Магнитные свойства пирохлоров $Gd_2V_{0.67}Mo_{1.33}O_7$ и Y_2VMoO_7

© Г.В. Базуев, А.В. Королев*

Институт химии твердого тела Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия * Институт физики металлов Уральского отделения Российской академии наук, 620041 Екатеринбург, Россия

E-mail: bazuev@ihim.uran.ru

(Поступила в Редакцию 20 марта 2007 г.)

Показано, что в результате 50% замещения молибдена ванадием в сложном оксиде $Y_2(V_x Mo_{1-x})_2 O_7$ со структурой пирохлора происходит переход от спин-стекольного основного состояния (x = 0) к ферромагнитному в $Y_2 V MoO_7$ (a = 10.1645(2) Å, $T_C = 55$ K). $Gd_2 V_{0.67} Mo_{1.33} O_7$ (a = 10.2862(3) Å) является ферромагнетиком с T_C (84 K), превышающей T_C недопированного $Gd_2 MnO_2 O_7$.

PACS: 75.50.Dd, 75.30.Cr

Сложные оксиды Ln₂B₂O₇, где Ln — трехвалентный редкоземельный элемент, $B-V^{4+}$ или Mo^{4+} , имеют кристаллическую структуру типа пирохлора и характеризуются кубической гранецентрированной решеткой (пр.гр. Fd-3*m*, z = 8) [1–3]. В отличие от молибденов, образующих семейство Ln₂Mn₂O₇ от Nd до Lu, гипованадаты Ln₂V₂O₇ при обычных условиях существуют только для Tm, Yb и Lu. Различия между данными семействами этим не ограничиваются. Если все оксиды Ln₂V₂O₇ являются полупроволниками и ферромагнетиками с Тс около 73 К [3-5], то в пределах семейства Ln₂Mo₂O₇ имеет место достаточно необычная трансформация электрических и магнитных свойств. Так, сложные оксиды $Ln_2Mo_2O_7$, где Ln = Nd, Sm и Gd, обладают металлическими свойствами и ферромагнетизмом, обусловленным Мо-подсистемой. Температуры Кюри для этих пирохлоров по разным данным довольно сильно различаются: 56 [6] и 75 К [7] для Gd, 80 [6] и 76 К [7] для Sm и 96 К для Nd [6]. Хорошо известно, что обменные взаимодействия в системах с d- и 4f-электронами, как правило, приводят к антипараллельной выстроенности спинов. В результате ориентация *z*-проекции магнитных моментов *d*- и 4*f*-электронов в случае Nd и Sm является антипараллельной, а в случае Gd — параллельной. Эта закономерность имеет широкое экспериментальное подтверждение, в частности, и для Ln₂V₂O₇ [3-5]. В то же время Тb-, Dy- и Y-содержащие соединения Ln₂Mo₂O₇ обладают полупроводниковой проводимостью и спин-стекольным поведением ниже ~ 20 К, обусловленным фрустрированными антиферромагнитными взаимодействиями Мо-Мо [6,8]. Исследования системы $(Gd_{1-x}Dy_x)_2Mo_2O_7$ [9] продемонстрировали постепенное снижение намагниченности и смещение ферромагнитного перехода к низким температурам при увеличении содержания Dy. При x = 0.4 образец имеет спин-стекольное поведение. АС-восприимчивость всех образцов, в том числе и при x = 0, зависит от частоты ниже температур магнитных переходов. Эти результаты показывают, что в пределах данных твердых растворов спин-стекольная и ферромагнитная компоненты сосуществуют вблизи фазовой границы спиновое стеклоферромагнетик.

В связи с различными основными магнитными состояниями соединений $Ln_2V_2O_7$ (Ln = Tm, Yb, Lu) и $Ln_2Mo_2O_7$ (Tb–Yb) представляет интерес изучить особенности магнитного поведения взаимных твердых растворов на основе этих соединений. В настоящей работе выполнены исследования магнетизма сложных оксидов состава Y_2VMoO_7 и $Gd_2V_{2/3}Mo_{4/3}O_7$.

1. Экспериментальная часть

Соединения получены с использованием метода твердофазных реакций [10] из оксидов Y_2O_3 и Gd_2O_3 (99.99% основного вещества), V_2O_3 , MoO_3 (99.9%) и металлического молибдена (99.9%). Оксид ванадия V_2O_3 получали из V_2O_5 (осч) восстановлением в токе водорода при 900°С. Синтез Y_2VMoO_7 и $Gd_2V_{2/3}Mo_{4/3}O_7$ проводили в вакууме 10^{-3} Ра при температуре 1423 К в печи с вольфрамовым нагревателем. Контроль протекания химических реакций осуществляли рентгенографически на дифрактометре ДРОН-3 М, используя Си K_{α} -излучение. Параметры решеток определяли на основе измерений межплоскостных расстояний. Обработку данных проводили по программе Fullprof 2004.

Магнитные измерения проводили в центре магнитометрии ИФМ УрО РАН на СКВИД-магнитометре MPMS-5-XL фирмы QUANTUM DESIGN. Измеряемые образцы в спеченном виде помещали в желатиновую капсулу. Температурный интервал измерений составлял 2–300 К. Регулируемая напряженность магнитного поля H устанавливалась в пределах до 50 kOe. Из измерений статического магнитного момента образца определяли намагниченность M и статическую магнитную восприимчивость $\chi = M/H$, а используя метод измерения динамической магнитной восприимчивости, определяли действительную χ' и мнимую χ'' составляющие восприимчивости при амплитудном значении переменного магнитного поля 4 Oe. Температурные зависимости намагниченности M определены для двух режимов проведения эксперимента: ZFC и FC. В режиме ZFC образец охлаждался до температуры T = 2 K в нулевом поле, затем прикладывалось магнитное поле заданной напряженности H = const, и в процессе нагрева производилось измерение намагниченности. В режиме FC измерение M производилось в процессе охлаждения образца в измеряемом поле.

2. Результаты и их обсуждение

Согласно [10], твердые растворы $Ln_2Mo_{2-x}V_xO_7$ при обычных условиях образуются в области $0 \le x \le 1.33$ для Gd и $0 \le x \le 1.6$ для Y. C увеличением содержания ванадия происходит уменьшение параметра кубической ячейки пирохлора. На рис. 1 приведены рентгенограммы образцов Gd₂V_{0.67}Mo_{1.33}O₇ и Y₂VMoO₇. Оба соединения имеют кубическую структуру типа пирохлора с параметрами a = 10.2862(3) Å (Gd) и 10.1645(2) Å (Y). Оба сложных оксида содержат в качестве примеси следы соединений LnVO₃ (Ln = Gd и Y для Gd₂V_{0.67}Mo_{1.33}O₇ и Y₂VMoO₇ соответственно) [11] со структурой ромбического перовскита.

Результаты магнитных измерений Y_2VMoO_7 представлены на рис. 2–4. Как следует из рис. 2, ниже $\sim 65\,\mathrm{K}$

Рис. 1. Рентгенограммы Gd₂V_{0.67}M0_{1.33}O₇ и Y₂VMoO₇.

Рис. 2. Температурная зависимость магнитной восприимчивости χ Y₂VMoO₇ в магнитном поле 0.5 (*1*) и 5 kOe (*2*). На вставке — зависимость $\chi^{-1}(T)$.

Рис. 3. Температурная зависимость действительной составляющей динамической магнитной восприимчивости $\chi' Y_2 V MoO_7$ в режиме ZFC (максимум при 57 K) и в режиме FC (максимум при 54 K).

наблюдается резкое увеличение магнитной восприимчивости при измерении в магнитных полях 0.5 и 5 kOe. Кроме того, ниже ~ 30 К появляется расходимость между значениями χ , полученными в режимах охлаждения образца в измеряемом (FC) и нулевом (ZFC) магнитных полях (значительная в поле 0.5 kOe и небольшая в поле 5 kOe). Ниже 5 К при измерении в поле 0.5 kOe в режиме ZFC восприимчивость имеет постоянную величину. На политермах действительной χ' (рис. 3) и мнимой χ'' (не приведено) динамической магнитной восприимчивости при 57 К (в режиме ZFC-охлаждения) и 54 К (в режиме FC) присутствуют ярко выраженные максимумы. Положение данных пиков позволяет оценить температуру перехода $T_{\rm C}$ Y₂VMoO₇ в ферромагнитное состояние: 55 ± 2 К.

Зависимость обратной величины магнитной восприимчивости χ от температуры (вставка к рис. 2) в интервале

Рис. 4. Петля магнитного гистерезиса для Y₂VMoO₇.

140-300 К следует закону Кюри-Вейсса

$$\chi = C/(T-\theta),$$

где *С* — постоянная Кюри (*C* = 1.21 сm³ · K/mol), а Θ — постоянная Вейсса (Θ = 81.9 K). Теоретическое значение *C* на формульную единицу Y₂VMoO₇ несколько выше и составляет 1.375 сm³ · K/mol. Данная величина получена исходя из спина *S* = 1/2 для катиона V⁴⁺ (d^{1} -электронная конфигурация) и *S* = 1 для катиона Mo⁴⁺ (d^{2}). Интересно, что константа *C* имеет такое же значение при другой возможной катионной комбинации — V³⁺–Mo⁵⁺, возможность которой обсуждалась в [10]. Положительное значение Θ свидетельствует о преобладании ферромагнитных обменных взаимодействий.

Ферромагнитная природа Y_2VMoO_7 подтверждается измерениями намагниченности от напряженности магнитного поля при 2 К (рис. 4). При данной температуре наблюдается петля магнитного гистерезиса с коэрцитивной силой около 700 Qe и величиной намагниченности насыщения 2.26 μ_B на формульную единицу. С учетом магнитного момента V⁴⁺ в Lu₂V₂O₇ (0.925 μ_B [4]) оценили момент насыщения для Mo⁴⁺. Полученное значение (1.335 μ_B) близко к найденным значениям магнитных моментов Mo⁴⁺ в Ln₂Mo₂O₇ (Ln = Nd, Sm, Gd), равным 1.1, 1.2 и 1.25 μ_B [6] соответственно.

Таким образом, результаты исследований сложного оксида Y_2VMoO_7 со структурой пирохлора показали, что при замещении в $Y_2Mo_2O_7$ 50% молибдена ванадием соединение становится ферромагнитным с $T_C = 55 \pm 2$ К. Тем не менее, учитывая, что T_C данного соединения несколько ниже, чем для $Ln_2V_2O_7$ (73.5 K [4]), следует сделать вывод об определенном воздействии Мо на основное магнитное состояние оксидов $Ln_2V_2O_7$. В этой связи целесообразно изучить фазы $Y_2Mo_{2-x}V_xO_7$ с меньшим и бо́льшим содержанием ванадия.

Результаты измерений для $Gd_2V_{2/3}Mo_{4/3}O_7$ приведены на рис. 5–7. При $T>225\,\mathrm{K}$ магнитная восприим-

чивость Gd₂V_{2/3}Mo_{4/3}O₇ следует закону Кюри-Вейсса $\chi = C/(T - \theta)$, где $C = 14.36 \,\mathrm{cm}^3 \cdot \mathrm{K/mol}$ и $\Theta = 60.9 \,\mathrm{K}$ (рис. 5). При более низких температурах появляется отрицательное отклонение от этой зависимости. Положительное значение О указывает на преобладание ферромагнитного обмена между магнитными моментами. Константа Кюри, рассчитанная путем суммирования теоретических значений С для катионов Gd³⁺ $(C = 7.88 \,\mathrm{cm}^3 \cdot \mathrm{K/mol}), \, \mathrm{V}^{4+} \, (C = 0.375 \,\mathrm{cm}^3 \cdot \mathrm{K/mol}) \, \mathrm{M}$ Mo^{4+} ($C = 1.00 \,\mathrm{cm}^3 \cdot \mathrm{K/mol}$) с учетом их относительной концентрации в формуле Gd₂V_{2/3}Mo_{4/3}O₇, составляет 17.34 cm³ · K/mol. Эффективный магнитный момент $(10.72\,\mu_{\rm B})$, рассчитанный по формуле $\mu = \sqrt{8}C$, также имеет меньшее значение по сравнению с теоретическим (11.78 µВ). Меньшие значения С и эффективного магнитного момента, по-видимому, являются результатом обменного взаимодействия между 4*f*-подрешеткой Gd³⁺ и 3*d*- и 4*d*-подсистемами V и Мо.

95 K Ниже магнитная восприимчивость Gd₂V_{2/3}Mo_{4/3}O₇ резко возрастает, что указывает на начало ферромагнитного упорядочения в подсистеме V–Мо. При $T \le 60$ и измерении в поле 0.5 kOe значения χ зависят от режима охлаждения образца. В поле 5 kOe расхождение между ZFC- и FC-измерениями наблюдается только ниже 10 К. При низких температурах на ZFC-восприимчивости имеется максимум (около 20 K), в то время как FC-восприимчивость испытывает излом около 30 К с более резким возрастанием γ при понижении температуры. Такое поведение $\chi(T)$ может быть объяснено возникновением ферромагнитного упорядочения редкоземельной подсистемы, при котором магнитные моменты катиона Gd³⁺ располагаются параллельно магнитным моментам V и Мо. Учитывая, что в пирохлорах $Gd_2B_2O_7$ (B = Ti, Sn) магнитные моменты Gd³⁺ не упорядочены, следует сделать вывод, что в Gd₂V_{2/3}Mo_{4/3}O₇ магнитный обмен индуцирован эффективным магнитным полем, образованным обменным взаимодействием в (V⁴⁺3*d*-Mo⁴⁺4*d*)-подсистеме.

Рис. 5. Температурная зависимость магнитной восприимчивости χ Gd₂V_{0.67}Mo_{1.33}O₇ в магнитном поле 0.5 (*1*) и 5 kOe (*2*). На вставке — зависимость χ^{-1} (*T*).

Рис. 6. Температурная зависимость действительной χ' и мнимой χ'' (на вставке) составляющих динамической магнитной восприимчивости для $Gd_2V_{0.67}Mo_{1.33}O_7$.

Рис. 7. Петля магнитного гистерезиса для $Gd_2V_{0.67}Mo_{1.33}O_7$.

Результаты измерений АС-восприимчивости представлены на рис. 6. Максимумы как на действительной χ' , так и на миной χ'' составляющей динамической магнитной восприимчивости находятся при 84 К. Это значение принято нами за ферромагнитную температуру Кюри T_C данного соединения. Принимая во внимание известные значения $T_{\rm C}$ для ${\rm Gd}_2{\rm Mo}_2{\rm O}_7$ (приведены в начале статьи), а также 70К по данным [12] и результаты настоящего исследования Y₂VMoO₇, можно сделать вывод, что замещение молибдена ванадием приводит к повышению Т_с образующегося твердого раствора. В этой связи отметим, что по данным [13] замещение Мо на V в молибдате гадолиния Gd₂Mo₂O₇ не привело к какимлибо существенным изменениям магнитных характеристик твердого раствора Gd₂Mo_{1.2}V_{0.8}O₇ по сравнению с исходной фазой.

На зависимости $\chi'' = f(T)$ помимо основного максимума при 84 К присутствует дополнительная особенность — максимум около 20 К. Появление данного пика на температурной зависимости *AC*-восприимчивости можно связать как с упорядочением Gd-подсистемы, так и с переходом $Gd_2N_{2/3}Mo_{4/3}O_7$ в спин-стекольное состояние. Подобный переход при низких температурах был зафиксирован в $Sm_2Mo_2O_7$ и $Nd_2Mo_2O_7$ [9] и идентифицирован как переход к возвратному спинстекольному состоянию.

Подтверждением ферромагнитного характера Gd–(V, Mo)-взаимодействия в Gd₂V_{2/3}Mo_{4/3}O₇ является кривая намагниченности в виде петли гистерезиса, приведенной на рис. 7. Величина намагниченности в поле 50 kOe при 2 K близка к насыщению и составляет 14.8 $\mu_{\rm B}$ на формульную единицу. Эта величина несколько ниже найденной для Gd₂Mo₂O₇ [6], что можно объяснить замещением молибдена (d^2 -электронная конфигурация) ванадием (d^1 -электронная конфигурация), а также присутствием некоторого количества примесной фазы GdVO₃.

Список литературы

- M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Progr. Solid. State Chem. 15, 55 (1983).
- [2] V.A. Isupov. Ferroelectric Rev. 2, 115 (2000).
- [3] Г.В. Базуев, О.В. Макарова, В.З. Оболдин, Г.П. Швейкин. ДАН СССР 230, 869 (1976).
- [4] Г.В. Базуев, А.А. Самохвалов, Ю.Н. Морозов, И.И. Матвеенко, В.С. Бабушкин, Т.И. Арбузова, Г.П. Швейкин. ФТТ 19, 3274 (1977).
- [5] L. Soderholm, C.V. Stoger, J.E. Greedan. J. Solid State Chem. 43, 175 (1982).
- [6] N. Ali, V.P. Hill, S. Labroo, J.E. Greedan. J. Solid State Chem. 83, 178 (1989).
- [7] Г.В. Базуев, Г.П. Швейкин, Т.И. Арбузова, В.Н. Деркаченко. ДАН СССР 297, 389 (1987).
- [8] T. Katsufuji, H.Y. Hwang, S.-W. Cheong. Phys. Rev. Lett. 84, 1998 (2000).
- [9] J.-G. Park, Y. Jo, J. Park, H.C. Kim, H.-C. Ri, Sh. Xu. Y. Morimoto, S.-W. Cheong. Physica B 328, 90 (2003).
- [10] Г.В. Базуев, О.В. Макарова, Г.П. Швейкин. Изв. АН СССР. Неорган. материалы 24, 88 (1988).
- [11] Г.В. Базуев, В.А. Переляев, Г.П. Швейкин. Изв. АН СССР. Неорган. материалы 10, 1066 (1974).
- [12] I. Mirebeau, A. Apetrei, I. Goncharenko, D. Andreica, P. Bonville, J.P. Sanchez, A. Amato, E. Suard, W.A. Crichton, A. Forget, D. Colson. Phys. Rev. B 74, 174 414 (2000).
- [13] I.O. Troyanchuk, N.V. Kasper, D.D. Khalyavin, H. Szymczak, A. Nabialek. J. Phys.: Cond. Matter 10, 401 (1998).