Электронная структура кристаллообразующих фуллеренов C_{2n} , фулсиценов Si_nC_n и кристаллов из них — фулсиценитов

© Л.И. Овсянникова, В.В. Покропивный, В.Л. Бекенев

Институт проблем материаловедения им. И.Н. Францевича Национальной академии наук Украины, Киев, Украина

E-mail: avilon@ipms.kiev.ua

(Поступила в Редакцию в окончательном виде 24 февраля 2009 г.)

Предложен ряд кристаллообразующих полиэдрических кластеров X_nY_n , из которых кополимеризацией гранями могут быть построены и синтезированы цеолитоподобные ковалентные кристаллы. Построен ряд наименьших кристаллообразующих кластеров углерода — C_{2n} , где n = 10, 12, 14, 16, 18, 24, 36, 60, и карбида кремния — Si_nC_n , где n = 12, 16, 18, 24, 36, 60. Методом Хартри-Фока, ограниченным по спину, в базисе 6-31G(d) рассчитаны их оптимизированная геометрия, электронная структура, величина переноса заряда, ширина запрещенной щели, энергия когезии и построены карты электронной плотности. Из кластеров $Si_{12}C_{12}$ и $Si_{24}C_{24}$, названных фулсиценами, построены возможные кристаллы с решетками каменной соли — КСФ-Si₁₂C₁₂, простой кубической — ПКФ-Si₂₄C₂₄, объемно центрированной кубической — ОЦКФ-Si₁₂C₁₂, гранецентрированной кубической — ГЦКФ-Si₂₄C₂₄ и гипералмазной — ГАФ-Si₁₂C₁₂, названные фулсиценитами. Рассчитаны их дифрактограммы.

Работа выполнена в рамках программы НАН Украины "НАНОматериалы" и при поддержке фонда RAK/ESF MEEDE1.1.

PACS: 31.15.-p, 36.40.-c, 61.46.+w

1. Введение

Поиск новых материалов, собранных из кластеров в ковалентно-связанные аллотропные формы с необычными структурой и свойствами, признается одним из перспективных направлений наноматериаловедения. Кластеры, металлические и ковалентные, стабильные при некотором "магическом" числе атомов n, активно исследуются [1-5].

Первые кристаллообразующие фуллереноподобные кластеры нитрида бора $B_{12}N_{12}$, $B_{24}N_{24}$, $B_{60}N_{60}$ были предложены в работах [6–8]. Некоторые их них впоследствии синтезированы методом лазерной абляции гексагонального BN и обнаружены методами пролетной масс-спектроскопии и высокоразрешающей электронной микроскопии [9]. Синтезированы стабильный кластер (CdSe)₂₈ с вложенным в него кластером (CdSe)₆ [10], карбидные кластеры SiC, TiC, ZrC [11], кластеры As_n (n = 4, 8, 20, 28, 32, 36, 60) [12], икосаэдрических наноалмазов [13], кластеры отрицательной кривизны (шварциты) [14] и тороиды [15], неорганические фуллерены [16] и BN-кластеры [3].

Кластеры карбида кремния как базового материала микро- и наноэлектроники представляют повышенный интерес [17]. Фуллереноподобные кластеры $Si_x C_{n-x}$ нестехиометрического состава рассчитаны в работах [18,19]. Методом функционала плотности (DFT) и *ab initio* молекулярной динамики исследованы электронная структура и стабильность этих кластеров в зависимости от количества включенных атомов кремния и их места расположения в фуллерене C₆₀.

В [20] методом молекулярной динамики были проведены исследования равновесной геометрии и энергии малых кластеров Ge_n и Si_n (n = 3-10), которые содержат трех- и четырехугольники.

Исследование инкапсулированных металлом фуллереноподобных кластеров Si_n (n = 14, 16) проведено в [21]. Методом псевдопотенциала исследовались ширина запрещенной щели и энергия когезии в зависимости от типа инкапсулированного металла и вида изомера кластеров, которые включали четырех- и пятиугольники.

Методом DFT рассчитана энергия и предсказана стабильность кластеров C_n всевозможных изомеров (при $4 \le n \le 32$) [22] в форме цепей, колец, ячеек, графитной сетки и полиэдров. Начиная с n = 18 наиболее стабильными из изомеров углерода являются объемные кластеры.

В процессе осаждения и образования объемные кластеры (полиэдры) могут, очевидно, упорядочиваться в виде кристаллов с разными решетками. Молекулярные кристаллы с низкой плотностью образуются при мягких условиях, когда полиэдры связываются ван-дерваальсовскими связями. При более жестких условиях становится возможной кополимеризация полиэдров путем образования ковалентных *sp*³-связей между вершинами, ребрами или гранями. Так, например, из полиэдров С28 путем кополимеризации вершинами, ребрами и гранями были построены различные кристаллы [23,24]. В частности, кополимеризацией вершинами и гранями построена решетка алмаза, в которой четыре связи являются алмазоподобными *sp*³-связями, а остальные *sp*²-связями. Плотность таких модификаций выше, чем у молекулярных кристаллов из тех же полиэдров.

Однако наибольшая плотность упаковки может быть достигнута в жестких условиях синтеза при консолидации гранями. В этом случае все связи становятся sp^3 -алмазоподобными, поэтому именно такие кристаллы можно назвать гипералмазами, а точнее — искусственными цеолитами, а под гипералмазом понимать алмазную решетку с полиэдрами в узлах [7,8].

Для построения кристалла полиэдры должны состоять только из четных четырех-, шести-, восьми-, десятичленных колец, иметь кристаллическую группу симметрии [25]. При образовании кристаллов путем кополимеризации гранями возникают сильные алмазоподобные sp^3 -связи, которые стабилизируют кристалл из кластеров, и если в кристалле все изолированные грани кополимеризованы, то все связи в кристалле будут алмазоподобными. Заметим, что отклонение углов между связями (90–120°) в кластерах от равновесного значения 109.47° в тетраэдрической решетке алмаза уменьшается путем релаксации, что показывают квантово-механические расчеты.

Кополимеризованные из кластеров кристаллы обладают ют пористой структурой типа цеолитов, так как в узлах решетки расположены не атомы, а молекулярные кластеры, определяющие формирование пор молекулярного размера.

Очевидно, что кристаллообразующие кластеры с общей формулой $X_n Y_n$, подобные фулборенам $B_n N_n$, могут также состоять из других родственных соединений полупроводников типа IV–IV, III–V, II–VI с гибридизованными sp^2 -связями.

В результате открывается возможность поиска нового класса аллотропных и полиморфных модификаций полупроводниковых соединений типа IV-IV, III-V, II-VI искусственных цеолитов. Примером служит фуллерит с простой кубической решеткой, в узлах которой расположены кластеры углерода С24, названный ПКФ-С24 [26]. Его параметры совпадают с параметрами так называемого "кубического графита", синтезированного в работах [27,28]. Другой пример — фулборенит с решеткой сфалерита [29], в узлах которой расположены кластеры B₁₂N₁₂, названный гипералмазным фулборенитом (ГАФ-В₁₂N₁₂). Параметры этого соединения совпадают с параметрами Е-фазы нитрида бора [30], синтезированной во многих работах [31-33]. Электронная структура таких кластеров рассчитана в [6,8,33], а кристаллов из них — в [34,35]. Предложены кристаллические аллотропные модификации углерода, состоящие из кластеров $C_{28} = C_{20} + C_8$ [36].

Возникла задача теоретического конструирования и расчета возможных кристаллообразующих кластеров типа X_nY_n и расчета их свойств. В работе [37] мы рассчитали электронную структуру наименыших кристаллообразующих кластеров, соответствующих правилу изолированных квадратов, $X_{12}Y_{12}$ различного состава (C_{2n} , B_nN_n , Si_nC_n, Ga_nN_n, Zn_nO_n, n = 12), в работе [25] — кластеров нитрида бора B_nN_n различной формы, соответствующих правилу изолированных квадратов (n = 12, 16, 18, 36), изолированных октагонов (n = 24) и изолированных декагонов (n = 60).

Цель настоящей публикации — продолжить работы по конструированию кристаллообразующих кластеров, в частности кластеров углерода C_{2n} , где n = 10, 12, 14, 16,18, 24, 36, 60, и карбида кремния Si_nC_n , где n = 12, 16,18, 24, 36, 60, рассчитать их стабильную конфигурацию и электронную структуру, рассмотреть кристаллы, которые возможно построить из кластеров $Si_{12}C_{12}$ и $Si_{24}C_{24}$, и рассчитать их релаксированную структуру.

2. Методика квантово-химических расчетов

Расчеты выполняли по программе PC GAMESS методом Хартри—Фока, ограниченным по спину, с набором базисных функций 6-31G(d).

Оптимизация геометрии проводилась методом градиентного спуска. В расчете кластера $Si_{12}C_{12}$, например, после девяти полных циклов уровень остаточных сил не превышал 0.0000104 а.u., а полная энергия понизилась до $U_{tot} = -3920.5064066$ а.u. Самосогласование поля для кластеров карбида кремния проходило быстро и однозначно, без осцилляций. Для кластеров углерода был проведен этап предварительной оптимизации геометрии с набором базисных функций STO-3G, без которого отклонения стартовой геометрии кластеров от оптимальной были настолько велики, что самосогласование поля проходило неоднозначно или не проходило вовсе.

Энергия когезии отдельных кластеров Si_nC_n рассчитывалась как

$$E_{\rm C}^{\rm K} = U_{\rm tot} - nE_{\rm Si} - nE_{\rm C},$$

где U_{tot} — полная энергия кластера, $E_{\text{Si}} = -7857.9036 \text{ eV}, E_{\text{C}} = -1022.8448 \text{ eV}$ — полные энергии изолированных атомов кремния и углерода.

Аналогично для кластеров C_{2n} из полной энергии кластера вычиталась энергия системы с 2*n*-разделенными невзаимодействующими атомами углерода.

Ширина запрещенной щели вычислялась как разность энергий низшей незанятой молекулярной орбитали (LUMO) и высшей занятой (HOMO) $\Delta = E_{\text{LUMO}} - E_{\text{HOMO}}$.

Энергия одной связи в кластере рассчитывалась как $\varphi_{XY} = E_{\rm C}^K/l$, где l — число связей.

Энергия когезии на один атом в кластере равна $E_{\rm C}^X = E_{\rm C}^Y = 3\varphi_{XY}/2.$

Релаксированная структура кристаллов рассчитывалась методом молекулярной динамики с использованием потенциала Терсоффа [38] по программе XMD [39].

3. Результаты и анализ расчета фуллеренов C_{2n} и фулсиценов Si_nC_n

Оптимизированные геометрические конфигурации кластеров на примере Si_nC_n показаны на рис. 1. Все

Рис. 1. Конфигурация кластеров Si_nC_n (фулсиценов) после оптимизации. В скобках указаны симметрия и количество граней (c — квадратные, h — гексагональные, o — октаэдрические, d — декагональные грани): $Si_{12}C_{12}$ (T_h , 6c + 8h), $Si_{16}C_{16}$ (T_d , 6c + 12h), $Si_{18}C_{18}$ (D_{3h} , 6c + 14h), $Si_{24}C_{24}$ (O, 12c + 8h + 6o), $Si_{36}C_{36}$ (T_d , 6c + 32h), $Si_{60}C_{60}$ (T, 30c + 20h + 12d).

кластеры — выпуклые полиэдрические многогранники с гранями типа *c*, *h*, *o*, *d* — квадраты, гексагоны, октагоны, декагоны соответственно.

Результаты расчета представлены в табл. 1-4 и на рис. 2.

В результате оптимизации структура всех молекул отклоняется от идеальной геометрической конфигурации и остается стабильной. Для кластеров углерода искажения конфигурации намного меньше, чем для карбида кремния. По степени искажений и величине переноса заряда исследованные кластеры можно разделить на две группы: первую — с n = 12, 24, 60, вторую — с n = 16, 18, 36. Наименьшие отклонения как для углерода, так и для карбида кремния наблюдаются у кластеров первой группы, а у кластеров второй группы наблюдается разброс значений длины связи и межатомных углов на гранях. Наибольшую деформацию испытывает кластер Si₁₈C₁₈ — он сплющивается в эллипсоид. При этом длины связей и углы между ними на его экваторе и на полюсах заметно различаются. Во всех кластерах Si_nC_n возникают перенос заряда, гетерополярная и ионная составляющие межатомной связи, что приводит к гофрировке граней молекулы и отклонению длин связей и углов от правильных геометрических. Ионы C⁻ выпячиваются наружу, а ионы Si⁺ уходят внутрь кластера, образуя двойной электрический слой. Отметим, что для кластеров первой группы перенос заряда симметричен для всех атомов — сколько убывает у кремния, столько добавляется к углероду. Во второй же группе наблюдается значительный разброс значений в величине заряда разных ионов в зависимости от типа и положения грани (рис. 2, *b*).

В кластерах C_{2n} перенос заряда практически не возникает и выражается в сотых и тысячных долях заряда электрона. Но и тут видны две группы кластеров. В первой перенос заряда либо равен нулю, либо симметричен. Во второй, как и для карбида кремния, перенос заряда неравномерный. В ряду кластеров углерода дополнительно построены и исследованы кластеры C_{20} и C_{28} , содержащие грани p — пентагоны. По величине отклонений длин связей и межатомных углов, а также картине переноса заряда они относятся к кластерам второй группы. В кластере C_{28} возникает дипольный момент.

Рис. 2. Зависимости энергии когезии на атом от числа атомов в кластере для исследованных нами C_{2n} и Si_nC_n , а также для рассчитанных в [22] кластеров углерода C_{20} , C_{24} , C_{28} , C_{32} (*a*) и величины переноса заряда по Малликену для C_{2n} (*I*) и Si_nC_n (*2*) (жирная линия на концах пунктирной выделяет разброс значений величины переноса заряда для менее симметричных кластеров) (*b*).

0.1298, 0.1402, 0.1516

h/h

0.1349, 0.1414, 0.1462

c/o

0.1503

c/d

0.1484

	Tac	олица 1. Длины связей и у	глы для кластеров C _{2n}			
Кластер	Длина	связей, nm	Углы между связями, $^{\circ}$			
C ₂₀	<i>p/p</i> 0.1430, 0.1439		103.43,	<i>p</i> 109.67, 112.91		
C ₂₄	c /h 0.1474	<i>h/h</i> 0.1379	с 84.24, 93.07	<i>h</i> 113.88, 125.10		
C ₂₈	p/p 0.1408-0.1465	<i>p/h</i> 0.1375–0.1494	<i>p</i> 102.89–113.95	<i>h</i> 118.55–122.01		
C ₃₂	c/h 0.1482	<i>h/h</i> 0.1412	с 90.0	<i>h</i> 115.10, 121.84		
C ₃₆	c/h	h/h	с	h		

86.60, 89.55

С

90.0

С

90.0

C

90.0

Примечание. Длина связи указана для смежных квадрата и гексагона (c/h), гексагона и гексагона (h/h) и далее аналогично, c, p, h, o, d квадраты, пентагоны, гексагоны, октагоны, декагоны соответственно. Углы между связями указаны внутри многоугольной грани кластера.

h/o

0.1345

h/d

0.1343

Кластер	$E_{\rm LUMO},{\rm eV}$	$E_{\rm HOMO},{\rm eV}$	Δ, eV	Полная энергия кластера U _{tot} , eV	Энергия связи φ_{XY} , eV
C ₂₀	-0.29	-6.65	6.36	-20586.79	-4.33
C ₂₄	0.25	-8.26	8.51	-24708.24	-4.44
C ₂₈	-1.878	-6.455	4.58	-28829.40	-4.52
C ₃₂	-1.84	-2.65	0.81	-32928.54	-4.11
C ₃₆	-0.038	-6.735	6.7	-37065.01	-4.49
C_{48}	-0.8898	-6.781	5.89	-49431.56	-4.65
C ₇₂	0.236	-7.298	7.53	-74170.46	-4.87
C120	-0.492	-7.056	6.56	-123600.22	-4.77

Таблица 2. Энергетические характеристики кластеров C_{2n}

Физически это означает, что в первой группе кластеров смещение атомов от геометрически правильных положений симметрично, и сферическая форма сохраняется, а во второй — симметрия понижается и сферическая форма нарушается. Например, сферические кластеры C₇₂ и Si₃₆C₃₆ после оптимизации принимают форму октаэдра (рис. 1). Это позволяет предложить проводить оценку степени искажений кластера после оптимизации по признаку симметричности переноса заряда как более наглядному, чем оценка изменения длин связей и межатомных углов.

Таким образом, конфигурация свободной гетеромолекулы слегка отклоняется от геометрически правильной. В кристалле же в результате подстройки молекул друг к другу возникает правильная симметричная конфигурация с плоскими гранями. Такая подстройка возможна в процессе формирования кристалла при кополимеризации, поскольку разность энергий между гофрированной и плоской симметричной конфигурациями служит избыточной энергией, которая освобождается в экзотермической безбарьерной реакции соединения молекул.

Анализ карт электронной плотности молекулярных орбиталей показывает, что во всех кластерах Si_nC_n происходит перераспределение электронов от Si⁺ к C⁻, заряды ионов меньше единицы. Возникают гетерополярная связь между ионами Si⁺-C⁻ (связующие орбитали) и отталкивание ионов Si⁺-Si⁺ и C⁻-C⁻ (разрыхляющие орбитали). Электронные облака для связи кремний-углерод у всех приведенных кластеров по структуре существенно не различаются. Форма электронных облаков на картах электронной плотности анизотропная,

116.39-120.15

117.02-120.84

135.0

d

144.0

h

119.99, 120.01

h

120.0

C48

C72

C₁₂₀

0.1457

c/h

0.1458

c/h

0.1448

c/h

0.1465

Кластер	Длина связей, nm			Углы между связями, $^{\circ}$			
Si ₁₂ C ₁₂	c/h 0.1896	h/h 0.1834		<i>c</i> SiCSi 94.74 CSiC 80.19	h SiCSi 131.03 CSiC 102.46		
Si ₁₆ C ₁₆	c/h 0.1809	h, 0.1796;	/ <i>h</i> 0.1783	<i>c</i> SiCSi 82.26 CSiC 96.55	<i>h</i> SiCSi 110.57; 116.45 CSiC 117.74; 126.13		
Si ₁₈ C ₁₈	c/h 0.1801 0.1819	h/h 0.1705-0.1845		<i>c</i> SiCSi 80.47; 80.48 CSiC 89.89; 99.07	<i>h</i> SiCSi 109.26–120.56 CSiC 118.40–126.54		
Si ₂₄ C ₂₄	c/h 0.1829	c/o 0.1799	h/o 0.1749	<i>c</i> SiCSi 85.06 CSiC 94.31	<i>h</i> SiCSi 115.55 CSiC 123.16	o SiCSi 130.76 CSiC 137.1	
Si ₃₆ C ₃₆	c/h 0.1799	h/h 0.1755-0.1812		<i>c</i> SiCSi 81.69 CSiC 96.77	<i>h</i> SiCSi 112.94–118.29 CSiC 116.68–125.59		
Si ₆₀ C ₆₀	c/h 0.1831	c/d 0.1790	<i>h/d</i> 0.1741	<i>c</i> SiCSi 85.85 CSiC 93.91	<i>h</i> SiCSi 117.58 CSiC 121.91	<i>d</i> SiCSi 144.33 CSiC 142.16	

Таблица 3. Длины связей и углы для кластеров Si_nC_n

Примечание. Длина связи указана для смежных квадрата и гексагона (c/h), гексагона и гексагона (h/h) и далее аналогично, c, h, o, d — квадраты, гексагоны, октагоны, декагоны соответственно. Углы между связями указаны внутри многоугольной грани кластера. Диапазон значений указан для кластеров Si₁₈C₁₈ и Si₃₆C₃₆, длина связи и углы которых зависят от места расположения атома на сфере кластера.

Таблица 4. Энергетические характеристики кластеров Si_nC_n

Кластер	$E_{ m LUMO}$, eV	$E_{ m HOMO}$, eV	Δ, eV	Полная энергия кластера U _{tot} , eV	Энергия связи φ_{XY} , eV
Si ₁₂ C ₁₂	-0.9	-7.13	6.24	-106683.25	-3.17
Si ₁₆ C ₁₆	0.4	-7.8	8.2	-142265.78	-3.62
Si ₁₈ C ₁₈	-0.31	-7.82	7.51	-160044.54	-3.54
Si ₂₄ C ₂₄	0.85	-8.1	8.95	-213402.88	-3.68
Si ₃₆ C ₃₆	0.84	-8.03	8.87	-320115.85	-3.79
Si ₆₀ C ₆₀	0.88	-7.85	8.73	-533517.93	-3.74

грушевидная с переносом обобществленных электронов в сторону углерода. Изолиния, ограничивающая области одинаковой электронной плотности вокруг атомов углерода, ровная, переход от областей с более высокими значениями к меньшим плавный. У атомов кремния изолинии одинаковой электронной плотности зигзагообразные, переход к значениям более низкой плотности скачкообразный.

В кластерах углерода в C_{2n} атомы связаны сильными чисто ковалентными sp^2 -связями, вся электронная плотность равномерно распределена по направлению связи между атомами. Форма облаков для кластеров с разным *n* по структуре существенно на различается.

На рис. 2, *а* показан график зависимости энергии когезии для изученных нами кластеров углерода и карбида кремния. Для сравнения приведены энергия когезии на атом для наиболее стабильных изомеров кластеров C₂₀, С₂₄, С₂₈, С₃₂, включающих пентагоны и гексагоны [22], которая хорошо согласуется с нашими результатами.

Расчетное значение энергии когезии (-7.3 eV) атома углерода в C₇₂ близко к экспериментальному для графита (-7.4 eV).

Для сравнения в [18,19] длина связи кремний—углерод (0.193 и 0.187 nm) и заряд по Малликену (на кремнии 0.53, на углероде -0.21) для наиболее стабильной конфигурации согласуются с полученными нами значениями для длины связи (0.1896 и 0.1834 nm для Si₁₂C₁₂ — удлинение связи в обоих случаях 0.006 nm) и заряда (0.416–0.622 на кремнии в зависимости от *n* кластера).

Проведенные в [25] тестовые расчеты методом DFT для $B_n N_n$ при n = 60 позволяют предположить, что проведенные в настоящей работе расчеты геометрии, полной энергии и энергии когезии выполнены с доста-

точно хорошей точностью, в то время как расчет ширины запрещенной щели может иметь лишь оценочный характер.

Возможные плотноупакованные кристаллы из фулсиценов – фулсицениты

По аналогии с кластерами углерода C_n (фуллеренами) и кристаллами из них (фуллеритами), кластерами нитрида бора $B_n N_n$ (фулборенами) и кристаллами из них (фулборенитами) [7,8] мы предлагаем назвать кристаллообразующие кластеры карбида кремния Si_nC_n фулсиценами, а кристаллы в них — фулсиценитами.

Рассмотрим возможные кристаллы из кластеров $Si_{12}C_{12}$ и $Si_{24}C_{24}$. Эти кластеры — наименьшие сферические кластеры, не содержащие пентагонов с чередующимися Si-C-связями, с кристаллической группой симметрии и необходимым числом граней. Кроме того, вероятность образования таких кластеров в процессе химического синтеза из газовой фазы больше, чем для

Рис. 3. Релаксированная структура фулсиценита с решеткой алмаза ГАФ-Si₁₂C₁₂ (*a*) и его теоретическая дифрактограмма (*b*). *1* — углерод, *2* — кремний, *3* — узлы ячейки. Первый пик на дифрактограмме соответствует рефлексу (111), $2\theta = 9.79 \text{ deg}, d = 9.063 \text{ Å}.$

Рис. 4. Релаксированная структура фулсиценита с ПК-решеткой ПКФ-Si₂₄C₂₄ (*a*) и его теоретическая дифрактограмма (*b*). *I* — углерод, *2* — кремний, *3* — узлы ячейки. Первый пик на дифрактограмме соответствует рефлексу (011), $2\theta = 13.18 \text{ deg}$, d = 6.710 Å.

остальных кластеров, так как они являются наименьшими из объемных кластеров с наименьшей энергией связи собирающихся в газовой фазе димеров Si-C.

В работах [6,7] впервые предложена идея построения кристаллов из кластеров типа $X_{12}Y_{12}$ и $X_{24}Y_{24}$. Здесь мы рассчитаем возможность их образования методом молекулярной динамики.

Из кластеров $Si_{12}C_{12}$ теоретически можно построить четыре типа плотноупакованных решеток, кополимеризованных гранями, а именно: простую кубическую (ПК) и решетку каменной соли NaCl (КС), соединенных по шести квадратным граням, объемно центрированную кубическую (ОЦК) стыковкой восемью гексагональными гранями и сфалерита или алмаза (А) стыковкой четырьмя гексагонами.

ПК-решетка ПКФ-Si₁₂C₁₂ будет метастабильной, так как образуются менее прочные Si–Si-связи. Однако при повороте на 90° вокруг оси стыковки квадратами образуется кубическая решетка типа NaCl с чередующимися неповернутыми и повернутыми кластерами, в которой все связи будут Si–C. Параметр такого фулсиценита с решеткой каменной соли КСФ-Si₁₂C₁₂ $A = 2(1 + 2\sqrt{2})a_{Si-C} = 1.44523 \text{ nm}$ (до релаксации) и A = 1.45576 nm (после релаксации), удельная плотность $\rho = 2.072 \text{ g/cm}^3$. В его теоретической дифрактограмме первый пик соответствует рефлексу (200), $2\theta = 12.15^\circ$, d = 7.280 Å.

Фулсиценит с ОЦК-решеткой ОЦКФ-Si₁₂C₁₂ образуется стыковкой восьми гексагонов. Параметр решетки $A = 2(1/\sqrt{3} + \sqrt{2})a_{Si-C} = 0.75182 \text{ nm}$ (до релаксации) и A = 0.82906 nm (после релаксации), $\rho = 2.804 \text{ g/cm}^3$. В его теоретической дифрактограмме первый пик соответствует рефлексу (110), $2\theta = 15.10^\circ$, d = 5.863 Å.

Фулсиценит с гипералмазной решеткой ГАФ-Si₁₂C₁₂ образуется стыковкой четырех гексагонов. Параметр решетки $A = 4[(1 + \sqrt{2})/\sqrt{3}]a_{\rm Si-C} = 1.50363$ nm (до релаксации) и A = 1.56836 nm (после релаксации), $\rho = 1.657$ g/cm³. Структура и дифрактограмма кристалла представлены на рис. 3.

Из кластеров фулсицена $Si_{24}C_{24}$ теоретически можно построить четыре типа решеток.

Фулсиценит с ПК-решеткой ПКФ-Si₂₄C₂₄ образуется стыковкой шести октагонов. Структура и дифрактограмма кристалла представлены на рис. 4. Параметр решетки $A = 2(1 + \sqrt{2})a_{Si-C} = 0.91137$ nm (до релаксации) и A = 0.94948 nm (после релаксации), $\rho = 1.867$ g/cm³.

Фулсиценит с ГЦК-решеткой ГЦКФ-Si₂₄C₂₄ образуется стыковкой двенадцати квадратов с поворотом на 90° вокруг оси стыковки для исключения Si–Si-связей. Параметр решетки $A = 2(1 + 2\sqrt{2})a_{Si-C} = 1.44523$ nm (до релаксации) и A = 1.45576 nm (после релаксации), $\rho = 2.072$ g/cm³. В его теоретической дифрактограмме первый пик соответствует рефлексу (200), $2\theta = 12.15^{\circ}$, d = 7.280 Å.

Остальные решетки ОЦКФ-Si₂₄C₂₄ и ГАФ-Si₂₄C₂₄ содержат менее прочные Si–Si-связи, поэтому их образование менее вероятно. Они также стабильны и могут возникать в смеси с другими, образуя неплотноупакованные, дефектные решетки, которые экспериментально будут идентифицироваться как аморфные.

5. Заключение

Впервые рассчитана электронная структура ряда кристаллообразующих кластеров карбида кремния, не содержащих пятиугольников.

Из кластеров Si₁₂C₁₂ и Si₂₄C₂₄, названных фулсиценами, впервые построены возможные кристаллы: с решеткой каменной соли — КСФ-Si₁₂C₁₂, простой кубической — ПКФ-Si₂₄C₂₄, ОЦК-решеткой — ОЦКФ-Si₁₂C₁₂, ГЦК-решеткой — ГЦКФ-Si₂₄C₂₄ и алмазной решеткой — ГАФ-Si₁₂C₁₂, названные фулсиценитами. Рассчитанные дифрактограммы материалов могут служить ориентиром для их поиска. Ряд фулсиценов и фулсиценитов, предложенные в настоящей работе, может быть продолжен. Теоретическое обоснование, приведенное здесь, может стать ориентиром для экспериментального получения нового класаа искусственных цеолитов с уникальными свойствами, в частности широкозонных полупроводников, обладающих рекордной удельной прочностью, пористостью и долговечностью для терагерцевой наноэлектроники.

Список литературы

- [1] F. Baletto, R. Ferrando. Rev. Mod. Phys. 77, 371 (2005).
- [2] M. Rieth, W. Schommers. J. Comput. Theor. Nanosci. 1, 40 (2004).
- [3] T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, K. Suganama. Mater. Sci. Eng. B 74, 206 (2000).
- [4] G. Seifert. Nature Mater. 3, 77 (2004).
- [5] В.В. Ивановская, А.Л. Ивановский. Неорган. материалы 43, 4, 410 (2007).
- [6] И.В. Станкевич, А.Л. Чистяков, Е.Г. Гальперн, Н.П. Гамбарян. ЖСХ 36, 6, 976 (1995).
- [7] В.В. Покропивный, А.В. Покропивный, В.В. Скороход, А.В. Курдюмов. Докл. НАН Украины 4, 112 (1999).
- [8] V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik, A.V. Kurdyumov, T.S. Bartnitskaya, A.V. Pokropivny, A.G. Sisonyuk, D.V. Sheichenko. J. Solid State Chem. 54, 212 (2000).
- [9] T. Oku, M. Kuno, H. Kitahara, I. Narita. Int. J. Inorg. Mater. 3, 597 (2001).
- [10] A. Kasuya, R. Sivamonan, Yu.A. Barnakov, I.M. Dmitruk, T. Nirasawa, V.R. Romanyuk, V. Kumar, S.V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R.V. Belosludov, V. Sundararsjan, Y. Kawazoe. Nature Mater. 3, 99 (2004).
- [11] G. Chen, K. Tang, Y. Qian. Int. J. Nanotechnol. 1, 366 (2004).
- [12] T. Baruah, M.K. Pederson, R.R. Zope, M.R. Beltrain. Chem. Phys. Lett. 387, 476 (2004).
- [13] А.Н. Еняшин, А.Л. Ивановский. ФТТ 49, 2, 378 (2007).
- [14] R.B. King. J. Phys. Chem. 100, 15096 (1996).
- [15] R.B. King. Mol. Phys. 102, 1231 (2004).
- [16] А.Н. Еняшин, А.Л. Ивановский. ЖФХ 79, 1085 (2005).
- [17] D. Connetable, V. Timoshevski, E. Artacho, X. Blasé. Phys. Rev. Lett. 87, 206405-1 (2001).
- [18] M. Matsubara, C. Mossobrio. J. Chem. Phys. 122, 084 304 (2005).
- [19] M. Matsubara, C. Mossobrio. J. Phys. Chem. A 109, 4415 (2005).
- [20] Bao-xing Li, Pei-lin Cao. Phys. Rev. B 62, 15788 (2000).
- [21] V. Kumar, Y. Kawazoe. Phys. Rev. Lett. 87, 045503-1 (2001).
- [22] R.O. Jones. J. Chem. Phys. 110, 5189 (1999).
- [23] M.D. Blinder, L. Kleinman. Phys. Rev. B 47, 10967 (1993).
- [24] А.Н. Еняшин, В.В. Ивановская, Ю.Н. Макурин, А.Л. Ивановский. ФТТ 46, 8, 1522 (2004).
- [25] В.В. Покропивный, Л.И. Овсянникова, С.В. Ковригин. ФТТ 49, 12, 2224 (2007).
- [26] В.В. Покропивный, А.В. Покропивный. ФТТ 46, 2, 380 (2004).
- [27] R.B. Aust, H.C. Drickamer. Science 140, 3568, 817 (1963).
- [28] А.С. Смоляр, Ю.И. Созин, В.А. Бархоленко, С.Н. Малоштан, В.А. Куц, В.Г. Гурин, А.П. Архипов, А.Ю. Герасимов, Н.А. Развадовский, А.Н. Титенко. Сверхтвердые материалы 2, 79 (2002).

- [29] V. Pokropivny, A. Smolyar, A. Pokropivny, V. Kuts, R. Rartch. Abstract of 8th Conf. "Nanocarbon-05". ANL, Illinois, USA (2005). P. 845.
- [30] С.С. Бацанов, Г.Е. Блохин, А.А. Дерибас. ЖСХ **6**, 227 (1965).
- [31] A. Sokolovska, A. Olszyna. J. Cryst. Growth 116, 507 (1992).
- [32] В.В. Покропивный, А.С. Смоляр, А.В. Покропивный. ФТТ 49, 3, 562 (2007).
- [33] D.M. Sheichenko, A.V. Pokropivny, V.V. Pokropivny. Semicond. Phys. 3, 550 (2000).
- [34] В.Л. Бекенев, В.В. Покропивный. ФТТ 48, 7, 1324 (2006).
- [35] В.В. Покропивный, В.Л. Бекенев. ФТП 40, 6, 656 (2006).
- [36] А.Л. Чистяков, И.В. Станкевич, А.А. Корлюков. ФТТ 47, 1, 184 (2005).
- [37] В.В. Покропивный, Л.И. Овсянникова. ФТТ **49**, *3*, 535 (2007).
- [38] J. Tersoff. Phys. Rev. B **39**, *8*, 5566 (1989); Erratum: Phys. Rev. B **41**, *5*, 3248 (1990).
- [39] J. Rifkin. XMD. http://www.ims.uconn.edu/centers/simul.