, центр которых совпадает с положениями исследуемых атомов: $V(\mathbf{r}) \rightarrow V'(r)$, $\mathbf{B}_{\text{eff}}(\mathbf{r}) \rightarrow \mathbf{B}'_{\text{eff}}(r)$. В промежуточных областях значения потенциалов принимаются равными нулю. В таком случае очень удобно воспользоваться результатами теории многократного рассеяния (MST).

Введем в рассмотрение так называемые электронные функции Грина, которые являются решениями уравнения

$$(\hat{H} - E)G(\mathbf{r}, \mathbf{r}', E) = \delta(\mathbf{r} - \mathbf{r}'),$$

где \hat{H} — гамильтониан системы, который используется для расчета собственных значений E_n и собственных функций ψ_n , которые связаны с функциями Грина следующим образом:

$$G(\mathbf{r},\mathbf{r}',E) = \lim_{\varepsilon \to 0} \sum_{n} \frac{\psi_n(\mathbf{r})\psi_n^*(\mathbf{r}')}{E - E_n + i\varepsilon}$$

И наконец, с помощью электронной функции Грина мы можем найти значение любой физической величины $A(\mathbf{r})$, представленной оператором \hat{A} :

$$A(\mathbf{r}) = -\frac{1}{\pi} \Im \operatorname{Trace} \int dE \hat{A} G(\mathbf{r}, \mathbf{r}', E).$$

4. Результаты и обсуждение

Ранее магнитные свойства соединений Fe_{1-r}Co_rB (Fe_{1-x}Co_x)₂В исследовались методами нейтронографии [5,6], ЯМР [7,8] и мессбауэровской спектроскопии [9]. Интерпретация полученных результатов проводилась в рамках феноменологических моделей. Экспериментальное исследование концентрационных зависимостей сверхтонких полей и магнитных моментов атомов переходных металлов в Fe_{1-x}Co_xB и (Fe_{1-x}Co_x)₂B показало существенное различие в магнитном поведении этих твердых растворов. Установлено, что в твердых растворах Fe_{1-x}Co_xB наблюдается фазовый переход из магнитной фазы в парамагнитную, в то время как сплав ($Fe_{1-x}Co_x$)₂B остается ферромагнитным при любой концентрации кобальта. В соединении (Fe_{1-x}Co_x)₂B наблюдалось изменение направления оси легкого намагничивания при разном содержании железа и кобальта для разных температур. В области низких температур ориентации оси легкого намагничивания меняется от направления вдоль тетрагональной оси до расположения в базовой плоскости, в последнем случае кристаллографически эквивалентные атомы железа или кобальта оказываются магнитно-неэквивалентными. Однако вопрос о направлении оси легкого намагничивания по-прежнему остается дискуссионным. Попытки связать наблюдаемые магнитные свойства исследуемых соединений с электронной структурой на основе полуфеноменологических моделей привели к противоречивым результатам.

Рис. 1. Магнитные моменты атомов Fe, Co, B, а также намагниченность насыщения m_{sat} ($m_{\text{sat}} = (1 - x)m_{\text{Fe}} + xm_{\text{Co}} + m_{\text{B}}$) для $\text{Fe}_{1-x}\text{Co}_x\text{B}$ в зависимости от концентрации кобальта. Экспериментальные данные (светлые кружки) взяты из работы [7].

Нами были рассчитаны значения магнитных моментов, DOS и сверхтонких полей. Результаты расчетов магнитных моментов в $Fe_{1-x}Co_xB$ приведены на рис. 1. Рассчитанные значения находятся в хорошем согласии с экспериментальными данными ЯМР [7]. Ранее предполагалось, что только атом железа несет магнитный момент. Наши вычисления показывают присутствие небольшого магнитного момента вплоть до $0.2 \mu_B$ и на атоме кобальта.

На рис. 2 приведена плотность состояний (DOS) *d*-электронов для некоторых концентраций кобальта.

DOS для атомов кобальта в CoB представляет собой картину с двумя ярко выраженными пиками. Для электронов со спином вверх и со спином вниз DOS оказывается одинаковой, что указывает на отсутствие магнитной поляризации атомов кобальта в данной структуре. При замещении атомов кобальта атомами железа происходит следующее. Энергия пиков распределения плотности для

Рис. 2. DOS для Co (a) и Fe (b) в Fe_{1-x}Co_xB. s — вклад от s-электронов, p — вклад от p-электронов, d — вклад от d-электронов, tot — суммарный вклад от всех электронов. Нуль на шкале энергии соответствует уровню Ферми.

Рис. 3. Магнитные моменты атомов Fe, Co, B для $(Fe_{1-x}Co_x)_2B$ в зависимости от концентрации кобальта. Экспериментальные данные (светлые кружки) взяты из работы [8].

Рис. 4. Модели ближайшего окружения атомов переходных металлов (большие кружки обозначают атомы металлов Fe или Co, малые — атомы B): a — ближайшее окружение Fe(Co) в Fe_{1-x}Co_xB, b — ближайшее окружение Fe(Co) в (Fe_{1-x}Co_x)₂B.

электронов со спином вверх атомов кобальта и железа не зависит от концентрации. Плотность состояний электронов со спином вниз смещается в направлении уровня Ферми при увеличении концентрации железа. Различие в структуре DOS для электронов со спином вверх и вниз обусловливает изменение магнитных свойств соединения для различных концентраций Co(Fe).

В FeB DOS для атомов железа также имеет два пика как для электронов со спином вверх, так и для электронов со спином вниз. Однако составляющая DOS для направления спина смещена в направлении увеличения энергии, причем максимум пика приходится на область за уровнем Ферми, что и объясняет наличие большого магнитного момента на атоме железа.

Легко заметить, что для случая x = 1 поляризация отсутствует, а следовательно, отсутствует и локализованный магнитный момент на атоме кобальта. Суммируя изложенное, мы можем заключить, что существует фазо-

вый переход из ферро- в парамагнитную фазу, который имеет место вблизи x = 0.9.

Зависимость локальных магнитных моментов от содержания кобальта в соединении $(Fe_{1-x}Co_x)_2B$ (рис. 3) отличается от зависимости $Fe_{1-x}Co_xB$: магнитный момент железа остается почти постоянным, а магнитный момент кобальта уменьшается с увеличением концентрации Co.

Различие магнитных свойств данных боридов можно объяснить различием в ближайшем окружении металлических атомов (рис. 4). В соединении Fe_{1-x}Co_xB атомы Fe и Co окружены атомами В в первой координационной сфере. Как следствие, расстояния между ближайшими атомами переходных металлов большие, что приводит к уменьшению обменного взаимодействия между соседними атомами. В (Fe_{1-x}Co_x)₂В атомы Fe и Со имеют три атома переходных металлов в ближайшем окружении. В Fe₂B атом железа имеет четыре эквивалентных ближайших атома бора с расстоянияем 2.18 А и 11 ближайших ионов железа, один из которых расположен на расстоянии 2.40 Å, два других на расстоянии 2.45 Å и еще две группы из четырех атомов железа — на расстояниях 2.69-2.72 Å. Следовательно, три атома железа расположены на более коротких расстояниях от центрального атома, чем в чистом железе, а два других — на более далеких. На основании структурных данных можно предположить, что экранирующее действие атомов бора в $(Fe_{1-x}Co_x)_2B$ должно быть значительно меньше, чем в FeCoB, что обусловливает наличие большого магнитного момента металлических атомов в первом соединении.

Кроме того, для рассмотренных боридов были рассчитаны сверхтонкие поля. Магнитные моменты железа и кобальта μ и сверхтонкие поля внутренних оболочек $B_{hf \text{ core}}$ имеют противоположные направления, но подобные зависимости от концентрации, так что отношение $B_{hf \text{ core}}/\mu$ почти не зависит *x*. Результаты расчетов

Рис. 5. Сверхтонкие поля на атомах Fe, Co и B для $Fe_{1-x}Co_x B$ в зависимости от концентрации кобальта. Для Fe экспериментальные данные (светлые кружки) взяты из работы [9].

Рис. 6. Сверхтонкие поля на атомах Fe и Co в $(Fe_{1-x}Co_x)_2B$. I — экспериментальные данные мессбауэровской спектроскопии для железа [9]. Для атомов железа: 2 — сверхтонкие поля внутренних *s*-оболочек, 3 — сверхтонкие поля валентных *s*-оболочек, 4 — сверхтонкие поля валентных *d*-оболочек. Для атомов кобальта: 5 — средние по обеим неэквивалентным позициям свертонкие поля, 6 и 7 (данные ЯМР [8]) сверхтонкие поля для различных позиций, 8 — сверхтонкие поля внутренних *s*-оболочек, 9 — сверхтонкие поля валентных *s*-оболочек, 10 — сверхтонкие поля валентных *d*-оболочек.

и данные по мессбауэровской спектроскопии [9] для Fe_{1-x}Co_xB представлены на рис. 5.

Согласно нашим расчетам, для $(Fe_{1-x}Co_x)_2B$ вклад в сверхтонкие поля от электронов внутренних оболочек обусловлен только *s*-электронами, следовательно, эта часть сверхтонкого поля должна быть изотропной. Однако сверхтонкое поле от валентных оболочек обусловлено как *s*-, так и *d*-электронами $(B^b_{hf val})$, что определяет анизотропную часть (рис. 6).

Анизотропия сверхтонкого поля атомов железа и кобальта в данном соединении была обнаружена в экспериментах ЯМР [8] и мессбауэровской [9] спектроскопии. Для (Fe_{1-x}Co_x)₂В авторы [8] предположили, что при низких температурах в области концентраций x = 0 и 0.6 < x < 1 кристаллографическую позицию 8h могут заселять два магнитно-неэквивалентных атома (Сој, Сојј или Fej, Fejj), вследствие того что ось легкой намагниченности (ОЛН) лежит в базовой плоскости тетрагогнальной решетки (а для всех остальных концентраций ОЛН параллельна направлению [001]). В этой же работе приводятся различные значения сверхтонкого поля для атома кобальта в Co_2B (x = 1): 83.2 и 98 kOe. Принимая во внимание, что (согласно нашим расчетам) анизотропный вклад в сверхтонкое поле дают только валентные *d*-электроны, получим, что суммарное поле B_{hf} будет находиться в пределах $B_{hf \text{ core}} - B_{hf \text{ val}}^d \le B_{hf} \le B_{hf \text{ core}} + B_{hf \text{ val}}^d$, в данном случае 71.01 $\leq B_{hf}^{Co} \leq 131.29$ kOe. Этот результат согласуется с приведенными выше экспериментальными данными.

5. Заключение

С помощью ККR-СРА-метода проведено исследование магнитных свойств разупорядоченных Fe–Co–Bсистем с орторомбической и тетрагональной структурой Fe_{1-x}Co_xB, (Fe_{1-x}Co_x)₂B. В результате получены концентрационные зависимости магнитных моментов и сверхтонких полей. Для соединения Fe_{1-x}Co_xB обнаружен магнитный–немагнитный переход, на основе рассчитанных DOS дан детальный анализ и интерпретация данного явления. Исследование вкладов от различных оболочек в сверхтонкие поля Fe и Co в (Fe_{1-x}Co_x)₂B позволило дать возможное объяснение наблюдаемого в эксперименте явления магнитной анизотропии.

Список литературы

- B. Gehrmann, M. Acet, H.C. Herper, E.F. Wassermann, W. Pepperhoff. Phys. Stat. Sol. B 214, 175 (1999).
- [2] W.Y. Ching, Yong-Nian Xu, B.N. Harmon, Jun Ye, T.C. Leung. Phys. Rev. B 42, 4460 (1990).
- [3] P. James, O. Eriksson, B. Johansson, I.A. Abrikosov. Phys. Rev. B 59, 419 (1999).
- [4] A. Gonis. Green functions for ordered and disordered systems. Elsevier Scientific Publishing Company (1992). 694 p.
- [5] G. Parette, I. Mirebeau. Physica B 156–157, 721 (1989).
- [6] V. Pierron-Bohnes, M.C. Cadeville, G. Parette. J. Phys. F 15, 1411 (1985).
- [7] B. Lemius, R. Kuentzler. J. Phys. F 10, 155 (1980).
- [8] M.C. Cadeville, I. Vincze. J. Phys. F 5, 155 (1975).
- [9] L. Takács, M.C. Cadeville, I. Vincze. J. Phys. F 5, 800 (1975).