Фазовый переход в сегнетоэлектрических нанокристаллах сополимера поливинилиденфторида с трифторэтиленом

© К.А. Верховская, А.А. Плаксеев, Н.Д. Гаврилова*, Р.В. Гайнутдинов, А.М. Лотонов*, О.А. Лысова, С.Г. Юдин

Институт кристаллографии им. А.В. Шубникова Российской академии наук, Москва, Россия * Московский государственный университет им. М.В. Ломоносова, Москва, Россия

E-mail: Kira@ns.crys.ras.ru

(Поступила в Редакцию 25 февраля 2009 г.)

Исследования диэлектрической дисперсии проведены для нанокристаллов сополимера поливинилиденфторида с трифторэтиленом состава 70/30. Обнаружено, что фазовый переход в сегнетоэлектрических нанокристаллах имеет место при $T = 100^{\circ}$ С. Наблюдается широкий температурный гистерезис, что указывает на наличие фазового перехода первого рода.

Работа поддержана INTAS (грант N 1000008-8091) и РФФИ (№ 08-02-00600, 09-02-00096).

PACS: 77.22.-d, 77.22.Ch, 77.55.+f, 77.84.Jd

1. Введение

В 1995 г. была разработана методика получения сверхтонких пленок сегнетоэлектрического сополимера поливинилиденфторида с трифторэтиленом $\Pi(B \Box \Phi / T p \Phi \Theta)$ по технологии Ленгмюра-Блоджетт (ЛБ) [1]. Было показано, что сегнетоэлектричество существует в двух монослоях (МС) сополимера [2], а в дальнейшем сегнетоэлектрическое переключение наблюдалось в одном монослое [3]. Эти результаты показали, что в сегнетоэлектрическом сополимере П(ВДФ/ТрФЭ) критическая толщина отсутствует [4]. Первые нанокристаллы были получены с использованием ультратонких ЛБ-пленок (1-5 МС) путем их отжига на воздухе в параэлектрической фазе при температуре 125°С в течение 5h [5,6]. Перекристаллизация при отжиге ЛБ-пленки сополимера приводила к росту нанокристаллов толщиной 10-20 nm и диаметром 100-200 nm [5-7]. Эти размеры зависят от состава сополимера и количества монослоев, а также от температуры отжига. Методом электронной дифракции были определены параметры решетки нанокристалла, которые соответствовали пространственной группе C_2^3 моноклинной сингонии, не противоречившей существованию сегнетоэлектричества (ось 2 — особое полярное направление) [7]. Наличие сегнетоэлектрических свойств в нанокристаллах было подтверждено измерениями гистерезиса емкости C(V) в форме "бабочки" [5] и изучением времен переключения нанокристаллов методом Мерца [8]. В последнее время исследования по переключению одного нанокристалла были выполнены с помощью атомно-силового микроскопа (АСМ) в пьезоэлектрическом режиме, был обнаружен доменный механизм переключения, ограниченный скоростью образования зародышей. При изучении кинетики переключения ультратонких ЛБ-пленок сополимера с помощью АСМ также были обнаружены доменный характер переключения и существование нанодоменов [9]. В отличие от ЛБпленок сополимера П(ВДФ/ТрФЭ) фазовый переход в нанокристаллах не был исследован. В настоящей работе для его изучения был использован метод диэлектрической дисперсии.

2. Методика эксперимента

Ультратонкие пленки сополимера П(ВДФ/ТрФЭ) были приготовлены горизонтальным методом Ленгмюра– Шеффера путем переноса молекулярных слоев сополимера, формируемых на поверхности воды, на поверхность стекла с напылением в качестве электрода алюминием (нижний электрод). Пленки ЛБ получены из раствора сополимера в циклогексаноне с концентрацией 1.8 wt.%. В технологии ЛБ в зависимости от условий приготовления возможны случаи, когда переносится не один монослой, а несколько. Методом атомно-силовой микроскопии была оценена толщина пленки при одном переносе, она составляла 2 nm [10].

Для получения нанокристаллов ЛБ-пленка в 2 МС была отожжена при $T = 139^{\circ}$ С в течение 6 h. С помощью АСМ проводилась оценка размеров нанокристаллов: толщина 20 nm и диаметр 200 nm. Измерения были выполнены на сканирующем зондовом микроскопе SOLVER P47 (NT-MDT, Mockba) с использованием зондов (марки CSC38/MicroMash, Эстония). Проводились исследования топографии поверхности в контактом режиме АСМ (рис. 1, *a*), а также качественное изучение распределения заряда поверхности нанокристалла методом микроскопии пьезоэлектрического отклика (рис. 1, *b*). Рис. 1, *c*, *d* демонстрируют переключение нанокристаллов при смене напряжения на зонде с -10 V на +10 V.

Для проведения диэлектрических измерений на пленку с нанокристаллами наносились изолирующие несе-

Рис. 1. Нанокристаллы, выращенные из ЛБ-пленки сополимера толщиной в два монослоя. *а* — изображение топографии поверхности, полученное с помощью ACM; *b* — изображение того же участка поверхности, полученное методом микроскопии пьезоэлектрического отклика; *c*, *d* — переключение нанокристалла в ACM при –10 и +10 V соответственно.

гнетоэлектрические слои азокрасителя МЭЛ-26 с помощью метода ЛБ [11]. На приготовленный таким способом образец № 1 напылялся верхний алюминиевый электрод. Структурная формула азокрасителя МЭЛ-26 имеет следующий вид:

Измерения действительной и мнимой частей диэлектрической проницаемости образца № 1 были выполнены в частотном диапазоне $10^3 - 10^7$ Hz и температурном интервале $20 - 110^\circ$ на спектрометре Novocontrol Technologies. На образец подавалось измерительное напряжение 0.8 V. При измерениях пленка находилась в термостате в атмосфере газообразного азота. Температура стабилизировалась с точностью $\approx 0.01^\circ$. Образец № 2, представляющий собой три слоя азокрасителя МЭЛ-26, был измерен в тех же частотном и температурном диапазонах. Известно, что для ЛБ-пленок $\Pi(BД\Phi/Tp\Phi\Theta)$ состава 70/30 температура фазового перехода при нагревании равна $T = 105^{\circ}$ С, при охлаждении 70°С, т.е. температурный гистерезис составляет 35°С. При фазовом переходе структура полимера меняется. Транс-транс (TTTT)-полярная конфигурация переходит в неполярную трансош (TGTG⁻)-структуру [12,13].

3. Результаты и обсуждение

Дисперсионная формула Дебая для комплексной диэлектрической проницаемости $\varepsilon^* = \varepsilon' - i\varepsilon''$ имеет вид

$$arepsilon^* = arepsilon(\infty) + rac{\Deltaarepsilon}{1+\omega^2 au^2} - irac{\Deltaarepsilon\omega au}{1+\omega^2 au^2},$$

где $\varepsilon(0)$ и $\varepsilon(\infty)$ — статическая и высокочастотная диэлектрические проницаемости, $\Delta \varepsilon = \varepsilon(0) - \varepsilon(\infty)$ — глубина дисперсии, $\omega = 2\pi f$ — круговая частота, τ — время релаксации. Время релаксации τ определялось по

формуле $\tau = 1/2\pi f_m$, где f_m — частота, при которой наблюдается пик ε'' .

На рис. 2 приведены частотные зависимости ε' и ε'' для нанокристаллов (образец № 1) для различных температур при нагревании. Следует отметить, что время релаксации $\tau = 1.6 \cdot 10^{-7}$ s, что соответствует значениям τ для ЛБ-пленок в 10–30 MC.

Как видно из рис. 2, частотные зависимости согласуются с релаксационной функцией в теории Дебая и аналогичны зависимостям $\varepsilon'(f)$ и $\varepsilon''(f)$ в ЛБ-пленках при температурах существования сегнетоэлектрической фазы. Поскольку дипольные группы $-CH_2-CF_2-$ жестко связаны с основной полимерной цепью и ориентированы перпендикулярно оси цепи, движения диполей вызваны поворотом молекулярных цепей. При нагревании интенсивность максимума ε'' уменьшается и наблюдается смещение f_m в сторону низких частот. При

Рис. 2. Частотные зависимости ε' (светлые символы) и ε'' (темные символы) для нанокристаллов $\Pi(BД\Phi/Tp\Phi\Theta)$ при различных температурах в процессе нагрева (образец № 1).

Рис. 3. Частотные зависимости ε' (светлые символы) и ε'' (темные символы) для нанокристаллов П(ВДФ/ТрФЭ) при различных температурах в процессе охлаждения (образец № 1).

Рис. 4. Частотные зависимости ε' (светлые символы) и ε'' (темные символы) для трех слоев азокрасителя МЭЛ-26 при нагревании.

температуре 100°С характер частотных зависимостей ε' и ε'' значительно изменяется. Появляется другой релаксационный максимум ε'' на частоте 2.5 · 10³ Hz. Как видно из рис. 3, на котором представлены результаты измерения ε' и ε'' в режиме охлаждения, низкочастотная аномалия сохраняется в интервале температур от 110 до 70°С, т.е. в температурной области гистерезиса, соответствующего фазовому переходу первого рода. Высокочастотный максимум ε'' при $f = 8 \cdot 10^5$ Hz, характеризующий релаксацию диполей в сегнетоэлектрической фазе, проявляется снова при дальнейшем охлаждении при температурах от 70 до 20°С.

На рис. 4 приведена частотная дисперсия несегнетоэлектрических слоев азокрасителя МЭЛ-26 при разных температурах, которая указывает на отсутствие аномалий в области частот $10^3 - 10^7$ Hz.

4. Заключение

Следует отметить, что ранее для ультратонких ЛБпленок толщиной 2 nm наблюдалось появление в параэлектрической фазе двух процессов различной амплитуды. Два процесса сохранялись при охлаждении в температурной области гистеризиса, когда имеет место сосуществование сегнетоэлектрической и параэлектрической фаз [14]. Таким образом, для нанокристаллов при фазовом переходе при $T = 100^{\circ}$ С прослеживается развитие релаксационных явлений, появление низкочастотного максимума ε'' , который сохраняется при охлаждении в температурной области гистерезиса от 100 до 70°С. Можно предположить, что происходит поляризация среды типа Максвелла-Вагнера, обусловленная инжекцией носителей заряда из электродов и накоплением зарядов на границах неоднородностей, связанных с сосуществованием двух фаз [15].

Авторы выражают благодарность В.М. Фридкину за полезные советы в ходе обсуждения этой работы.

Список литературы

- S. Palto, L. Blinov, A. Bune, E. Dubovik, V. Fridkin, N. Petukhova, K. Verkhovskaya, S. Yudin. Ferroelectrics Lett. 19, 65 (1995).
- [2] A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto, A.V. Sorokin, S.G. Yudin, A. Zlatkin. Nature (London) 391, 874 (1998).
- [3] S. Ducharme, V. Fridkin, A. Ievlev, K. Verkhovskaya, G. Vizdrik, S. Yudin. Ferroelectrics 314, 37 (2005).
- [4] В.М. Фридкин. УФН 176, 203 (2006).
- [5] M. Bai, S. Ducharme. Appl. Phys. Lett. 85, 16 (2004).
- [6] M. Bai, M. Poulsen, S. Ducharme. J. Phys.: Cond. Matter 18, 7383 (2006).
- [7] M. Bai, X.Z. Li, S. Ducharme. J. Phys.: Cond. Matter 19, 196 211 (2007).
- [8] C.M. Othon, J. Kim, S. Ducharme, V.M. Fridkin. J. Appl. Phys. 104, 054 109 (2008).
- [9] R.V. Gaynutdinov, O.A. Lysova, A.L. Tolstikhina, S.G. Yudin, V.M. Fridkin, S. Ducharme. Appl. Phys. Lett. 92, 172 902 (2008).
- [10] A. Tolstousov, R.V. Gaynutdinov, R. Tadros-Morgane, S.G. Yudin, A.L. Tolstikhina, H. Kliem, S. Ducharme, V.M. Fridkin. Ferroelectrics 354, 99 (2007).
- [11] Л.М. Блинов, С.П. Палто, С.Г. Юдин. Опт. и спектр. 60, 756 (1986).
- [12] А.М. Лотонов, А.С. Иевлев, Н.Д. Гаврилова, К.А. Верховская, С.Г. Юдин. ФТТ 48, 1101 (2006).
- [13] Л.М. Блинов, А.В. Буне, К.А. Верховская, Г.М. Виздрик, П. Даубен, С. Дюшарм, С.П. Пальто, В.М. Фридкин, С.Г. Юдин. Кристаллография 48, S 162 (2003).
- [14] А.А. Плаксеев, К.А. Верховская. Материалы Междунар. науч. конф. "Молодые ученые-2008". М. (2008). Ч. 2. С. 11.
- [15] А.В. Турик, Г.С. Рудченко, А.И. Чернобабов, С.А. Турик, В.В. Супрунов. ФТТ 48, 1088 (2006).