Модуль Юнга и внутреннее трение пористых биоуглеродных матриц дерева сосны

© Б.К. Кардашев, Т.С. Орлова, Б.И. Смирнов, Т.Е. Wilkes*, К.Т. Faber*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия * Department of Materials and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Campus Drive, Evanston, USA

E-mail: b.kardashev@mail.ioffe.ru, smir.bi@mail.ioffe.ru

(Поступила в Редакцию 2 апреля 2009 г.)

В интервале температур 100–293 К на воздухе и в вакууме исследованы амплитудные и временные зависимости модуля Юнга и внутреннего трения (поглощения ультразвука) биоуглеродных матриц, изготовленных из дерева сосны при двух температурах пиролиза (карбонизации) — 1000 и 2400°С. Измерения проведены акустическим резонансным методом составного вибратора на образцах, вырезанных вдоль и поперек направления роста дерева. Установлено существенное влияние процесса десорбции молекул внешней среды при малых амплитудах ультразвуковых колебаний на действующий модуль упругости и декремент упругих колебаний. По данным акустических измерений амплитудных зависимостей модуля упругости произведена оценка микропластических свойств изученных образцов. Показано, что повышение температуры карбонизации приводит к заметным изменениям модуля Юнга и внутреннего трения, а также к снижению напряжений микропластического деформирования σ_y исследованного биоматериала. При этом для образцов, вырезанных поперек направления роста дерева, величина σ_y существенно меньше, чем у "продольных" образцов. Проведено также сравнение упругих и микропластических свойств биоматриц, приготовленных из сосны и белого эвкалипта.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 07-03-91353ННФ_а) и Программы Президиума РАН (П-03).

The finansial support for T.E.W. and K.T.F. from the U.S. National Science Foundation under grant DMR-0710630 is gratefully acknowledged.

PACS: 62.20.Fe, 62.20.Dc, 81.40.Jj

1. Введение

Настоящая работа продолжает исследования [1,2], посвященные изучению упругих и неупругих характеристик биоморфного углерода (биоуглерода) с канальным типом пор. Биоуглерод получается путем пиролиза (карбонизации) дерева в атмосфере аргона, после чего образуется высокопористый (до 75 vol.%) нанокластерный углеродный материал (матрица) со сквозными микро- и наноразмерными порами, повторяющими картину естественных "питательных" каналов исходного дерева [3]. При этом наблюдается два вида пустых каналов [4]: с большими ($\sim 30-100\,\mu m$) и малыми ($\sim 5-10\,\mu m$) поперечными размерами. Суммарно объемная доля всех пор составляет 37-75 vol.%, причем размеры и доля этих пор для разных пород дерева могут значительно различаться. Указанный биоморфный углерод представляет большой интерес: 1) как новая форма существования высокопористого материала с нестандартным канальным типом пор [3,4]; 2) как биоматрица для приготовления биоморфных SiC и композитов SiC/Si путем инфильтрации Si [3,5,6]; 3) как "контейнер" для получения композитов углерод/металл [7], углерод/органика и др.

В [1,2] изучалось влияние амплитуды колебательной деформации и температуры на модуль Юнга и поглощение ультразвука в биоуглероде, полученном на основе белого эвкалипта (пористость $\sim 37 \text{ vol.}\%$). Было обнаружено, что адсорбция-десорбция молекул внешней среды (воздуха) в значительной степени определяет величины действующего модуля упругости и декремента акустических колебаний. В настоящей работе основное внимание уделено исследованию поведения акустических характеристик (модуля Юнга Е и декремента ультразвуковых колебаний δ) углеродной биоматрицы из белой сосны, структура которой существенно отличается (в частности, ее пористость составляет ~ 75 vol.%) от структуры биоуглерода из эвкалипта. Как и в [1,2], акустические измерения выполнены в широком диапазоне амплитуд при температурах от ~ 100 до 293 K как на воздухе, так и в вакууме. Проводится также сопоставление свойств биоуглеродных матриц сосны и эвкалипта.

Образцы и экспериментальная методика

Как отмечалось выше, в качестве объекта исследований были выбраны углеродные биоматрицы ("прекурсоры") из сосны. Для их получения предварительно вырезанные пластины дерева подвергались пиролизу в атмосфере аргона а течение 1 h при 1000°С (PI-C-1000). Затем некоторые из них отжигались в течение 30 min при 2400°С (PI-C-2400). Окончательный продукт представлял собой углеродную биоматрицу, сохранившую основные микроструктурные особенности исходного натурального материала. Типичная микроструктура биоуглерода сосны в сечении, перпендикулярном росту дерева (или канальным порам), показана в работе [8]. Пористая структура биоуглеродных образцов сосны подобна для обеих температур карбонизации и представляет собой достаточно регулярную ячеистую структуру с размерами пор ~ $10-30\,\mu$ m, что отличает данные образцы от биоуглерода эвкалипта, бука и сапели, для которых характерным является наличие пор малого (единицы микрон) и большого ($50-150\,\mu$ m) диаметров.

Специальный рентгенодифракционный анализ исследуемых в работе образцов проведен в [8]. Было показано, что такой биоуглерод относится к материалам, состоящим из двух фаз: аморфного углерода, сохраняющего только ближний порядок, и углеродного вещества, состоящего из наноразмерных графитоподобных кристаллитов. Степень кристалличности существенно выше в образцах PI-C-2400 ($T_{carb} = 2400^{\circ}C$). В образцах, полученных при температурах карбонизации 1000 и 2400°С, размеры кристаллитов находятся в пределах 12-35 и 25-75 Å соответственно. Кристаллиты могут существовать в виде одиночных, беспорядочно ориентированных слоев либо образовывать пакеты графитовые осколки. Было отмечено, что увеличение $T_{\rm carb}$ до 2400°C значительно повышало размер и долю графитовых осколков и, возможно, даже приводило к некоторому упорядочению их взаимной ориентации, хотя еще без образования графита в явной форме.

Плотности приготовленных таким образом образцов PI-C-1000 и PI-C-2400 составляли ~ 0.4 g/cm³. Значения пористости образцов и плотности самих углеродных каркасов определялись по стандартным методам гидростатического взвешивания и составили 75 vol.% и ~ 1.56 g/cm³ соответственно.

Образцы для акустических исследований представляли собой стержни длиной $\sim 20 \,\mathrm{mm}$ с примерно квадратным поперечным сечением площадью $\sim 16 \,\mathrm{mm}^2$. Изучались образцы, ориентированные как вдоль, так и поперек ростовых волокон исходного дерева.

Как и в [1,2] при исследованиях биоуглеродной матрицы из эвкалипта, для измерений модуля Юнга *E* и декремента ультразвуковых колебаний δ использовался метод составного вибратора. В образцах возбуждались продольные резонансные колебания на частоте около 100 kHz. Диапазон амплитуд колебательной деформации ε был в пределах от ~ 10⁻⁷ до 2 · 10⁻⁴. Подробное описание метода можно найти в [9].

Исследования были выполнены в таком порядке: вначале измерялись амплитудные зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$ на образце, хранившемся после изготовления в нормальных условиях, т.е. на воздухе при атмосферном давлении и комнатной температуре. Затем акустическая система (испытуемый образец и кварцевый преобразователь) помещалась в вакуумную камеру. В дальнейшем измерения проводились при давлении $\sim 10^{-3}\,{\rm mm}$ Hg. Были получены данные об амплитудных, временны́х и температурных зависимостях модулях Юнга E и декремента $\delta.$

3. Экспериментальные данные и обсуждение

На рис. 1, *а* приведены зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$ для двух образцов углеродной матрицы PI-C-1000 и PI-C-2400, изготовленных вдоль волокон исходного дерева. В этих измерениях образцы впервые после приготовления подвергались воздействию высоких амплитуд. Из рисунка видно, что при первом увеличении акустической нагрузки на исследуемые образцы модуль Юнга Е заметно растет, а декремент δ плавно уменьшается. Как и для биоматрицы из эвкалипта [1,2], изменения модуля в значительной степени оказываются необратимыми: после окончания измерений в области малых є модуль Е увеличивается по сравнению с первоначальным значением. Декремент же при этом необратимо уменьшается. При повторных измерениях зависимостей $E(\varepsilon)$ и $\delta(\varepsilon)$ кривые, регистрируемые при увеличении и уменьшении амплитуды, практически совпадают друг с другом и с первоначальной кривой, полученной при уменьшении є (данные повторных измерений на рис. 1, a не показаны). Качественно аналогичное поведение демонстрируют и образцы, вырезанные поперек волокон исходного дерева (рис. 1, b); отличие состоит лишь в значениях модуля и декремента. При этом величины Е для "продольных" образцов больше, а δ меньше, чем для "поперечных", и в обоих случаях у PI-C-1000 значения Е меньше, чем y PI-C-2400.

Особенность акустических свойств углеродной биоматрицы из сосны по сравнению с матрицей из эвкалипта [1] заключается в низких значениях модуля (см. таблицу) и высоких значениях декремента.

В вакуумной камере у биоматрицы сосны (рис. 2), как и у биоматрицы эвкалипта [1,2], модуль в процессе откачки заметно растет, а декремент падает, что свидетельствует о влиянии адсорбированных молекул воз-

Значения модуля Юнга и условного предела микротекучести σ_y при деформации $\varepsilon_d = 1.0 \cdot 10^{-8}$ (измерения выполнены в вакууме)

Образец	$T = 293 \mathrm{K}$		$T = 100 \mathrm{K}$	
	E, GPa	σ_y , MPa	E, GPa	σ_y , MPa
PI-C-1000 (along) PI-C-2400 (along) PI-C-1000 (across) PI-C-2400 (across)	7.85 8.77 4.69 6.21	0.70 0.28 0.045 0.024	7.92 8.90 4.67 6.26	1.1 0.46 0.051 -
Eucalyptus (along) Eucalyptus (across)	15.15	0.32	15.75	0.55 0.29

Рис. 1. Амплитудные зависимости модуля Юнга *E* и декремента δ для образцов углеродной матрицы PI-C-1000 и PI-C-2400, изготовленных вдоль (*a*) и поперек (*b*) волокон исходного дерева. Измерения выполнены на воздухе при атмосферном давлении на свежеприготовленных образцах. Стрелки показывают направление изменения ε . *T* = 293 K.

Рис. 2. Временны́е зависимости модуля Юнга *E* и декремента δ для образцов углеродной матрицы, изготовленных вдоль волокон исходного дерева. Измерения выполнены в вакууме под откачкой на образцах, подвергавшихся воздействию высоких амплитуд на воздухе при комнатной температуре. $\varepsilon = 2.0 \cdot 10^{-6}$, T = 293 К. Первые точки и числа на кривых соответствуют измерениям при атмосферном давлении.

духа на измеряемые акустические параметры [1,2]. При рассмотрении рис. 2 важно отметить, что для образцов углеродной матрицы, изготовленных при более высокой температуре карбонизации (PI-C-2400), временные зависимости выражены очень слабо по сравнению с биоматрицей PI-C-1000: и модуль, и декремент достигают своих равновесных значений в PI-C-2400 практически сразу после начала откачки. Это свидетельствует о том, что удаление молекул воздуха из PI-C-1000 затруднено. Возможно такое поведение связано с различными адсорбционными свойствами поверхности у PI-C-1000 и PI-C-2400, обусловленными разной степенью упорядоченности структуры (степенью кристалличности).

На рис. 3, *а* показаны зависимости $E(\varepsilon)$ и $\delta(\varepsilon)$ для PI-C-2400, полученные на "продольном" образце в вакууме при комнатной температуре. При сопоставлении рис. 1, *а* и 3, *а* обращает на себя внимание тот факт, что после предварительного воздействия высоких амплитуд и вакуума вид кривых $E(\varepsilon)$ и $\delta(\varepsilon)$ существенно изменяется. Они становятся похожими на аналогичные зависимости для металлов и ионных кристаллов, обладающих заметной пластичностью, где при постепенном увеличении

амплитуды ε модуль падает, а декремент растет. В исследуемом биоматериале наблюдается еще и небольшой амплитудный гистерезис, также проявляющийся в пластичных материалах [9]. При рассмотрении данных на рис. 3, *а* можно отметить более высокие значения модуля и низкие значения декремента по сравнению с измерениями на воздухе (рис. 1, *a*), что является обычным для вакуумных измерений.

При низкой температуре (рис. 3, b) наблюдаются небольшие различия в характере зависимостей $E(\varepsilon)$ и $\delta(\varepsilon)$ по сравнению с комнатной температурой (рис. 3, a). Однако и здесь воздействие высокой амплитуды приводит к небольшому увеличению декремента и заметному падению модуля Юнга, что, как отмечалось выше, является свойством пластичных материалов.

На рис. 4 показаны температурные зависимости E(T) и $\delta(T)$, измеренные при охлаждении для всех изученных образцов биоуглеродной матрицы сосны. Видно, что модуль Юнга слабо зависит от температуры: изменения E в интервале температур 293–100 К для разных образцов не превышают 1–5%. Что касается декремента, то здесь общая тенденция — уменьшение δ с понижением температуры. Однако для образца PI-C-1000, вырезанного вдоль направления роста исходного дерева (along),

Рис. 3. Амплитудные зависимости модуля Юнга E и декремента δ для образца углеродной матрицы PI-C-2400, изготовленного вдоль волокон исходного дерева. Измерения выполнены в вакууме на образце, подвергавшемся воздействию высоких амплитуд. Стрелки показывают направление изменения ε . T = 293 (a) и 100 K (b).

Рис. 4. Температурные зависимости модуля Юнга *E* и декремента δ для образцов углеродной матрицы PI-C-1000 (*1*, 2) и PI-C-2400 (*3*, 4), изготовленных вдоль (*1*, 3) и поперек (*2*, 4) волокон исходного дерева. Измерения выполнены в вакууме при охлаждении на образцах, подвергавшихся воздействию высоких амплитуд при комнатной температуре. $\varepsilon = 2.0 \cdot 10^{-6}$.

Рис. 5. Кривые напряжение–микропластическая деформация, полученные по данным акустических измерений на образцах углеродных матриц, изготовленных вдоль (along) и поперек (across) волокон исходного дерева. T = 293 К.

на эту общую тенденцию накладываются, как видно из рисунка, небольшие максимумы внутреннего трения. Подобные максимумы ярко проявлялись на более плотных образцах биоматрицы эвкалипта в [1,2], где было показано, что они возникают вследствие изменения фазового состояния адсорбированных молекул углекислого газа. По всей видимости, в образце PI-C-1000 (along) сохраняется небольшое количество молекул CO₂. В других образцах PI-C-1000 (across), PI-C-2400 (along) и PI-C-2400 (across) углекислого газа, очевидно, практически нет. Об этом можно судить по отсутствию максимумов на кривых $\delta(T)$ для этих образцов. Кроме того, дополнительным доказательством возможного наличия CO₂ служит и то, что для образца PI-C-1000 (along) наблюдаются самые медленные изменения модуля и декремента в процессе вакуумной откачки (рис. 2). Это означает, что в этом образце в более плотно закрытых порах (как отмечалось при обсуждении рис. 2) может надолго задерживаться воздух, в том числе и молекулы СО2, несмотря на окружающий вакуум.

У исследованных в настоящей работе углеродных биоматриц из сосны проявились также и их микропластические свойства. На рис. 5 приводятся диаграммы напряжение-микропластическая деформация, полученные по результатам акустических измерений в вакууме. При построении диаграмм были использованы зависимости $E(\varepsilon)$, подобные кривым на рис. 3, полученным при увеличении амплитуды. Процедура построения подобных диаграмм приведена в [10,11]. На рис. 5 и в таблице проводится сравнение микропластических свойств (условного предела микропластичности σ_y при $\varepsilon_d = 1.0 \cdot 10^{-8}$) изученных образцов биоуглеродных матриц. При сопоставлении легко увидеть, что образцы, вырезанные поперек волокон исходного дерева, заметно уступают вырезанным вдоль образцам по уровню напряжений микротекучести σ_y . Также имеют меньшие значения σ_y и биоматрицы, приготовленные при температуре карбонизации 2400°С. Сравнение биоматриц из сосны и эвкалипта (см. таблицу) указывает на то, что эвкалиптовая биоматрица обладает более высокими значениями и *E*, и σ_y .

Полученные экспериментальные данные свидетельствуют о том, что упругие и неупругие свойства биоуглеродных матриц на основе дерева определяются рядом факторов, а именно типом дерева, температурой его карбонизации, ориентацией образца относительно направления роста дерева, а также возможными процессами адсорбции-десорбции молекул внешней среды (воздуха).

Рассмотрим кратко возможные объяснения наблюдаемых экспериментальных фактов. При этом будем иметь в виду, что измеряемые (действующие) значения E и σ_y определяются исходя из полного сечения образца, а не составляющего его биоуглерода. В таком случае для волоконных структур с пустыми каналами отношение измеренных вдоль этих каналов модулей Eразличных биоуглеродных матриц должно быть обратно пропорционально отношению их пористостей. По данным таблицы для случая эвкалипта ($E_{\rm EU}$) и сосны ($E_{\rm PI}$) $E_{\rm EU}/E_{\rm PI} = 15.15/7.85 = 1.93$, а отношение пористостей $V_{\rm PI}/V_{\rm EU} \approx 75/37 \approx 2.03$, т.е. указанное условие практически выполняется.

Что касается анизотропии E и σ_y относительно направления силового воздействия на образцы вдоль и поперек роста дерева, то здесь, скорее всего, определяющей является существенная разница в структуре биоуглеродных матриц в этих двух направлениях.

Увеличение модулей упругости при повышении температуры карбонизации как вдоль, так и поперек роста дерева, безусловно, связано со степенью кристаллизации биоуглерода. Повышение же при этом размера кристаллитов примерно в 2 раза и приводит, по-видимому, к облегчению процесса микропластической деформации и, как следствие, к понижению σ_{y} .

Таким образом, проведенные в настоящей работе исследования упругих и неупругих свойств биоуглеродной матрицы сосны вдоль и поперек ростовых каналов дерева после двух температур карбонизации (1000 и 2400°С) помимо наблюдения ярко выраженного процесса десорбции молекул среды при акустических испытаниях исходных образцов показали, что модуль упругости *E* для "продольных" образцов всегда больше, чем для "поперечных", а значение *E* у PI-C-2400 в обоих случаях больше, чем у PI-C-1000. Последнее обстоятельство связано с наблюдаемой различной степенью кристаллизации биоуглерода при разных температурах T_{carb} . Установлено при этом и облегчение процесса микропластической деформации (понижение σ_y) при

повышении T_{carb} . Полученные результаты по E и σ_y для биоматрицы сосны сопоставляются с подобными данными для биоматрицы эвкалипта.

Список литературы

- Б.К. Кардашев, Ю.А. Буренков, Б.И. Смирнов, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ФТТ 47, 860 (2005).
- [2] B.K. Kardachev, B.I. Smirnov, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. Mater. Sci. Eng. A 442, 444 (2006).
- [3] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, M. Singh, Int. J. Appl. Ceram. Technol. 1, 95 (2004).
- [4] F.M. Varela-Feria. Ph. D. thesis. Universidad de Sevilla (2004).
- [5] P. Greil, T. Ligka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961 (1998).
- [6] V.S. Kaul, K.T. Faber, R. Sepulveda, A.R. de Arellano-Lopez, J. Martinez-Fernandez. Mater. Sci. Eng. A 428, 225 (2006).
- [7] P. Šebo, P. Štefanik. Int. J. Mater. Product Technol. (Special Issue) 18, 1–3, 141 (2003).
- [8] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, T.E. Wilkes, К.Т. Faber. ФТТ 50, 2150 (2008).
- [9] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985). 254 с.
- [10] V.M. Chernov, D.K. Kardachev, L.M. Krjukova, L.I. Mamaev, O.A. Plaksin, A.E. Rusanov, M.I. Solonin, V.A. Stepanov, S.N. Votinov, L.P. Zavialsky. J. Nucl. Mater. 257, 263 (1998).
- [11] Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, D. Singh, К.С. Goretta, A.R. de Arellano-Lopez. ФТТ 43, 2010 (2001).