Электронная структура, магнитные свойства и стабильность бинарных и тройных карбидов (Fe, Cr)₃C и (Fe, Cr)₇C₃

© М.А. Коняева, Н.И. Медведева

Институт химии твердого тела Уральского отделения Российской академии наук, Екатеринбург, Россия

E-mail: medvedeva@ihim.uran.ru

(Поступила в Редакцию 10 сентября 2008 г. В окончательной редакции 11 февраля 2009 г.)

В рамках неэмпирического метода функционала электронной плотности выполнен анализ структурных, электронных и магнитных свойств двойных и тройных карбидов (Fe, Cr)₃C, (Fe, Cr)₇C₃. Оптимизирована кристаллическая структура бинарных карбидов и найдены предпочтительные позиции для замещения примеси хрома или железа в соответствующих карбидах. Исследованы изменения в электронной структуре и магнитных свойствах, рассчитаны зависимости энергий образования тройных карбидов от концентрации примеси и сделаны выводы о влиянии примеси на стабильность карбидов.

Работа поддержана Фондом ОАО "ММК", ФНиО "Интелс" (грант № 52-08-01)

PACS: 71.15.Nc, 71.20.Be, 74.62.Dh, 74.70.Ad

1. Введение

Железоуглеродистые сплавы — стали и чугуны широко применяются в различных отраслях промышленности и давно являются предметом интенсивных исследований. Известно, что примесь хрома придает сталям такие ценные свойства, как прочность, жаростойкость и коррозионная стойкость [1–3]. Растворяясь в железе в присутствии углерода, хром может образовать карбиды (FeCr)₃C, (CrFe)₃C₂, (CrFe)₇C₃ и (CrFe)₄C. Прочностные свойства во многом обусловлены наличием карбидной фазы — цементита Fe₃C, в которой может растворяться до 18 at% хрома. При дальнейшем росте содержания хрома происходит превращение $(Fe, Cr)_3 C \rightarrow (Cr, Fe)_7 C_3 \rightarrow Cr_7 C_3$. Стали с повышенным содержанием хрома (6-32 at%) имеют более высокую износостойкость, и образование карбида хрома Cr₇C₃ играет значительную роль в улучшении прочности. Карбид Cr₇C₃ является термодинамически стабильным, а недавно методом быстрой закалки был получен метастабильный Cr₃C со структурой цементита (Fe₃C-типа) [4]. Известно, что карбиды хрома обладают уникальными свойствами: высокой твердостью, химической стабильностью, устойчивостью к окислению [5-7].

Электронная структура бинарных карбидов железа и хрома исследовалась в ряде работ [8–14], однако ряд важнейших вопросов, связанных с природой и условиями стабильности тройных карбидов в системе Fe–Cr–C, а также механизмы их образования и их электронные свойства остаются неисследованными. Детальное изучение влияния хрома на электронную структуру и химическую связь в цементите, а также на процессы образования карбида Cr_7C_3 отсутствует, несмотря на широкое практическое применение хромистых сталей.

В настоящей работе в рамках функционала электронной плотности исследуется влияние примеси хрома на электронную структуру, магнитные свойства и стабильность бинарных карбидов Fe₃C и Fe₇C₃. С целью установления концентрационных зависимостей свойств при последовательном замещении Fe₃C \rightarrow (Fe, Cr)₃C \rightarrow Cr₃C и Fe₇C₃ \rightarrow (Cr, Fe)₇C₃ \rightarrow Cr₇C₃ проведены расчеты Fe₃(1-*x*)Cr₃*x*C и Fe₇(1-*x*)Cr₇*x*C₃ в интервале значений *x* от 0 до 1 для обеих систем.

2. Метод расчета

Метод проекционных присоединений волн (PAW) [15–16] и пакета программ Vienna ab initio Simulation Package (VASP), используемый нами в настоящей работе, позволяет вопроизвести точность метода LAPW в рамках достаточно простого и эффективного псевдопотенциального подхода. Нами использовалось обобщенное градиентное приближение для обменно-корреляционного функционала [17], интегрирование в зоне Бриллюэна проводилось по $6 \times 6 \times 6 k$ -точкам, а кинетическая энергия обрезания (cutoff) выбрана равной 400 eV.

3. Результаты и обсуждение

3.1. Структурные свойства. В этом разделе приводятся экспериментальные структурные данные, а также полученные нами оптимизированные значения для бинарных карбидов (см. таблицу), анализируются позиции замещения для примеси хрома в карбидах железа и примеси железа в карбидах хрома, а также изменение параметров решетки и объема в зависимости от концентрации примеси.

(**Fe**, **Cr**)₃**C**. Цементит Fe₃C имеет орторомбическую решетку (пространственная группа *Pnma*), элементарная ячейка включает четыре формульные единицы и содержит восемь атомов Fe в основных (Fe_g) и четыре в

Структурные характеристики бинарных карбидов (Fe, Cr) $_3$ C, (Fe, Cr) $_7$ C3

Карбид	Оптимизированные параметры	Эксперимент/расчет
Fe_3C a, b, c, A	5.058, 6.703, 4.506	5.089, 6.743, 4.523 [14]
Feg	0.1/7, 0.059, 0.343	0.186, 0.063, 0.328
Fe _s	0.031, 0.25, 0.843	0.036, 0.25, 0.850
С	0.873, 0.25, 0.432	0.890, 0.25, 0.450
Cr_3C <i>a</i> , <i>b</i> , <i>c</i> , Å	5.186, 6.648, 4.507	5.12, 6.80, 4.58 [7]
Cr_g	0.177, 0.060, 0.343	
Cr _s	0.031, 0.25, 0.843	
С	0.873, 0.25, 0.433	
Cr_7C_3 a, b, c, Å	4.488, 6.968, 11.986	4.53, 7.01, 12.14 [18]
Cr1	0.253, 0.067, 0.019	0.251, 0.066, 0.022
Cr2	0.053, 0.064, 0.811	0.057, 0.064, 0.812
Cr3	0.249, 0.25, 0.203	0.250, 0.25, 0.206
Cr4	0.268, 0.25, 0.416	0.262, 0.25, 0.417
Cr5	0.055, 0.25, 0.627	0.058, 0.25, 0.626
C1	0.036, 0.033, 0.346	0.029, 0.29, 0.343
C2	0.467, 0.25, 0.564	0.459, 0.25, 0.563
Fe ₇ C ₃ $a, b, c, Å$	4.507, 6.850, 11.777	4.537, 6.892, 11.913 [19]
Fe1	0.251, 0.067, 0.015	0.25, 0.07, 0.02
Fe2	0.064, 0.063, 0.808	0.00, 0.07, 0.81
Fe3	0.294, 0.25, 0.198	0.24, 0.25, 0.20
Fe4	0.270, 0.25, 0.412	0.25, 0.25, 0.42
Fe5	0.083, 0.25, 0.628	0.00, 0.25, 0.63
C1	0.037, 0.26, 0.353	0.11, 0.03, 0.35
C2	0.471, 0.25, 0.562	0.38, 0.25, 0.57

специальных (Fe_s) позициях, а атомы углерода находятся в тригонально-призматических междоузлиях. Экспериментальные параметры решетки a = 5.089, b = 6.743,c = 4.523 Å [14]. Расстояния между атомами железа и углерода больше для Fe_g (2.02 Å), чем для Fe_s (1.99 Å), а расстояния между Feg-атомами (2.45 Å) меньше, чем между Fe_s-атомами (2.64 Å). Полученные нами в результате оптимизации значения параметров решетки и координат атомов в Fe₃C находятся в хорошем соответствии с полученными ранее экспериментальными и теоретическими данными (см. таблицу). Для Cr₃C получена также орторомбическая структура с очень близкими значениями параметров решетки и одинаковыми координатами. Объем элементарной ячейки Cr₃C увеличивается на 2.5% по сравнению со значением для Fe₃C за счет роста параметра решетки а. Расстояния Fe_g−С и Fe_s−С возрастают от 2.02 и 1.99 Å до значений 2.04 и 2.02 Å соответственно для основных и специальных позиций.

Для шестнадцатиатомной ячейки рассмотрены варианты замещения хромом как основных Fe_g , так и специальных Fe_s -позиций в тройной системе (Fe, Cr)₃C. Предпочтительность позиции замещения оценивалась с помощью сопоставления полных энергий. Результаты расчетов полных энергий легированных систем пока-

зали, что наиболее энергетически предпочтительным является замещение хромом позиций Fe_g , что согласуется с данными ЯГР [20]. С ростом концентрации хрома энергия предпочтения (разница полных энергий между заполнением основной и специальной позиций) уменьшается. Так, для составов $Fe_{2.75}Cr_{0.25}C$, $Fe_{2.5}Cr_{0.5}C$, $Fe_{2.25}Cr_{0.75}C$ и $Fe_{2.0}CrC$ величина энергии предпочтения составляет -0.08, -0.05, -0.03 и 0.01 eV. В Cr_3C железо при малой концентрации замещает атомы хрома в специальной позиции.

 $(Fe, Cr)_7C_3$. В настоящей работе рассматривается орторомбическая структура Cr7C3 (пространственная группа *Pnma*), где углерод находится в треугольных призмах из атомов хрома. Атомы хрома и углерода заполняют пять и две неэквивалентных позиции в элементарной ячейке соответственно. Этот тип структуры получен для Сr₇C₃ при высоких температурах [18]. Исходную фазу Сr₇C₃ моделировали сорокаатомной ячейкой Cr₂₈C₁₂, оптимизированные нами значения параметров решетки (a, b, c) и координаты атомов хорошо согласуются с имеющимися экспериментальными данными (см. таблицу). Тройную систему (Fe, Cr)7C3 моделировали 40-атомной ячейкой (формальный состав системы Fe7-v Crv C3, где y = 0, 0.25, 1.25, 5.75, 6.75, 7). Полученные наименьшие межатомные расстояния Cr-C и Cr-Cr в Cr₇C₃ равны 1.91 и 2.45 Å соответственно. Для системы (Cr, Fe)₇C₃ также наблюдается небольшое уменьшение параметров решетки с увеличением содержания Fe, что соответствует экспериментальным оценкам для карбидов Cr₇C₃ и Fe₇C₃ [21]. Объем элементарной ячейки (Cr, Fe)₇C₃ при переходе от карбида хрома к карбиду железа уменьшается на 3%.

Для замещения Fe \rightarrow Cr были сопоставлены полные энергии для замещений пяти неэквивалентных позиций атомов хрома в оптимизированной структуре Cr₇C₃. Наиболее выгодной для замещения является позиция Cr2 с энергией предпочтения от 0.05, 0.08, 0.14 и 0.03 eV относительно замещения позиций Cr1, Cr3, Cr4 и Cr5 соответственно. Атом железа имеет положительный магнитный момент, и его величина существенно зависит от занимаемой позиции. Магнитный момент на атоме железа в позиции Cr2 является наименьшим (0.26 $\mu_{\rm B}$), а при замещении других позиций он меняется от 0.28 $\mu_{\rm B}$ (Cr3) до 1.02 $\mu_{\rm B}$ (Cr4).

Для замещения Cr \rightarrow Fe также рассмотрено пять неэквивалентных позиций атомов железа в оптимизированной структуре Fe₇C₃. Наиболее выгодной для замещения является позиция Cr3 с энергией предпочтения, меняющейся от 0.07, 0.08, 0.05 и 0.08 eV для заполнения позиций Cr1, Cr2, Cr4 и Cr5 соответственно. Атом хрома имеет отрицательный магнитный момент, и его величина также зависит от позиции замещения. Магнитный момент на атоме хрома в позиции Cr3 наибольший отрицательный $-0.84\,\mu_{\rm B}$, при замещении других позиций он существенно меняется от $+0.19\,\mu_{\rm B}$ (Cr4) до $-0.57\,\mu_{\rm B}$ (Cr1). Таким образом, наблюдается прямая связь стабильной позиции с магнитными свойствами: если при замещении Fe \rightarrow Cr в Cr₇C₃ наиболее предпочтительной является позиция с минимальным магнитным моментом, а самая невыгодная позиция характеризуется наибольшим моментом, то при замещении Cr \rightarrow Fe в Fe₇C₃ наиболее предпочтительной является позиция с максимальным отрицательным магнитным моментом.

3.2. Электронные свойства. Полные плотности электронных состояний для $(Fe, Cr)_3C$ и $(Fe, Cr)_7C_3$ приведены на рис. 1 и 2 соответственно.

(**Fe**, **Cr**)₃**C**. Полученные нами полные плотности электронных состояний для Fe_3C (рис. 1) хорошо согласуются с предшествующими расчетами [13, 22–27]. Верхний край валентной зоны от -4 eV до E_F образован в основном 3*d*-состояниями железа, а 2*p*-состояния углерода расположены преимущественно в интервале от -8 до -4 eV и Fe_3d-C2p -гибридизация мала. Уровень Ферми E_F находится в локальном минимуме пол-

Рис. 1. Полные плотности состояний для (Fe, Cr)₃C. Сплошные линии — состояния со спином вверх, пунктирные — со спином вниз. Уровень Ферми соответствует нулевой энергии.

Рис. 2. Полные плотности состояний для (Fe, Cr)₇C₃. Сплошные линии — состояния со спином вверх, пунктирные — со спином вниз. Уровень Ферми соответствует нулевой энергии.

ной плотности между почти полностью заполненными Fe3*d*-состояниями со спином вверх (Fe3*d*[†]) и частично свободной полосой Fe3*d*-состояний со спином вниз (Fe3*d*[↓]), плотности состояний на уровне Ферми $N(E_{\rm F})$ для спиновых подрешеток различаются в 1.5 раза.

Уменьшение числа электронов при замещении железа на хром приводит к опустошению заполненных $Fe3d^{\uparrow}$ состояний, плотность состояний $Fe3d^{\downarrow}$ меняется слабо с ростом концентрации (рис. 1). Наблюдаются сдвиги состояний со спином вверх и вниз в сторону высоких и низких энергий соответственно, что особо заметно в области дна Fe3d-полосы (от -5 до -3 eV). Отсутствие спинового расщепления приводит к сужению полосы C2*p*-состояний (*A*) и появлению псевдощели между C2*p*и 3*d*- (*A* и *B*) полосами. Величина $N(E_{\rm F})$ меняется от 1.19 (d^{\uparrow}) и 1.79 (d^{\downarrow}) в Fe₃C до 1.32 для обоих состояний в Cr₃C, т. е. изменение плотности на уровне Ферми в основном определяется $3d^{\downarrow}$ -состояниями.

 $(Fe, Cr)_7C_3$. Заполненные состояния в Fe₇C₃ (рис. 2), как и в Fe₃C, образуют две полосы, разделенные псевдощелью, низкоэнергетическая полоса (интервал от -8 до -4 eV) содержит в основном С2*p*-состояния, и плотность Fe3d-состояний в этом интервале незначительна. Верхняя полоса (от -4 eV до уровня Ферми) включает преимущественно 3d-состояния железа с малой примесью 2*p*-состояний углерода. Уровень Ферми, как и в Fe₃C, расположен между почти полностью заполненными Fe3*d*-состояниями со спином вверх (Fe3 d^{\uparrow}) и частично свободной полосой Fe3d-состояний со спином вниз (Fe3d[↓]). Основной вклад в заселенность вблизи уровня Ферми вносят *d*-состояния железа, но в отличие от Fe₃C-плотности состояний на уровне Ферми $N(E_{\rm F})$ для спиновых подрешеток (Fe^{\uparrow}, Fe^{\downarrow}) различаются более чем в 2 раза.

Рассмотрим изменения в спектре плотностей состояний при переходе $Fe_7C_3 \rightarrow (Fe, Cr)_7C_3 \rightarrow Cr_7C_3$. Так же как и в Fe_3C , с ростом концентрации хрома происходит частичное опустошение Fe_3d^{\uparrow} -состояний, а плотность состояний Fe_3d^{\downarrow} меняется мало. Величины плотности электронных состояний на уровне Ферми $N(E_F)$ со спином вверх (вниз) различаются в 2.4 раза для Fe_7C_3 (2.41 и 5.75 states/(eV · f. u.) соответственно), в 1.9 раза для $Fe_{6.75}Cr_{0.25}C_3$ (2.94 и 5.70 states/(eV · f. u.)) и принимают равное значение для $Cr_7C_3 - 4.48$ states/(eV · f. u.).

3.3. Магнитные свойства. Установлено, что рассмотренные карбиды железа являются ферромагнитными, а карбиды хрома немагнитными. Примесь хрома имеет отрицательный магнитный момент (антиферромагнитное упорядочение с атомами железа) и приводит к уменьшению магнитных моментов на ближайших атомах железа. Изменение намагниченности последовательных $(\mu_{\rm B}/\text{atom Fe})$ при замещениях $Fe_3C \rightarrow (Fe, Cr)_3C \rightarrow Cr_3C, Cr_7C_3 \rightarrow (Cr, Fe)_7C_3 \rightarrow Fe_7C_3$ приведено на рис. 3. Видно, что при увеличении концентрации хрома в карбидах железа их намагниченность резко падает и становится близкой к нулю для x > 0.8.

Рис. 3. Зависимости от *x* намагниченностей $Fe_{3(1-x)}Cr_{3x}C$ и $Fe_{7(1-x)}Cr_{7x}C_3$.

Рис. 4. Зависимости от *x* энергий образования $Fe_{3(1-x)}Cr_{3x}C$ и $Fe_{7(1-x)}Cr_{7x}C_3$.

Намагниченность Fe_3C чуть больше, чем в Fe_7C_3 , что соответствует относительной концентрации железа в этих карбидах, а именно отношению Fe/C.

3.4. Энергии образования и стабильность. Оценка стабильности карбидов проведена на основе сравнения энергий образования, рассчитанных как разность полной энергии фазы и составляющих элементов в основном состоянии,

$$E_{\text{form}}(\text{Fe}_{3-y}\text{Cr}_{y}\text{C}) = E_{\text{tot}}(\text{Fe}_{3-y}\text{Cr}_{y}\text{C})$$
$$-[(3-y)E_{\text{tot}}(\text{Fe}) + yE_{\text{tot}}(\text{Cr}) + E_{\text{tot}}(\text{C})],$$

 $E_{\text{form}}(\text{Fe}_{7-y}\text{Cr}_{y}\text{C}_{3}) = E_{\text{tot}}(\text{Fe}_{7-y}\text{Cr}_{y}\text{C}_{3})$

$$-[(7-y)E_{tot}(Fe) + yE_{tot}(Cr) + 3E_{tot}(C)],$$

где $(E_{tot}(C))$ рассчитаны для оптимизированной структуры графита, $E_{tot}(Fe)$ и $E_{tot}(Cr)$ — для ОЦК-структуры ферромагнитного железа и антиферромагнитного хрома. Результаты представлены на рис. 4.

(Fe, Cr)₃C. Энергия образования Fe₃C является положительной величиной, что подтверждает метастабильную природу цементита. Полученное значение $E_{\rm form}({\rm Fe_3C}) = +0.07\,{\rm eV}/{\rm atom}$ находится в соответствии как с предшествующими теоретическими оценками (+0.05, +0.08 eV/atom) [28,29], так и с экспериментальным значением (+0.07, +0.08 eV/atom) [13,27]. Добавление хрома в Fe₃C приводит к усилению межатомных взаимодействий, стабилизирующих систему, что коррелирует с увеличением стабильности Fe₃C-Cr при изотермических отжигах. Энергия образования Fe_{3-v}Cr_vC становится отрицательной для концентрации хрома *y* > 0.16. Для карбида хрома Cr₃C со структурой цементита рассчитанная энергия образования равна -0.07 eV/atom, экспериментальное значение -0.13 eV/atom [21].

 $(Fe, Cr)_7C_3$. Для карбида хрома Cr_7C_3 рассчитанная энергия образования равна -0.098 eV/atom, что соот-

ветствует значению -0.12 eV/atom, найденному в работе [10]. С ростом концентрации железа в системе (Cr, Fe)₇C₃ энергия образования становится положительной. Для карбида железа Fe₇C₃ получено значение +0.058 eV/atom, приблизительно равное энергии образования цементита.

4. Заключение

Ab initio методом изучена кристаллическая структура, электронные и магнитные свойства, а также стабильность карбидов (Fe, Cr)₃C и (Cr, Fe)₇C₃. Найдены оптимизированные значения параметров орторомбической решетки (a, b, c), координаты атомов и предпочтительные позиции для замещений Fe \rightarrow Cr и Cr \rightarrow Fe. Установлено, что при малой концентрации примеси в Fe₃C хром замещает железо в общей позиции, а в Cr₃C железо замещает атомы хрома в специальной позиции. При замещениях Fe \rightarrow Cr в Cr₇C₃ и Cr \rightarrow Fe в Fe₇C₃ найдена корреляция стабильной позиции с магнитным моментом замещаемого атома. В Cr₇C₃ наиболее выгодной для замещения железом является позиция Cr2 с наименьшим магнитным моментом, а в Fe₇C₃ хром предпочтительно замещает железо в позиции Fe3 и имеет максимальный отрицательный магнитный момент. Проведенные расчеты показали подобие электронной структуры, магнитных свойств и стабильности двойных и тройных карбидов $(Fe, Cr)_3C$ и $(Fe, Cr)_7C_3$. Установлено, что Fe_3C и Fe_7C_3 имеют одинаковые положительные энергии образования, а энергия образования соответствующих карбидов хрома является отрицательной, причем образование (Cr, Fe)₇C₃ является энергетически более выгодным при высоком содержании хрома, что объясняет трансформацию $(Fe, Cr)_3C \rightarrow (Cr, Fe)_7C_3 \rightarrow Cr_7C_3.$

Список литературы

- [1] А.П. Гуляев. Металловедение. Металлургия, М. (1986). 544 с.
- [2] Г.В. Курдюмов, Л.М. Утевский, Р.И. Энтин. Превращения в железе и стали. Металлургия. М. (1977). 238 с.
- [3] Э. Гудремон. Специальные стали. Металлургия, М. (1968).
 736 с.
- [4] S.K. Ko, C.W. Won, I.J. Shon. Scripta Mater. 37, 889 (1997).
- [5] D.Y. Wang, K.W. Weng, C.L. Chang, W.Y. Ho. Surf. Coat. Technol. 622, 120 (1999).
- [6] S. Matthews. M. Hyland, B. James. Acta Mater. 51, 4267 (2003).
- [7] A. Inoue, T. Tasumoto. Scripta Mater. 13, 711 (1979).
- [8] A.V. dos Santos, M.I. da Costa, C.A. Kuhnen. J. Magn. Magn. Mater. 166, 223 (1997).
- [9] H. Faraon, Y. Zhang, C. Esling, H. Aourag. J. Appl. Phys. 99, 093508-1 (2007).
- [10] C. Jianga. Appl. Phys. Lett. 92, 041 909 (2008).
- [11] A.V. dos Santos. Physica B 387, 136 (2007).
- [12] D. Music, U. Kreissig, R. Mertens, J.M. Schneider. Phys. Lett. A 326, 473 (2004).

- [13] Н.И. Медведева, Л.Е. Карькина, А.Л. Ивановский. ФТТ 48, 17 (2006).
- [14] E.J. Fasiska, G.A. Jeffry. Acta Cryst. 19, 463 (1965).
- [15] P.E. Blochl. Phys. Rev. B 50, 17953 (1994).
- [16] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [17] J.P. Perdew, J.A. Chevary. Phys. Rev. B 46, 6671 (1992).
- [18] В.Г. Гаврилюк. Распределение углерода в стали. Наук. думка, Киев (1987). 207 с.
- [19] M.A. Rouault, P. Herpin, M.R. Fruchart. Ann. Chim. 5, 461 (1970).
- [20] L.D. Teng, X.G. Lu, R.E. Aune, S. Seetharaman. Met. Mater. Trans. 35A, 3673 (2004).
- [21] J.P. Bouchard. Ann. Chim. 2, 353 (1967).
- [22] J. Haglund, G. Grimvall. Phys. Rev. B 44, 2914 (1991).
- [23] C.W. Chiou, jr., E.A. Carter. Surf. Sci. 1–2, 87 (2003).
- [24] S. Yamamoto, Y. Kobayashi, A. Kirihata. Proc. Fourth Int. Symp. on the physical metallurgy oh cast iron / Ed. E. Niyama. Materials Research Society, Pittsburg, PA. (1990). P. 103.
- [25] А.Г. Вахней, В.Н. Антонов, А.Н. Яресько, В.В. Немошкаленко, В.Г. Гаврилюк. Металлофизика и новейшие технологии 18, 21 (1996).
- [26] Н.И. Медведева, Л.Е. Карькина, А.Л. Ивановский. ФММ 96, 16 (2003).
- [27] I.R. Shein, N.I. Medvedeva, A.L. Ivanovskii. Physica B 371, 126 (2006).
- [28] S.V. Meshel, O.J. Kleppa. J. Alloys Comp. 257, 227 (1997).
- [29] A.F. Guillermet, G. Grimvall. Phys. Rev. B 40, 10582 (1989).