Изучение особенности фазовых переходов в (NH₄)₂WO₂F₄ с помощью неупругого рассеяния нейтронов

© Л.С. Смирнов, А.И. Колесников*, И.Н. Флёров**,***, Н.М. Лапташ****

Институт теоретической и экспериментальной физики, Москва, Россия * Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA ** Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, Красноярск, Россия *** Сибирский федеральный университет, Красноярск, Россия **** Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия E-mail: Ismirnov@nf.jinr.ru

(Поступила в Редакцию 15 января 2009 г.)

Выполнены исследования оксифторида $(NH_4)_2WO_2F_4$ методом неупругого рассеяния нейтронов в широкой области температур 10–300 K при двух начальных энергиях нейтронов 15 и 60 meV. Обсуждается роль тетраэдрических аммонийных групп в механизме последовательных фазовых переходов при $T_1 = 201$ K и $T_2 = 160$ K.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-02-00062) и ORNL/SNS, управляемой UT-Battelle, LLC, Департамент энергии США (контракт DE-AC05-00OR22725); эксперименты в Аргонской национальной лаборатории были поддержаны Офисом общих наук по энергии, Отделение материаловедения департамента энергии США (контракт DE-AC02-06CH11357).

PACS: 61.05.F-, 64.60.Cn, 65.40.gd

1. Введение

Оксифториды, содержащие в структуре в качестве одного из главных элементов шестикоординированные (квазиоктаэдрические) анионы, рассматриваются как перспективные соединения для получения полярных материалов [1]. Действительно, в зависимости от соотношения фтора и кислорода (F:O) в полиэдре и взаимного расположения лигандов (cis-, trans-, facконфигурации) локальная симметрия квазиоктаэдров может быть тетрагональной, ромбической и тригональной. Центральный атом в полиэдре, как правило, смещен по направлению к атомам кислорода, что приводит к появлению дипольного момента. К настоящему времени известно значительное разнообразие химических соединений, которые могут быть объединены в несколько рядов оксифторидов, например, с общими формулами следующего вида: $A_3MO_xF_{6-x}$ (x = 1, 2, 3; M = Ti, Nb, W, Мо и др.) и $A_2MO_2F_4$ (M = W, Mo), где A одновалентный катион. Первые соединения, несмотря на низкую локальную симметрию шестикоординированных анионов и возможное существование в них дипольного момента, кристаллизуются преимущественно в кубической перовскитоподобной структуре типа эльпасолитакриолита с симметрией Fm3m [2-5] и, естественно, не обладают в этом состоянии макроскопической поляризацией. Столь высокая симметрия объясняется возможным существованием в оксифторидах двух типов беспорядка. Первый тип — это разупорядочение атомов F(O) в

шестикоординированном анионе, второй связан с ориентационно разупорядоченным расположением анионов относительно друг друга в кристаллической решетке, при котором результирующий дипольный момент кристалла равен нулю. В то же время установлено, что при понижении температуры многие кубические оксифториды $A_3MO_xF_{6-x}$ претерпевают структурные фазовые переходы, сопровождающиеся появлением сегнетоэлектрических и сегнетоэластических состояний [3–6].

Симметрия оксифторидов группы $A_2MO_2F_4$ зависит от размера и формы одновалентного катиона A, и во всех известных случаях их структура является центросимметричной. Нарушение устойчивости исходной фазы по отношению к температуре надежно установлено лишь для аммонийсодержащих кристаллов [7–9].

Наиболее подробно изученным является оксифторид $(NH_4)_2WO_2F_4$, структура которого при комнатной температуре характеризуется ромбической симметрией (пр. гр. *Стст, Z* = 4) [9,10]. При исследовании теплоемкости и двулучепреломления в широком интервале температур обнаружено, что этот кристалл претерпевает последовательность из двух фазовых переходов при температурах $T_1 = 201$ К и $T_2 = 160$ К [7,9]. Характер температурных зависимостей диэлектрической проницаемости вдоль трех главных кристаллографических направлений свидетельствует о несегнетоэлектрической природе структурных превращений [6]. Наличие избыточных вкладов ромбической фазы [7,9] в двулучепреломление и теплоемкость $(NH_4)_2WO_2F_4$ в широком интервале тем-

ператур указывает на сложный характер фазового перехода при T_1 . Изменения энтропии, сопутствующие фазовым переходам, оказались существенно различающимися $\Delta S_1 = 19.0 \text{ J/mol} \cdot \text{K} (\sim R \ln 10)$ и $\Delta S_2 = 1.4 \text{ J/mol} \cdot \text{K}$ $(R \ln 1.2)$ [9]. Таким образом, было очевидно, что высокотемпературный переход связан с процессами упорядочения неких структурных элементов, а низкотемпературный обусловлен небольшими смещениями атомов в уже упорядоченной фазе. Установлено, что температурная область стабильности промежуточной фазы сужается с увеличением гидростатического давления.

Кристаллическая структура исходной фазы (NH₄)₂WO₂F₄ уточнена при 238 К [9] и при 297 К [10] с помощью рентгеновской монокристальной дифрактометрии. В целом совпадающие результаты обоих исследований показали, что кристаллическая структура состоит из изолированных октаэдров [WO₂F₄] сія-конфигурации и двух кристаллографически независимых аммонийных групп N1H₄ и N2H₄. Движение частично упорядоченных октаэдров характеризуется динамическим ориентационным беспорядком, связанным с их вращением вокруг оси, на которой лежат локализованные атомы O = W-F. В отличие от работы [9], где рассматривалось лишь анизотропное движение всех атомов, в [10] была рассмотрена и обоснована модель структуры, включающая с высокой степенью достоверности разупорядочение центрального атома по двум позициям: 4с (центральный атом лежит на псевдочетверной оси шестикоординированного полиэдра — W1) и 16h (разупорядочение атома по четырем положениям — W2). Вследствие весьма короткого расстояния W1-W2 электронные облака атома в разных позициях перекрываются [10], и, скорее всего, именно поэтому на картах электронной плотности атомов W [9] зафиксировано ее равномерное распределение без участков с возрастающей плотностью, характерных для разупорядоченных положений атомов. С другой стороны, контур электронной плотности представляет собой квадрат с вершинами, ориентированными на позиции атомов F(O), что, вполне вероятно, свидетельствует о смещении атома W, связанном с его движением, обеспечивающим короткую связь W-O.

Атомы водорода не удалось локализовать, но в соответствии с симметрией окружения было сделано заключение, что тетраэдрические катионы N1H₄ и N2H₄ характеризуются, скорее всего, разной степенью ориентационного разупорядочения [9,10].

Ниже T_2 структура $(NH_4)_2WO_2F_4$ характеризуется триклинной симметрией ($P\overline{1}$) и полным упорядочением атомов W, F и O [10]. Что касается аммонийных тетраэдров, то предполагалось, что они если и упорядочиваются, то не в полной мере.

Комплексный анализ кристаллической структуры и энтропии [9,10] позволяет считать, что механизм фазового перехода при T_1 может включать упорядочение как октаэдров (и соответственно центрального атома), так и тетраэдров.

Настоящая работа посвящена изучению механизма фазовых переходов в $(NH_4)_2WO_2F_4$ с помощью неупругого

некогерентного рассеяния нейтронов (ННРН). Некогерентное сечение рассеяния нейтронов атомами водорода очень велико и примерно в 80 раз превышает эту величину для атомов W, O и F. Таким образом, измеренные спектры ННРН дают возможность получить селективную информацию о динамике ионов аммония.

2. Методика эксперимента, результаты измерений

Синтез образцов $(NH_4)_2WO_2F_4$ был проведен по методике, описанной в [7].

Измерения спектров ННРН выполнены на спектрометре высокого разрешения HRMECS Аргонской национальной лаборатории (ANL, USA) [11]. Использованы две начальные энергии $E_i = 15$ и 60 meV. Эксперименты проводились при шести температурах — 10, 140, 175, 210, 260 и 300 К с экспозицией в течение 16 h на одно измерение от образца в капсуле и по 8 h на измерение фона от пустой капсулы.

Результаты измерений спектров HHPH при $E_i = 15 \,\mathrm{meV}$ для разных температур представлены на рисунке, а. Спектр ННРН при 10К не имеет вклада квазиупругого некогерентного рассеяния нейтронов (КНРН), и наблюдаемые максимумы на шкале переданной энергии приблизительно в интервале от 2.5 до 12 meV представляют водородные моды. В то же время уже при 140 К, т.е. ниже температуры фазового перехода при Т₂, появляется вклад КНРН, который при 175 К и более высоких температурах довольно быстро возрастает. В промежуточной фазе при 175 К и в исходной ромбической фазе Стст при 210 К вклады КНРН в спектры ННРН практически перекрываются с интенсивностями водородных мод.

Спектры ННРН, полученные при $E_i = 60 \text{ meV}$ при аналогичных температурах, представлены на рисунке, *b*. Спектр при 10 К дает информацию о парциальной вибрационной плотности состояний водородных мод в области переданной энергии приблизительно от 10 до 50 meV.

Максимумы на кривых спектров ННРН, полученных при $E_i = 15$ и 60 meV и температуре 10 K, дают возможность выделить и определить энергии аммонийных мод. Расположение спектров ННРН было выполнено путем аппроксимации пиков гауссианами. Полученные результаты представлены в таблице.

Результаты изучения методом инфракрасной (ИК) спектроскопии колебательных мод $(NH_4)_2WO_2F_4$ при комнатной температуре [12] также представлены в таблице. Колебательные моды, определенные с помощью ИК-исследования, отличаются от водородных мод. Симметричное обозначение колебательных мод, полученных из ИК-исследований, соответствует анионному комплексу $[WO_2F_4]^{2-}$ [12]. Водородные моды с энергиями 36.1 и 43.4 meV могут быть приписаны либрационным модам ионов аммония. Естественно, что колебательные моды анионного комплекса не наблюдаются в спектрах HHPH.

Спектры HHPH от $(NH_4)_2WO_2F_4$, полученные с помощью нейтронов с начальными энергиями $E_i = 15$ (*a*) и 60 meV (*b*), при температурах 10 (*I*), 140 (*2*), 175 (*3*), 210 (*4*), 260 (*5*), 300 K (*6*).

Оценки множителей, входящих в выражение интенсивности ННРН, могут быть выполнены путем деления поперечного сечения некогерентного рассеяния нейтронов σ_{inc}^i для атома с номером *i* на массу атома $M_i: \Sigma_{inc}^i = \sigma_{inc}^i/M_i$ [13]. Величины Σ_{inc}^i определяют парциальный вклад каждого атома в интенсивность некогерентного рассеяния нейтронов. Для атомов N, W, O и F эти параметры принимают соответственно значения 0.8, 0.03, 0.53 и 0.45, которые оказываются

Энергия, meV		Водородные
HHPH, $T = 10 \text{ K}$	ИК, T = 300 К [12]	моды
2.9		NH4, решетка
4.5		NH ₄ , решетка
5.9		NH ₄ , решетка
7.7		NH ₄ , решетка
10.8		NH ₄ , решетка
18.9		NH_4 , ν_5
25.6		NH_4 , ν_5
	30.9	B_1, v_{11}
	32	A_1, ν_5
	35	B_2, v_{14}
36.1		NH_4 , ν_6
43.4		NH_4 , ν_6
	47.8	A_1, ν_4

Колебательные моды в (NH₄)₂WO₂F₄

весьма незначительными по сравнению с величиной, характерной для атома H (81.7).

Таким образом, с помощью ННРН наблюдаются предпочтительно только водородные моды, в то время как в экспериментах с ИК зафиксированы только внутренние моды комплекса $[WO_2F_4]^{2-}$.

3. Обсуждение

В результате измерений неупругого некогерентного рассеяния нейтронов получена информация о водородных модах в $(NH_4)_2WO_2F_4$ при температуре 10 К. В процессе повышения температуры при 140 К квазиупругое некогерентное рассеяние нейтронов вносит значительный вклад в интенсивность ННРН, перекрывающийся с пиками водородных мод. В области низких значений переданных энергий (2–10 meV) уже при температуре выше T_2 в температурном интервале от 175 до 300 К наблюдается преимущественно квазиупругое некогерентное рассеяние нейтронов. Значительный вклад КНРН указывает на уменьшение величины вращательного барьера, препятствующего переориентации ионов аммония в температурной области фазовых переходов при температурах T_2 и T_1 .

Неупругое некогерентное рассеяние нейтронов на ориентационных степенях свободы ионов аммония при повышении температуры сопровождается более быстрым уширением пиков водородных мод по сравнению с ННРН на трансляционных степенях свободы водородных мод. С повышением температуры пики водородных либрационных мод с энергиями 36.1 и 43.4 meV исчезают раньше по сравнению с пиками от водородных трансляционных мод с энергиями 18.9 и 25.6 meV (см. рисунок, b).

Таким образом, изучение вибрационных свойств $(NH_4)_2WO_2F_4$ с помощью некогерентного неупругого рассеяния нейтронов показало значительное участие ионов аммония в процессе обоих фазовых переходов. Однако более полное понимание этих фазовых переходов требует детального изучения кристаллических структур исходной и искаженных фаз путем нейтронографических исследований, позволяющих определить координаты и степень разупорядочения атомов водорода.

Совокупность структурных данных [9,10] и результаты исследований динамики (NH₄)₂WO₂F₄ с помощью ННРН позволяют предложить объяснение вклада аммонийных тетраэдров в аномальное поведение теплоемкости на основе теории Полинга [14]. Присутствие в элементарной ячейке двух кристаллографически неэквивалентных групп N1H₄ и N2H₄ дает возможность предположить, что, имея разное окружение ближайших соседей, оба иона находятся в разных потенциальных полях, что и обусловливает наличие двух либрационных мод разной энергии, принадлежащих разным ионам аммония. При сравнительно высокой температуре, а именно выше первой критической температуры $T_1 = 201 \, \text{K}$, вращательный барьер к переориентации или активационная энергия не превосходят по величине обе энергии либрационных мод. По теории Полинга в таком случае оба иона аммония совершают переориентационные прыжки, что фиксируется с помощью квазиупругого некогерентного рассеяния нейтронов. С понижением температуры параметры кристаллической решетки уменьшаются, что сопровождается ростом вращательного барьера. При температуре T₁ вращательный барьер становится больше энергии либрационной моды 36.1 meV одного из ионов аммония, который перестает совершать переориентационные прыжки и становится упорядоченным. Можно допустить, что упорядочение октаэдра служит первичной причиной искажения структуры и является триггерным механизмом для упорядочения групп N1H₄. В соответствии с [10] можно предполагать, что в низкотемпературной фазе ион N2H4 с энергией либрационной моды 43.4 meV остается разупорядоченным. Его упорядочение может происходить постепенно при дальнейшем понижении температуры безотносительно к фазовым переходам. Такое обстоятельство встречается нередко; например, оно наблюдалось в аммонийных фторидах NH_4MF_3 (M = Mn, Co) со структурой перовскита [15].

В поддержку предложенной модели аномального поведения теплоемкости в области 160-201 K в $(\text{NH}_4)_2 \text{WO}_2 \text{F}_4$ свидетельствуют следующие приближенные оценки. С одной стороны, разница между критическими температурами составляет $\sim 40 \text{ K}$, с другой — разница между энергиями двух либрационных

мод, соответствующих двум ионам аммония, равна примерно 7 meV, что при переводе в температурную шкалу составляет приблизительно 70 К. Таким образом, кристаллографически независимые ионы аммония за счет ближайшего окружения находятся в потенциальных ямах с разными энергиями активации и барьерами переориентации, что определяет связь между температурами фазовых переходов, энергиями либрационных мод и последовательностью упорядочения при трансформации из высокотемпературной фазы в низкотемпературную.

Вернемся к рассмотрению величин энтропии при фазовых переходах, характера ее поведения в промежуточной фазе, а также изменения энтропии в точке превращения при температуре T_1 , т.е. скачка энтропии δS_1 [9]. Последняя величина легко определяется из данных по исследованию (NH₄)₂WO₂F₄ методом квазистатических термограмм, который позволил установить величину скрытой теплоты перехода $\delta H_1 = 620 \,\mathrm{J/mol}$ [9]. Используя соотношение $\delta S_1 = \delta H_1/T_1$, связывающее скрытую теплоту и скачок энтропии, находим величину $\delta S_1 = 3.1 \text{ J/mol} \cdot \text{K} \approx R \ln 1.5$. Так как δS_1 оказывается меньше величины $R \ln 2$, с достаточной долей уверенности можно считать, что в точке высокотемпературного перехода не происходит полного упорядочения ни тетраэдрического катиона с меньшей либрационной энергией, ни октаэдрического аниона.

Плавное изменение энтропии в промежуточной фазе [9] можно интерпретировать как связанное с плавным постепенным нарастанием величины потенциальных барьеров, сопровождающимся постепенным изменением вероятности заселенностей позиций, соответствующих разупорядоченным состояниям групп $[WO_2F_4]^{2-}$ и NH_4^+ . Небольшая величина ΔS_2 свидетельствует об отсутствии каких-либо процессов упорядочения в структуре (NH₄)₂WO₂F₄ при этой температуре и обусловлена, скорее всего, небольшим смещением каких-то атомов. Можно предположить, что таковыми являются атомы азота, меняющие свое положение равновесия в результате полного или частичного упорядочения тетраэдров.

4. Заключение

Выполнены исследования (NH₄)₂WO₂F₄ методом неупругого некогерентного рассеяния нейтронов. Наблюдение нарастающего вклада квазиупругого некогерентного рассеяния нейтронов в интенсивность их некогерентного рассеяния при повышении температуры от 10 до 300 К, обусловленного ионами аммония, подтверждает справедливость гипотезы [9] об определяющем вкладе упорядочения тетраэдрических катионов в энтропию высокотемпературного фазового перехода. Для более глубокого понимания механизма обоих фазовых переходов необходимы исследования структуры исходной и искаженных фаз методом упругого рассеяния нейтронов как протонированного, так и дейтерированного соединения.

Список литературы

- P.A. Maggard, S.N. Tiffany, C.L. Stern, K.R. Poeppelmeier. J. Solid State Chem. 175, 27 (2003).
- [2] G. Pausewang, W. Rüdorff. Z. Anorg. Allg. Chem. 364, 69 (1969).
- [3] J. Ravez, G. Peraudeau, H. Frend, S.C. Abrahams, P. Hagenmüller. Ferroelectrics 26, 767 (1980).
- [4] M. Fouad, J.P. Chaminade, J. Ravez, P. Hagenmüller. Rev. Chim. Miner. 24, 1 (1987).
- [5] I.N. Flerov, V.D. Fokina, A.F. Bovina, N.M. Laptash. Solid State Sci. 6, 367 (2004).
- [6] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 497 (2008).
- [7] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ 48, 110 (2006).
- [8] С.В. Мельникова, Н.М. Лапташ. ФТТ 50, 493 (2008).
- [9] И.Н. Флёров, В.Д. Фокина, М.В. Горев, А.Д. Васильев, А.Ф. Бовина, М.С. Молокеев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 48, 711 (2006).
- [10] N.M. Laptash, A.A. Udovenko, A.B. Slobodyuk, V.Ya. Kovun. Abstracts of 14th Eur. Symp. on Fluorine Chemistry. Poznan, Poland (2004). P. 253.
- [11] A.I. Kolesnikov, J.N. Zanotti, C.-K. Loong. Neutron News 15, 19 (2004).
- [12] А.В. Войт, А.А. Машковский, Н.М. Лапташ, В.Я. Кавун. ЖСХ 47, 642 (2006).
- [13] M. Bée. Quasielastic neutron scattering. Adam Hilger, Bristol, Philadelphia (1988). 179 p.
- [14] L. Pauling. Phys. Rev. 36, 430 (1930).
- [15] М. Длоуга, С. Вратислав, И. Натканец, Л.С. Смирнов. Кристаллография **43**, 237 (1998).