Теплопроводность и теплоемкость LuMgCu₄

© А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Н. Misiorek*, D. Wlosewicz*, J. Mucha*, A. Jezowski*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Institute of Low Temperature and Structure Research, Polish Academy of Sciences,

50-950 Wroclaw, Poland

E-mail: igor.smirnov@mail.ioffe.ru

(Поступила в Редакцию 23 апреля 2007 г.)

В интервале температур 5–300 К измерены теплопроводность \varkappa и удельное электросопротивление ρ , а при 80–300 К — теплоемкость при постоянном давлении C_p металлического немагнитного соединения LuMgCu₄. Проведено сравнение величины \varkappa и C_p LuMgCu₄ с литературными данными для "легкого" тяжелофермионного соединения YbMgCu₄. Показано, что в области низких температур (5–20 K) фононная теплопроводность \varkappa_{ph} YbMgCu₄ из-за рассеяния фононов на флуктуациях магнитных моментов 4*f*-электронов Yb оказалась меньше $\varkappa_{ph}(T)$ LuMgCu₄ и, наоборот, темлоемкость LuMgCu₄ в интервале 80–300 К оказалась меньше $C_p(T)$ YbMgCu₄ из-за наличия в YbMgCu₄ дополнительной магнитной составляющей теплоемкости.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 05-02-17775) и проводилась в рамках двустороннего научного соглашения между Польской и Российской академиями наук.

PACS: 61.82.Bg, 61.43.Dg, 63.20.Dj

В последнее десятилетие ведущие лаборатории мира в США, Японии и Германии проявляют интерес к исследованию интерметаллических соединений YbMCu₄ и LuMCu₄ (M = Ag, Au, Cd, In, Mg, Tl, Zn), поскольку эти материалы обладают весьма необычными физическими свойствами. Они кристаллизуются в гранецентрированной кубической решетке типа AuBe₅ (структура C15b, пространственная группа $F\bar{4}3m(T_a^2)$).

Соединения YbMCu₄ относятся к "легким" ("light") и "умеренным" ("moderate") тяжелофермионным системам и одновременно входят в группу материалов с гомогенной переменной валентностью редкоземельных ионов (в данном случае иона Yb). Соединения LuMCu₄ являются немагнитными металлами. В их состав входит немагнитный ион Lu. Поэтому они чаще всего используются в качестве реперных (сравнительных) материалов при анализе экспериентальных данных тяжелофермионных систем YbMCu₄. Однако значение исследования физических свойств LuMgCu₄ не ограничивается лишь отмеченными выше узкими рамками, поскольку эти свойства сами по себе бывают весьма необычными, вносящими существенный вклад в понимание физики поведения интерметаллических соединений. За последние годы в различных лабораториях мира было проведено достаточно подробное изучение физических свойств различных представителей из группы LuMCu₄. Были проведены исследования структурных [1], электрических [2–8], магнитных [1], гальваномагнитных [1,4,9], тепловых (теплоемкость при низких температурах [1,5,10], теплопроводность [7,8]) свойств, исследовались коэффициент термоэдс [11,12] и коэффициент линейного расширения [4], проводились расчеты электронной зонной структуры [13–16].

Целью настоящей работы было измерение в широком интервале температур теплопроводности \varkappa , удельного электросопротивления ρ и теплоемкости C LuMgCu₄ и сравнение этих данных с $\varkappa(T)$ и C(T), полученными в [17,18] для "легкого" тяжелофермионного соединения YbMgCu₄.

Согласно литературным данным [1,9], для LuMgCu₄ постоянная Холла в интервале температур 4–300 К равна $-(1.7-2)\cdot 10^{-10} \text{ m}^3/\text{C}$, так что этот материал является металлом, параметр γ —коэффициент при линейном члене по температуре электронной составляющей теплоемкости ($C_e \sim \gamma T$), пропорциональный эффективной массе носителей тока, — равен 8.7 mJ/mol·K², температура Дебая $\theta = 290$ К и параметр элементарной ячейки a = 7.129 Å.

1. Приготовление образцов, методики измерений

Литые поликристаллические образцы LuMgCu₄ приготовлялись по методике, описанной в [11,12,19]. Полученные образцы проходили рентгеноструктурный анализ на установке ДРОН-2 (в CuK α -излучении). Определялись значения параметров элементарной ячейки *a*. Параметр *a* для выбранного нами для исследования образца LuMgCu₄ составил 7.136 Å.

Теплопроводность и удельное электросопротивление измерялись в интервале температур $5-300 \, \text{K}$ на установке, аналогичной [20], в вакууме $\sim 10^{-5} \, \text{mm Hg}$.

Измерение теплоемкости при постоянном давлении C_p проводилось в вакууме в интервале 80-300 К в адиабатическом калориметре [21]. В литературе данные о теплопроводности и теплоемкости LuMgCu₄ в указанных выше интервалах температур отсутствовали.

2. Полученные результаты и их обсуждение

На рис. 1 и 2 приведены соответственно температурные зависимости полной измеренной на эксперименте теплопроводности \varkappa_{tot} и удельного электросопротивле-

Рис. 1. Температурная зависимость общей теплопроводности $\varkappa_{tot}(T)$ для LuMgCu₄.

Рис. 2. Температурная зависимость удельного электросопротивления LuMgCu₄. На вставке — эта же зависимость представлена в логарифмическом масштабе.

ния ρ LuMgCu₄. Из данных, представленных на вставке к рис. 2, следует, что величина остаточного удельного электросопротивления ρ_0 у исследованного образца равна 13.2 $\mu\Omega \cdot$ cm.

Согласно данным по эффекту Холла [1.9], LuMgCu₄ во всем измеренном интервале температур (5–300 K) можно отнести к металлам, для которых \varkappa_{tot} выражается в виде суммы решеточной (фононной) \varkappa_{ph} и электронной \varkappa_e составляющих теплопроводности [22]:

$$\varkappa_{\rm tot} = \varkappa_{\rm ph} + \varkappa_{\rm e},$$
 (1)

*и*е подчиняется закону Видемана-Франца и записывается в виде

$$\varkappa_{\rm e} = L_0 T / \rho \,, \tag{2}$$

где L_0 — зоммерфельдовское значение числа Лоренца ($L_0 = 2.45 \cdot 10^{-8} \text{ W} \cdot \Omega/\text{K}^2$).

На рис. З приведена температурная зависимость $\varkappa_{\rm ph}(T)$ LuMgCu₄, рассчитанная с помощью (1) и (2) из данных для $\varkappa_{\rm tot}$ и $\rho(T)$, представленных на рис. 1 и 2.

На первый взгляд характер поведения $\varkappa_{\rm ph}(T)$ в интервале температур 5–100 К типичен для твердых тел: рост теплопроводности с повышением температуры в области низких температур, прохождение через максимум в районе ~ 32 К и затем уменьшение $\varkappa_{\rm ph}(T)$ с дальнейшим возрастанием температуры.

Если рассматривать всю исследованную температурную область (5–300 K) и более критично подойти к анализу поведения $\varkappa_{\rm ph}(T)$ в области 5–100 K, то выявляются некоторые особенности, которые обсуждаются далее.

В интервале температур 30–100 К $\varkappa_{\rm ph}$ уменьшается с ростом температуры по закону $\varkappa_{\rm ph} \sim T^{-0.3}$, а не $\varkappa_{\rm ph} \sim T^{-1}$, как это должно быть для поведения теплопроводности в случае бездефектного (или слабодефектного) твердого тела. Зависимость $\varkappa_{\rm ph} \sim T^{-0.3}$ характерна для сильнодефектных материалов. Отступление от зависимости $\varkappa_{\rm ph} \sim T^{-1}$ в аналогичной области температур наблюдалось и ранее при исследовании теплопроводности LuInCu₄ ($\varkappa_{\rm ph} \sim T^{-0.6}$) [8] и LuAgCu₄ ($\varkappa_{\rm ph} \sim T^{-0.5}$) [7].

Более серьезные вопросы вызывают следующие обстоятельства: 1) при низких температурах в интервале 5–15 К $\varkappa_{\rm ph} \sim T$; 2) при T > 100 К $\varkappa_{\rm ph}(T)$ сильно возрастает с повышением температуры, отклоняясь от зависимости $\varkappa_{\rm ph} \sim T^{-0.3}$.

Рассмотрим более подробно причины нестандартного поведения $\varkappa_{\rm ph}(T)$, отмеченного выше.

В изоляторах или материалах с небольшой величиной электропроводности при низких температурах ($T \ll \theta$), согласно теории теплопроводности [23], $\varkappa_{\rm ph} \sim T^3$, в металлах из-за рассеяния фононов на носителях тока $\varkappa_{\rm ph} \sim T^2$ [23]. Однако у ряда металлических твердых тел (некоторых металлических составов [24], CeAl₃ [25], CeCu₂Si₂ [26], UCu₅In [27]) в области низких температур наблюдается зависимость $\varkappa_{\rm ph} \sim T$. Согласно теоретическим расчетам [24], подобная температурная

Рис. 3. Температурная зависимость фононной теплопроводности LuMgCu₄. На вставке — $L_x/L_0 = f(T)$ для LuMgCu₄ в области температур 100–300 К (см. текст).

зависимость $\varkappa_{\rm ph}(T)$ может проявиться при низких температурах в металлических материалах, у которых $\rho_0 > 10 \,\mu\Omega \cdot {\rm cm}$, а длина волны фононов в этой области температур становится сравнимой или превышает величину длины свободного пробега носителей тока.

Возможно, подобная ситуация имеет место и в наблюдаемом нами случае с $\varkappa_{\rm ph}$ для образца LuMgCu₄, у которого, как отмечалось выше, $\rho_0 = 13.2 \,\mu\Omega \cdot {\rm cm}$. Остановимся теперь на обсуждении возможных причин, которые могли бы быть ответственны за возрастание $\varkappa_{\rm ph}(T)$ LuMgCu₄ при T > 100 K (рис. 3).

1) Это могло быть связано с появлением при T > 100 К дополнительной теплопроводности за счет биполярной диффузии носителей тока, как это имело место в полуметалле LuInCu₄ [8]. Однако, согласно данным для постоянной Холла [1,9], LuMgCu₄ во всем исследованном интервале температур (5–300 K) не является полуметаллом, а ведет себя как достаточно хороший металл, у которого биполярной диффузии носителей тока не должно быть.

2) Можно предположить, что при выделении $\varkappa_{\rm ph}(T)$ из полученной в эксперименте общей теплопроводности $\varkappa_{\rm tot}(T)$ по формулам (1) и (2) был неправильно проведен учет электронной составляющей $\varkappa_{\rm e}$ по закону Видемана—Франца в формуле (2).

Для того чтобы "ликвидировать" возрастание $\varkappa_{\rm ph}$ в области $T > 100 \, {\rm K}$ по сравнению со значениями $\varkappa_{\rm ph}$, соответствующими штриховой прямой I на рис. 3, необ-

ходимо, чтобы в формуле (2) число Лоренца L_x было больше зоммерфельдовского значения L_0 . Для этого в интервале 100–300 К отношение L_x/L_0 (L_x — реальное значение числа Лоренца для этого интервала температур) должно возрасти от 1 до 1.06 (см. вставку к рис. 3). Такая ситуация может иметь место в металлах при наличии в них сложной зонной структуры [28], когда в них наряду с зоной легких носителей тока имеется зона с тяжелыми носителями тока и наблюдается межзонное взаимодействие между носителями тока, находящимися в этих зонах.

Однако окончательной ясности в причинах возрастания $\varkappa_{\rm ph}(T)$ при T > 100 K у LuMgCu₄ все же нет. Возможно, в дальнейшем по мере накопления новых экспериментальных данных и теоретических разработок могут появиться и иные объяснения обнаруженного эффекта, более близкие к реальной ситуации. Поведение $\varkappa_{\rm ph}(T)$, подобное полученному в настоящей работе для LuMgCu₄ в области 100–300 K, наблюдалось нами ранее [7] и для LuAgCu₄.

На рис. 4 приведены данные для $\varkappa_{\rm ph}(T)$, полученные в настоящей работе для LuMgCu₄ и заимствованные из [17] для YbMgCu₄. Фононная теплопроводность кристаллического образца "легкого" тяжелофермионного соединения проявляет несвойственную для кристаллических тел температурную зависимость $\varkappa_{\rm ph}(T)$. Она имеет "аморфноподобный" вид, обусловленный наличием в YbMgCu₄ иона Yb с гомогенной переменной валентностью [17].

 $\kappa_{\rm ph}(T)$ для LuMgCu₄ имеет температурную зависимость, характерную для кристаллических тел, за исключением особенностей, наблюдающихся при T > 100 K.

Особый интерес представляет область низких температур (5–20 K).

1) Здесь фононная теплопроводность YbMgCu₄ меньше по величине по сравнению с $\varkappa_{\rm ph}$ LuMgCu₄. Подобный эффект для $\varkappa_{\rm ph}(T)$ был обнаружен для области низких температур в [29] для CeAuAl₃ и LaAuAl₃. Уменьшение $\varkappa_{\rm ph}$ CeAuAl₃ по сравнению с LaAuAl₃ объяснялось

Рис. 4. Температурные зависимости \varkappa_{ph} для LuMgCu₄ и YbMgCu₄ [17].

в этой работе рассеянием фононов на флуктуациях магнитного момента 4f-электронов Се. Подобное объяснение можно, вероятно, дать и для обнаруженного нами эффекта уменьшения $\varkappa_{\rm ph}$ в YbMgCu₄, где также может происходить рассеяние фононов на флуктуациях магнитного момента 4f-электронов Yb. Ионы La и Lu, как известно, не являются магнитными ионами.

2) В этой области температур $x_{\rm ph} \sim T$ как для LuMgCu₄, так и для YbMgCu₄. Физическая природа такой температурной зависимости была подробно рассмотрена нами выше для LuMgCu₄. Возможно, и для YbMgCu₄ она имеет такое же объяснение.

На рис. 5 приведены данные для $C_p(T)$, полученные для LuMgCu₄, а на рис. 6 проведено сравнение их с $C_p(T)$ для YbMgCu₄ [18].

Из рис. 6 видно, что теплоемкость LuMgCu₄ по своей величине оказалась меньше $C_p(T)$ YbMgCu₄ во всем исследованном интервале температур (80–300 K). Это происходит из-за наличия в YbMgCu₄ дополнительной магнитной составляющей теплоемкости. Такая же картина наблюдалась нами ранее при исследовании теплоемкости YbZnCu₄ и LuZnCu₄ [30].

В заключение можно сделать следующие выводы.

1) В интервале 5-300 К измерены теплопроводность, удельное электросопротивление, а при 80-300 К — теплоемкость при постоянном давлении металлического

Рис. 5. Температурная зависимость C_p для LuMgCu₄. I — значения, полученные при измерении обратного хода $C_p(T)$. На вставке — зависимость $C_p(T)$ для LuMgCu₄, представленная в логарифмическом масштабе.

Рис. 6. Температурные зависимости C_p для LuMgCu₄ и YbMgCu₄ [18].

немагнитного соединения LuMgCu₄. Измерения проводились на поликристаллическом образце.

2) Из сравнения величин теплопроводностей и теплоемкостей LuMgCu₄ и "легкого" тяжелофермионного соединения YbMgCu₄ [17,18] сделаны следующие заключения: а) в области низких температур (5–20 K) $\varkappa_{\rm ph}(T)$ YbMgCu₄ оказалась меньше по величине, чем $\varkappa_{\rm ph}(T)$ LuMgCu₄, из-за рассеяния фононов на флуктуациях магнитных моментов 4*f*-электронов Yb; b) в области температур 80–300 K $C_p(T)$ YbMgCu₄ [18] оказалась больше по величине, чем $\varkappa_p(T)$ LuMgCu₄, из-за наличия, чем $C_p(T)$ LuMgCu₄, из-за наличия в YbMgCu₄ дополнительной магнитной составляющей теплоемкости.

Авторы выражают благодарность Н.Ф. Картенко и Н.В. Шаренковой за проведение рентгеноструктурного анализа образцов LuMgCu₄.

Список литературы

 J.L. Sarrao, C.D. Immer, Z. Fizk, C.H. Booth, E. Figueroa, J.M. Lowrence, R. Modler, A.L. Cornelius, M.F. Hundley, J.H. Kwei, J.D. Thompson, F. Bridges. Phys. Rev. B 59, 6855 (1999).

- [2] I. Felner, I. Nowik, D. Vaknin, U. Potzel, J. Moezer, G.M. Kalvius, D. Wartmann, G. Schmiester, G. Hikscher, E. Gtatz, C.C. Schmiester, N. Pilmayr, K.G. Prasad, H. de Waard, H. Pinto. Phys. Rev. B 35, 6956 (1987).
- [3] H. Müller, E. Bauer, E. Gratz, K. Yoshimura, T. Nitta, M. Mekata. J. Magn. Magn. Mater. 76–77, 159 (1988).
- [4] H. Nakamura, K. Ito, M. Shiga. J. Phys.: Cond. Matter 6, 9201 (1994).
- [5] N. Pillmayr, E. Bauer, K. Yoshimura. J. Magn. Magn. Mater. 104–107, 639 (1992).
- [6] E. Bauer, R. Hauzer, E. Gratz, K. Pauer, G. Oomi, T. Kagayama. Phys. Rev. B 48, 15 873 (1993).
- [7] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисиорек, Я. Муха, А. Ежовский. ФТТ 42, 1938 (2000).
- [8] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисиорек, Я. Муха, А. Ежовский. ФТТ 42, 1357 (2000).
- [9] E. Fugiera, J.M. Lowrence, J.L. Sarrao, Z. Fizk, M.F. Hundley, J.D. Thompson. Solid State Commun. 106, 347 (1998).
- [10] M.J. Besnus, P. Haen, N. Hamdaoui, A. Herr, A. Meyer. Physica B 163, 571 (1990).
- [11] А.В. Гольцев, А.В. Голубков, И.А. Смирнов, Н. Misiorek, Cz. Shulkovski. ФТТ 48, 583 (2006).
- [12] А.В. Голубков, А.В. Гольцев, Н.Ф. Картенко, И.А. Смирнов, Сz. Shulkovski, Н. Misiorek. ФТТ 49, 1159 (2007).
- [13] K. Takegahara, T. Kasuya. J. Phys. Soc. Jap. 59, 3299 (1990).
- [14] V.N. Antonov, M. Galli, F. Marabelli, A.N. Yeresko, A.Ya. Perlov, E. Bauer. Phys. Rev. B 62, 1742 (2000).
- [15] A. Continenza, P. Monachesi. J. Appl. Phys. 79, 6423 (1996).
- [16] P. Monachesi, A. Continenza. Phys. Rev. B 54, 13 558 (1996).
- [17] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, H. Misiorek, J. Mucha, A. Jezowski. ФТТ 49, 1945 (2007).
- [18] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, D. Wlosewicz, H. Misiorek, J. Mucha, A. Jezowski, A.I. Krivchikov, G.A. Zvyagina, I.B. Bilich. ФТТ 49, 1949 (2007).
- [19] А.В. Голубков, Т.Б. Жукова, В.М. Сергеева. Изв. АН СССР. Неорган. материалы 2, 77 (1966).
- [20] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 20, 1500 (1987).
- [21] D. Wlosewicz, T. Plackwcki, K. Rogacki. Cryogenics 32, 265 (1992).
- [22] И.А. Смирнов, В.И. Тамарченко. Электронная теплопроводность в металлах и полупроводниках. Наука, Л. (1977). 151 с.
- [23] В.С. Оскотский, И.А. Смирнов. Дефекты в кристаллах и теплопроводность. Наука, Л. (1972). 159 с.
- [24] J.E. Zimmerman. J. Phys. Chem. Sol. 11, 299 (1959).
- [25] H.R. Ott, O. Marti, P. Hulliger. Solid State Commun. 75, 1129 (1984).
- [26] W. Franz, A. Griessel, F. Steglich, D. Wohlleben. Z. Phys. B 31, 7 (1978).
- [27] D. Kaczorowski, R. Troc, A. Czopnik, A. Jezowski, Z. Henkie, V.I. Zeremba. Phys. Rev. B 63, 144 401 (2001).
- [28] Н.В. Коломеец. ФТТ 8, 997 (1966).
- [29] Y.Aoki, M.A. Chernikov, H.R. Ott, H. Sugawara, H. Sato. Phys. Rev. B 62, 87 (2000).
- [30] А.В. Голубков, И.А. Смирнов, D. Wlosewicz, H. Misiorek, A.I. Krivchikov. ФТТ 49, 1164 (2007).