Теплопроводность и теплоемкость волоконных монолитов Si₃N₄/BN

© Л.С. Парфеньева, Н.Ф. Картенко, Б.И. Смирнов, И.А. Смирнов, D. Singh*, К.С. Goretta*, H. Misiorek**, J. Mucha**, D. Wlosewicz**, A. Jezowski**, A.I. Krivchikov***

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия * Argonne National Laboratory, Argonne, Illinois, USA ** Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland *** Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov, Ukraine E-mail: igor.smirnov@mail.ioffe.ru, smir.bi@mail.ioffe.ru

(Поступила в Редакцию 24 февраля 2009 г.)

В интервале температур 5–300 К измерена теплопроводность поликристаллических керамических образцов Si₃N₄ и BN и волоконных монолитов (FM) Si₃N₄/BN с различной "архитектурой" расположения в них волокон: [0], [90] и [0/90], когда волокна располагаются соответственно вдоль и поперек оси образца и когда соблюдается послойное чередование волокон [0] и [90]. В интервале 3.5-300 К измерены теплоемкость при постоянном давлении, а при 77 К — скорость звука в поликристаллических образцах Si₃N₄, BN и FM Si₃N₄/BN [0]. Показано, что с достаточной степенью достоверности, но для некоторых составов с небольшими допущениями, можно утверждать, что в случае FM Si₃N₄/BN для определения расчетных значений их теплопроводностей и теплоемкостей можно в определенных температурных интервалах использовать простые модели для смесей компонентов Si₃N₄ и BN с соответствующими вкладами их в формирование FM Si₃N₄/BN. Установлено, что в области низких температур (5-25 К) в FM Si₃N₄/BN [0], [90] и [0/90] преимущественное рассеяние фононов происходит на дислокациях. Такой эффект отсутствует в керамических образцах Si₃N₄ и BN. С помощью полученных экспериментальных данных для теплопроводности и скорости звука вычислены длины свободных пробегов фононов в поликристаллических образцах Si₃N₄ и BN и эффективная длина свободного пробега в FM Si₃N₄/BN [0].

Работа выполнена при поддержке гранта НШ 2184.2008.2 и научного гранта ПАН.

D.S. and K.C.G. are grateful for support of this work by the U.S. Department of Energy, under Contract DE-ACO2-06CH11357 with Argonne National Laboratory, managed by UChicago Argonne, LLC.

PACS: 65.60.+a, 65.90.+i

1. Введение

Исследование физико-механических свойств композитов на керамической основе представляет большой научный и практический интерес. Связано это прежде всего с тем, что они обладают высокими значениями прочности наряду с большим сопротивлением высокотемпературной ползучести. Однако отрицательной стороной таких композитов является катастрофическое хрупкое разрушение, обусловленное быстрым распространением зародышевой трещины. Для уменьшения этого неблагоприятного явления были разработаны керамические композиционные материалы — волоконные монолиты (FM), получаемые путем прессования керамических волокон, покрытых специально подобранным связующим материалом. Как было показано [1-4], наиболее перспективным среди различных FM является волоконный монолит Si₃N₄/BN.

Настоящая работа продолжает проводимый ее авторами цикл исследований физических свойств волоконных монолитов Si_3N_4/BN [5–10], в котором ранее основное внимание было уделено изучению их механических свойств. В настоящей работе в области низких температур (5–300 K) впервые измерены теплопроводность κ и теплоемкость при постоянном давлении C_p FM Si₃N₄/BN.

2. Образцы, методика измерений

Методика приготовления FM подробно рассмотрена в [6,8]. Поликристаллические образцы волоконного монолита Si₃N₄/BN были приготовлены в США на фирме Advanced Research of Tucson, AZ. Волокна состояли из сердцевины Si₃N₄ (85 vol.%), покрытой слоем BN (15 vol.%). Помимо коммерческого Si₃N₄ (92 wt.%) сердцевина содержала также оксиды 6 wt.% Y_2O_3 и 2 wt.% Al₂O₃, которые были добавлены для уплотнения материала. Сначала были получены монослойные листы из ориентированных параллельно волокон. Далее эти листы последовательно укладывались друг на друга и выдерживались под прессом при 160° С. Были приготовлены образцы с различной "архитектурой": Si₃N₄/BN [0] (волокна располагаются вдоль оси

Рис. 1. Схематическое изображение структуры волоконного монолита Si_3N_4/BN [6].

образца), Si_3N_4/BN [90] (волокна перпендикулярны оси образца) и Si_3N_4/BN [0/90] (соблюдается послойное чередование волокон [0] и [90]).

На следующей стадии листы подвергались скрепляющему пиролизу в процессе медленного нагревания в потоке азота до 600° С в течение 42 h. Далее они выдерживались 1 h под одноосным давлением $\approx 28 \,\mathrm{MPa}$ при 1740° С, причем в процессе прессования часть оксидных добавок из Si₃N₄ диффундировали в BN [11]. В результате таких процедур получались волоконные монолиты с плотностью более 98% от теоретической. Окончательная структура волоконных монолитов для одноосного случая схематически показана на рис. 1. Волокна имеют размеры $\sim 100 \,\mu m$ по толщине и $\sim 220 \,\mu m$ по ширине [6]. Толщина слоя BN составляет ~ 15-25 µm [1]. Микрофотографии в сканирующем электронном микроскопе для FM Si₃N₄/BN с различной "архитектурой": [0], [90] и [0/90] приведены почти во всех цитированных выше работах (см., например, [1,6,8]). Для анализа и сопоставления полученных результатов по такой же технологии были приготовлены поликристаллические образцы Si₃N₄ и BN, которые содержали оксиды Y₂O₃ и Al₂O₃ примерно в тех же концентрациях, что и в фазах волоконных монолитов Si₃N₄/BN [11].

Мы провели рентгеноструктурные исследования керамических образцов Si₃N₄, BN и FM Si₃N₄/BN [0]. Образцы Si₃N₄ содержали высокотемпературную гексагональную модификацию β -Si₃N₄ с параметрами элементарной ячейки a = 7.621(2) Å и c = 2.919(2) Å, которые оказались несколько выше справочных данных для β -Si₃N₄ (a = 7.6044(2) Å и c = 2.9075(1) Å). Параметры β -Si₃N₄ в FM Si₃N₄/BN [0] оказались немного ниже, чем в керамическом образце: a = 7.619(2) Å, c = 2.915(1) Å, что может быть связано с незначительным уменьшением в нем количества примесей.

Параметры гексагональной элементарной ячейки, определенные для образцов BN (a = 2.505(1) Å и c = 6.661(2) Å) хорошо согласовались со справочными данными: a = 2.5044(7) Å и c = 6.6562(4) Å. Параметры BN в FM Si₃N₄/BN [0] в пределах ошибки остаются неизменными. В керамических образцах и в FM Si_3N_4/BN [0] у BN наблюдалась сильная текстура по (001). Наличие текстуры в BN (в образцах и волокнах) отмечалось и в работах [1,8–10,12–15].

Для измерения \varkappa , C_p и скорости звука v использовались образцы FM Si₃N₄/BN прямоугольного сечения $\sim 10-20 \text{ mm}^2$ и длиной 12–15 mm из той же партии, на которых ранее исследовались их механические свойства [6,7]. Измерение \varkappa проводилось в интервале 5–300 K в вакууме $\sim 10^{-5}$ mm Hg на установке, аналогичной [16]. Измерение C_p осуществлялось в интервале 3.5–65 K с помощью импульсного квазиабатического метода [17], а при 80–300 K — на автоматическом адиабатическом калориметре [18]. Для ультразвуковых измерений (при 77 K) использовалась установка, представляющая собой компенсационную схему, работающую в импульсном режиме, что позволяло надежно разделить различные звуковые моды [19].

3. Экспериментальные результаты

На рис. 2–5 представлены данные для $\varkappa(T)$ керамических образцов BN, Si₃N₄ и FM Si₃N₄/BN с различной "архитектурой" расположения волокон: [0], [90] и [0/90], полученные для температур 5–300 К. На рис. 6 и 7 приведены данные для $C_p(T)$ образцов BN, Si₃N₄

40 32 Si₃N₄/BN[0] χ , W/K·m 24 16 8 0 50 100 200 250 300 150 0 *T*. K

Рис. 2. Теплопроводность керамических образцов BN, Si_3N_4 и FM Si_3N_4/BN [0].

Рис. 3. Низкотемпературные участки теплопроводности A (рис. 2) для BN и Si₃N₄ (a) и FM Si₃N₄/BN [0] (b). Стрелками отмечены границы отступления $\kappa(T)$ от линейных зависимостей.

и FM Si₃N₄/BN [0], измеренные в интервале температур 3.5-300 К. И наконец, на рис. 8 представлены температурные зависимости длин свободного пробега фононов в BN, Si₃N₄ и FM Si₃N₄/BN [0], вычисленные по формуле

$$l = 3\varkappa/C_p \upsilon, \tag{1}$$

где $v = (v_l + v_t)/3$, v_l и v_t — соответственно продольная и поперечная скорости звука (табл. 1).

Таблица 1. Продольные и поперечные скорости звука в исследованных керамических образцах BN, Si_3N_4 и волоконном монолите Si_3N_4/BN [0] при 77 К

Материал	$v_l \cdot 10^{-5}, \ {\rm cm/s}$	$v_t \cdot 10^{-5}$, cm/s		
BN	4.14	2.22		
Si_3N_4	8.9	6.1		
Si_3N_4/BN [0]	9.8	6.1		

Обсуждение экспериментальных результатов

4.1. Теплопроводность Si₃N₄, BN и FM Si₃N₄/BN. Теплопроводность поликристаллических керамических материалов Si₃N₄ и BN достаточно подробно исследовалась ранее (см., например, [20-26]). Величины их и могут существенно различаться в зависимости от способа приготовления образцов для исследований. Оба материала, как отмечалось выше, имеют гексагональную кристаллическую структуру, и поэтому их теплопроводности сильно анизотропны. Особенно аномально большая анизотропия х обнаружена у BN [23]. У поликристаллических образцов величина *к* зависит от размеров кристаллитов и их ориентации относительно направления теплового потока, а также от температуры отжига образцов, величин давлений, при которых проводилась прессовка, и процента их пористости. Полученные нами значения *к* для Si₃N₄

Рис. 4. Теплопроводность BN и Si_3N_4 по данным рис. 2 и FM Si_3N_4/BN [0/90] и [90].

и ВN, представленные на рис. 2–5, лежат в интервале значений теплопроводностей, опубликованных в литературе. Однако нельзя забывать, что в нашем эксперименте измерения \varkappa (а также C_p и v) проводились не на чистых беспримесных образцах ВN и Si₃N₄, а, как отмечалось ранее, на достаточно сильно легированных образцах с добавками ~ 6 wt.% Y₂O₃ и 2 wt.% Al₂O₃.

При анализе поведения теплопроводности полученных нами экспериментальных данных для Si₃N₄, BN и FM Si₃N₄/BN [0], [90], [0/90]¹ нас интересовали два вопроса: 1) как ведет себя теплопроводность этих материалов при низких температурах (5–25 K); 2) можно ли описать поведение $\varkappa(T)$ для FM Si₃N₄/BN в рамках простой модели для смеси теплопроводностей Si₃N₄ и BN [27], которые формируют различные конфигурации в FM Si₃N₄/BN.

На рис. 3 и 5 приведены низкотемпературные значения \varkappa BN, Si₃N₄ и образцов FM Si₃N₄/BN с различной "архитектурой" расположения в них волокон. Для BN (в интервале 5–24 K) и Si₃N₄ (5–10 K) $\varkappa \sim T^{2.9}$, что близко к классической зависимости \varkappa для твердых тел [28]. Иначе ведет себя \varkappa у образцов FM Si₃N₄/BN [0], [90] и [0/90] (рис. 3, 5). Для них в интер-

вале 5–13 К для состава [0] и 5–25 К для составов [90] и [0/90] $\varkappa \sim T^{2.3}$, $T^{2.05}$ и $T^{2.15}$ соответственно. Такая температурная зависимость \varkappa чаще всего характерна для рассеяния фононов на дислокациях. Согласно теории, \varkappa в области низких температур в этом случае должна быть $\sim T^2$ [28].

Посмотрим теперь, как будет работать простая модель для смеси теплопроводностей в применении к FM Si_3N_4/BN . Рассмотрим сначала более простой объект — FM Si_3N_4/BN [0]. Расчет будем проводить по формуле

$$\varkappa_{\text{calc}}(\text{Si}_3\text{N}_4/\text{BN}\ [0]) = 0.85\varkappa(\text{Si}_3\text{N}_4) + 0.15\varkappa(BN).$$
(2)

В табл. 2 приведены расчетные величины $\kappa_{calc}(Si_3N_4/BN [0])$, определенные по (2) с использованием значений для $\kappa(T)$ Si₃N₄ и BN из рис. 2 и полученные экспериментально (κ_{exp}), также взятые из рис. 2 для Si₃N₄/BN [0].

Как видно из табл. 2, совпадения расчетных и экспериментальных значений для \varkappa не наблюдается. Экспериментальные величины \varkappa превышают расчетные. Возможно два объяснения обнаруженного факта: 1) модель простой смеси \varkappa в случае FM Si₃N₄/BN не работает; 2) указанная выше модель работает, но материалы Si₃N₄ и BN, находящиеся в FM Si₃N₄/BN, имеют бо́льшую

Рис. 5. Низкотемпературные участки теплопроводности *В* (рис. 4) для FM Si₃N₄/BN [0/90] и [90] (стрелки обозначают то же, что на рис. 3).

¹ Поскольку эти материалы являются изоляторами, измеренная в эксперименте величина их теплопроводности является чисто фононной.

	$\varkappa, W/m \cdot K$				$C_p, J/g \cdot K$	
<i>Т</i> , К	Si ₃ N ₄ /BN [0]		Si ₃ N ₄ /BN [0/90]		Si ₃ N ₄ /BN [0]	
	\varkappa_{calc} по (1)	\varkappa_{exp}	\varkappa_{calc} по (2)	\varkappa_{exp}	С ^{calc} по (4),(5)	C_p^{\exp}
300	26.6	38.2	33.7	34.8	0.653	0.664
200	25.0	36.5	31.8	34.7	0.400	0.415
100	19.4	26.5	23.5	27.4	0.169	0.158
50	10.2	13.2	12.0	13.5	_	—
20	1.70	2.85	2.60	2.85	_	_

Таблица 2. Значения $\kappa(T)$ и $C_p(T)$ для волоконных монолитов Si₃N₄/BN с различной "архитектурой" волокон

величину \varkappa , чем керамические "свободные" Si₃N₄ и BN (рис. 2). Это может произойти, если а) входящие в FM Si₃N₄/BN материалы сильнее текстурированы по сравнению со "свободными" керамиками (на такую возможность мы уже обращали внимание выше [1,8–10,12–15]); b) в процессе приготовления FM Si₃N₄/BN, как отмечалось в разделе 2, часть примесей из легированного Si₃N₄ перейдет в BN, тогда \varkappa Si₃N₄ в волокнах может заметно возрасти, а как показали расчеты $\varkappa_{calc}(T)$ по формуле (2), более существенный вклад в нее вносит \varkappa Si₃N₄, а не \varkappa BN.

2148

По модели простой смеси теплопроводностей можно оценить также $\kappa(T)$ образца FM Si₃N₄/BN [0/90], в котором последовательно (50 на 50%) "уложены" волокна, соответствующие конфигурациям [0] и [90]. Для этого используем формулу

$$\begin{aligned} \varkappa_{\text{calc}}(\text{Si}_{3}\text{N}_{4}/\text{BN} \ [0/90]) &= 0.5\varkappa_{\text{exp}}(\text{Si}_{3}\text{N}_{4}/\text{BN} \ [0]) \\ &+ 0.5\varkappa_{\text{exp}}(\text{Si}_{3}\text{N}_{4}/\text{BN} \ [90]). \end{aligned}$$
(3)

Результаты расчета $\varkappa_{calc}(Si_3N_4 [0/90])$ и полученная экспериментально $\varkappa_{exp}(Si_3N_4/BN [0/90])$ (рис. 4) приведены в табл. 2. Значения $\varkappa_{exp}(Si_3N_4/BN [0])$ и $\varkappa_{exp}(Si_3N_4/BN [90])$, использованные в расчете, были заимствованы из данных рис. 4.

Как видно из табл. 2, в этом случае расчетные и экспериментальные значения \varkappa (Si₃N₄/BN [0/90]) достаточно хорошо совпали между собой. При проведении расчетов по (3) мы использовали лишь экспериментально полученные значения $\varkappa(T)$ для FM Si₃N₄/BN [0], [90] и [0/90], не связанные с неопределенностями в значениях величин $\varkappa(T)$ Si₃N₄ и BN в FM Si₃N₄/BN, как это имело место в случае вычисления \varkappa_{calc} (Si₃N₄/BN [0]).

Таким образом, с достаточной степенью достоверности все же можно считать, что в случае FM Si₃N₄/BN для определения расчетных значений $\varkappa(T)$ для этой системы можно использовать модель простой смеси теплопроводностей компонентов, участвующих в формировании FM Si₃N₄/BN.

4.2. Теплоемкость Si_3N_4 , BN и FM Si_3N_4/BN [0]. Сведения о теплоемкости Si_3N_4 и BN представлены в большом числе работ (см., например, [20,22,25,29–31]).

При анализе полученных нами экспериментальных данных для $C_p(T)$ указанных в заголовке данного подраз-

дела материалов стояли две задачи: 1) можно ли описать поведение $C_p(T)$ FM Si₃N₄/BN в рамках простой модели для смеси теплоемкостей [29] Si₃N₄ и BN, которые формируют FM Si₃N₄/BN; 2) как поведет себя теплоемкость этих материалов при низких температурах (5–30 K).

Формула для смеси теплоемкостей материала, составленного из двух компонентов, записывается в виде [32]

$$C_p^c = \frac{1}{\rho^c} \left(V^f \rho^f C_p^f + V^m \rho^m C_p^m \right), \tag{4}$$

где V — объемная часть компонентов, обозначенных индексами f и m; C_p^c и ρ^c — соответственно теплоемкость и плотность смеси; C_p^f , ρ^f и C_p^m , ρ^m — соответственно теплоемкости и плотности материалов, составляющих

Рис. 6. Теплоемкость при постоянном давлении керамических образцов BN, Si_3N_4 и FM Si_3N_4/BN [0].

Рис. 7. Низкотемпературные участки теплоемкости F (рис. 6) для BN, Si₃N₄ и FM Si₃N₄/BN [0].

смесь (в нашем случае BN и Si₃N₄). Мы провели расчет $C_p^c(C_p^{calc})$ для FM Si₃N₄/BN [0] с использованием следующих параметров: $V^f = 15$ vol.%, $\rho^f = 2.25$ g/cm³ [6], C_p^f из данных рис. 6; $V^m = 85$ vol.%, $\rho^m = 3.3$ g/cm³ [6], C_p^m из данных рис. 6; $\rho^c = 3.09$ g/cm³ [6].

Результаты расчета $C_p^{\text{calc}}(T)$ по (4) и $C_p^{\exp}(\text{Si}_3\text{N}_4/\text{BN} [0])$ из рис. 6 для области температур 100–300 К приведены в табл. 2. Как видно из этой таблицы, совпадение расчетных и экспериментальных данных достаточно хорошее.

В случае теплоемкости неважно, в каком состоянии (хаотическом или текстурированном) находятся кристаллиты в Si₃N₄ и BN как в исходных "свободных" керамиках, так и в составе FM Si₃N₄/BN [0]. Кроме того, C_p намного менее чувствительна к наличию небольших количеств примесей в образцах, чем x. Однако оказалось, что модель смеси для $C_p(T)$ FM Si₃N₄/BN [0] не "работает" в области низких температур (T < 50-100 K). Это может происходить из-за не вполне стандартного поведения $C_p(T)$ компоненты Si₃N₄, образующей FM Si₃N₄/BN (рис. 6, 7). Интересно отметить, что величины $C_p^{calc}(T)$, полученные с помощью формулы (4), совпали со значениями $C_p^{calc}(T)$, полученными при расчетах по простой формуле

$$C_p^{\text{calc}}(\text{Si}_3\text{N}_4/\text{BN}~[0]) = 0.85C_p(\text{Si}_3\text{N}_4) + 0.15C_p(BN).$$
 (5)

На рис. 7 приведены данные для C_p измеренных нами в интервале 3.5–30 К образцов BN, Si₃N₄ и FM Si₃N₄/BN [0]. Несколько необычно выглядят низкотемпературные результаты (3.5–8 К) для C_p Si₃N₄, однако объяснить их поведение мы пока затрудняемся.

4.3. Скорость звука Si_3N_4 , BN и FM Si_3N_4/BN [0]. Значения для скоростей звука этих материалов приведены в табл. 1. Из данных табл. 1 следует, что звук в FM Si_3N_4/BN [0] в основном распространяется по сердцевине волокна Si_3N_4/BN — материалу Si_3N_4 .

4.4. Длина свободного пробега фононов в Si₃N₄, BN и FM Si₃N₄/BN [0]. На рис. 8 представлены вычисленные по формуле (1) значения длин свободного пробега фононов l(T) в указанных материалах.

При расчете l(T) использовались экспериментальные данные для $\varkappa(T)$ (рис. 2–5), $C_p(T)$ (рис. 6,7) и υ (табл. 1), а также проводился учет плотностей исследованных материалов. Имеющиеся в литературе данные для l(T) BN [28] (l при 300 K для образцов различной чистоты составляют ~ 100 и 275 Å) и Si₃N₄ [26] (l при 300 K равно ~ 200 Å) близки к полученным нами величинам l(300 K) для аналогичных материалов. Что касается значений эффективной длины свободного пробега в FM Si₃N₄/BN [0], то они оказались более близкими по своей величине к l(T) "свободной" керамики Si₃N₄.

Рис. 8. Длина свободного пробега фононов в керамических образцах BN, Si₃N₄ и FM Si₃N₄/BN [0].

5. Заключение

В интервале температур 5–300 К впервые измерена \varkappa поликристаллических образцов волоконных монолитов Si₃N₄/BN с различной "архитектурой" расположения в них волокон: вдоль [0], поперек оси образца [90] или послойное чередование в образце волокон [0] и [90]. В интервале 3.5–300 К впервые измерены $C_p(T)$, а при 77 К v образцов FM Si₃N₄/BN [0].

Для интерпретации полученных результатов для FM Si₃N₄/BN были измерены $\varkappa(T)$, $C_p(T)$ и υ керамических поликристаллических образцов Si₃N₄ и BN, приготовленных по аналогичной с FM Si₃N₄/BN технологии. С достаточной степенью достоверности было показано, что для расчета $\varkappa(T)$ и $C_p(T)$ FM Si₃N₄/BN в определенных температурных интервалах можно воспользоваться простыми моделями для смесей компонентов, из которых конструируется FM Si₃N₄/BN, взятых в соответствующих пропорциях. Некоторые затруднения возникли лишь при интерпретации данных о $\varkappa(T)$ FM Si₃N₄/BN [0] и $C_p(T)$ этого же состава для температурниже 100 К.

Из анализа низкотемпературных (5–25 K) данных для $\varkappa(T)$ FM Si₃N₄/BN с конфигурациями [0], [90] и [0/90] сделано заключение, что в области низких температур рассеяние фононов происходит преимущественно на дислокациях. Такой механизм отсутствует в керамических образцах Si₃N₄ и BN.

Показано, что звук в образцах FM Si₃N₄/BN распространяется преимущественно по Si₃N₄ — сердцевине волокна Si₃N₄/BN. Для образцов Si₃N₄, BN и образца FM Si₃N₄/BN [0] вычислены длины свободного пробега фононов для интервала температур 5–300 К. Для этого были использованы полученные в работе экспериментальные данные для \varkappa , C_p и υ . Значения для эффективной длины свободного пробега фононов в образце FM Si₃N₄/BN [0] оказались близкими к l(T) керамического образца Si₃N₄.

Список литературы

- [1] D. Kovar, B.H. King, R.W. Trice, J.W. Halloran. J. Am. Ceram. Soc. **80**, 2471 (1997).
- [2] J.L. Routbort, K.C. Goretta, E.T. Park, D. Singh, J. Finch, J. Staehler, L. Zawada, G.E. Hilmas. Ceram. Eng. Sci. Proc. 20, 427 (1999).
- [3] M. Tlustochowicz, D. Singh, W.A. Ellingson, K.C. Goretta, M. Rigali, M. Sutaria. Ceram. Trans. 103, 245 (2000).
- [4] D. Singh, T.A. Cruse, D.J. Hermanson, K.C. Goretta, F.W. Zok, J.C. McNulty. Ceram. Eng. Sci. 21, 597 (2000).
- [5] Б.К. Кардашев, Ю.А. Буренков, Б.И. Смирнов, В.В. Шпейзман, В.А. Степанов, В.М. Чернов, D. Singh, К.С. Goretta. ФТТ 43, 1048 (2001).
- [6] Б.И. Смирнов, Ю.А. Буренков, Б.К. Кардашев, D. Singh, К.С. Goretta, A.R. de Arellano-Lopez. ФТТ 43, 2010 (2001).
- [7] Б.К. Кардашев, Б.И. Смирнов, D. Singh, К.С. Goretta, A.R. de Arellano-Lopez. ФТТ **45**, 451 (2003).

- [8] K.C. Goretta, F. Gutierrez-Mora, Nan Chen, J.L. Routbort, T.A. Orlova, B.I. Smirnov, A.R. de Arellano-Lopez. Wear 256, 233 (2004).
- [9] K.C. Goretta, T.A. Cruse, D. Singh, J.L. Routbort, A.R. de Arellano-Lopez, T.S. Orlova, B.I. Smirnov. Composite Struct. 66, 547 (2004).
- [10] K.C. Goretta, D. Singh, T.A. Cruse, A. Erdemir, J.L. Routbort, F. Gutierrez-Mora, A.R. de Arellano-Lopez, T.S. Orlova, B.I. Smirnov. Mater. Sci. Eng. A 412, 146 (2005).
- [11] R.W. Trice, J.W. Halloran. J. Am. Ceram. Soc. 82, 2502 (1999); 83, 311 (2000).
- [12] S.Y. Lienard, D. Kovar, K.J. Bowman, J.W. Halloran. J. Mater. Sci. 53, 3365 (2000).
- [13] He My, D. Singh, J.C. Mc Hulty, F.M. Zok. Compos. Sci. Technol. 62, 967 (2002).
- [14] J.C. McNulty, M.R. Begley, F.W. Zok. J. Am. Ceram. Soc. 84, 367 (2001).
- [15] A.R. de Arellano-Lopez, S. Lopez-Pombero, A. Domínguez-Rodriguez, J.L. Routbort, D. Singh, K.C. Goretta. J. Eur. Ceram. Soc. 21, 245 (2001).
- [16] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D 20, 1500 (1987).
- [17] A.I. Krivchikov, B.Ya. Gorodilov, A. Czopnik. Proc. Conf. low temperature thermometry and dynamic temperature measurement. Wroclaw (1997). P. V 7.
- [18] D. Wlosewicz, T. Plackowski, K. Rogalcki. Cryogenics 32, 265 (1992).
- [19] Е.А. Масалитин, В.Д. Филь, К.Р. Жеков, А.Н. Желобко, Т.В. Игнатова. ФНТ 29, 93 (2003).
- [20] Физико-химические свойства полупроводниковых веществ. Справочник. Наука, М. (1979). 339 с.
- [21] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоиздат, М. (1991). 1231 с.
- [22] A. Simpson, A.D. Stukes. J. Phys. C 4, 1710 (1971).
- [23] G.V. Samsonov, G.V. Andreeva, T.V. Dubovik. High Temp. High Press. 4, 157 (1972).
- [24] В.С. Оскотский, В.В. Попов, И.А. Смирнов, П.В. Тамарин, В.С. Нешпор. ФТТ 15, 656 (1973).
- [25] E.K. Sichel, R.E. Miller, M.S. Abrahams, C.J. Buiocchi. Phys. Rev. B 13, 4607 (1976).
- [26] Thermal conductivity. Theory, properties and applications / Ed. T.M. Tritt. Springer Science, Bisiness Media, LLC (2004). P. 243.
- [27] Г.Н. Дульнев, Ю.П. Заричняк. Теплопроводность смесей и композиционных материалов. Энергия, Л. (1974). 264 с.
- [28] В.С. Оскотский, И.А. Смирнов. Дефекты в кристаллах и теплопроводность. Наука, Л. (1972). 159 с.
- [29] Г.В. Самсонов, И.М. Виницкий. Тугоплавкие соединения. Справочник. Металлургия, М. (1976). 556 с.
- [30] R.A. McDonald, D.R. Stull. J. Phys. Chem. 65, 1918 (1961).
- [31] A.S. Dworkin, D.J. Sasmor, E.R. Van Artsdalen. J. Chem. Phys. 22, 80 (1954).
- [32] J. Korab, P. Stefanik, S. Kavecky, P. Sebo, G. Korb. Composites A 33, 557 (2002).