Теплопроводность высокопористого биоуглерода с канальным типом пор, полученного на основе дерева сапели

© Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek*, A. Jezowski*, J. Mucha*, A.R. de Arellano-Lopez**, J. Martinez-Fernandez**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

Санкт-Петербург, Россия

* Institute of Temperature and Structure Research, Polish Academy of Sciences,

Wroclaw, Poland

** Universidad de Sevilla,

Sevilla, Spain

E-mail: igor.smirnov@mail.ioffe.ru, smir.bi@mail.ioffe.ru

(Поступила в Редакцию 11 февраля 2009 г.)

В интервале температур T = 5-300 К измерены теплопроводность $\varkappa(T)$ и электропроводность $\sigma(T)$ высокопористой (~ 63 vol.%) аморфной биоуглеродной матрицы сапели с канальным типом пор, приготовленной с помощью пиролиза дерева сапели при температуре карбонизации 1000°С. При 300 К проведен ее рентгеноструктурный анализ. Показано, что в формировании углеродного каркаса биоуглеродной матрицы сапели принимают участие нанокристаллиты с размерами 11–30 Å. Зависимости $\varkappa(T)$ и $\sigma(T)$ получены на образцах, вырезанных вдоль и поперек пустых каналов, расположенных вдоль роста дерева. При измерении теплопроводности биоуглеродной матрицы сапели получена нестандартная для аморфных (и рентгеноаморфных) материалов температурная зависимость фононной теплопроводности. Установлено возрастание σ с повышением температуры от 5 до 300 К. Приводится анализ полученных результатов.

Работа выполнена при поддержке РФФИ (проект № 07-03-91353 ННФ_а), программ Президиума РАН (П-03 и П-27) и Испанских проектов МАТ 2007-30141-Е и РЕТ 2006-0658.

PACS: 72.80.Tm, 65.60.+a

1. Введение

В последние годы проводятся интенсивные исследования [1–3] тепловых и электрических свойств нового интересного физического объекта — биоуглерода (или биоуглеродных матриц)¹ — высокопористого (до 75 vol.%) аморфного (рентгеноаморфного) материала с канальным типом пор (с диаметрами μ m и, возможно, ~nm), который получается путем пиролиза (карбонизации) при определенных температурах в токе аргона различных видов дерева.

Ранее нами были проведены рентгеноструктурные исследования и измерены теплопроводность х и электропроводность σ биоуглеродных матриц белого эвкалипта [1,2] и белой сосны [3]. В результате проведенных исследований был получен ряд новых нестандартных результатов. К числу наиболее интересных можно отнести измерения, в которых было показано, что в формирование углеродных каркасов обеих исследованных биоуглеродных матриц, полученных при температуре карбонизации (T_{carb}) 1000°С, заметный вклад вносят трехмерные и двумерные (типа графенов) наночастицы (нанокристаллиты) с размерами ~ 12-35 Å, а при измерении теплопроводности образцов в направлении вдоль канальных пор (χ_{\parallel}) обнаружена нестандартная для аморфных материалов температурная зависимость фононной теплопроводности $\varkappa_{\rm ph}(T)$.

Настоящая работа посвящена рентгеноструктурным исследованиям и измерениям $\varkappa(T)$ и $\sigma(T)$ биоуглеродной матрицы дерева сапели. Известно [4-6], что каждый вид дерева имеет индивидуальную структуру со своей формой, размерами и расположением канальных ("питательных") пор, а также величинами их пористости. Эти особенности сохраняются и при построении углеродных каркасов биоуглеродных матриц и могут оказывать существенное влияние на поведение зависимостей $\varkappa(T)$ и $\sigma(T)$. Поэтому основные задачи настоящего исследования состояли в том, чтобы 1) провести измерения $\kappa(T)$ и $\sigma(T)$ на материале со структурой, отличной от биоуглеродных матриц белого эвкалипта [1] и белой сосны [2]; 2) проверить, подтвердятся ли сделанные в [1-3] основные выводы о своеобразном поведении рентгеноструктурных свойств и $\kappa(T)$ для биоуглеродной матрицы сапели.

В литературе имеются данные о физико-химических, структурных, механических, электрических и акустических свойствах биоуглерода [4,5,7–12]. Однако исследование тепловых свойств этого материала находится сейчас лишь на начальной стадии.

В заключение этого раздела отметим, что биоуглеродные матрицы представляют интерес не только из-за нестандартного поведения их физических параметров, но и благодаря возможностям их практического применения.

1) Они выступают в качестве "промежуточных заготовок" в технологическом процессе приготовления вы-

¹ В англоязычной литературе углеродные матрицы называют также precursor, carbon template, carbon preform.

сокопрочного биоморфного композита (экокерамики) SiC/Si, обладающего интересными физическими свойствами и нашедшего уже достаточно широкое практическое применение [4]. Биоморфные композиты получают путем инфильтрации в вакууме в пустые сквозные каналы биоуглеродных матриц расплавленного Si. В результате химической реакции кремния с углеродом матрицы образуется кубический β -SiC, а вместе с избыточным Si, не вступившим в реакцию с углеродом, — биоморфный композит SiC/Si.

2) Высокопористые канальные биоуглеродные матрицы могут служить контейнерами для формирования композиционных материалов: углерод/металл, углерод/органика и др. [11].

3) Практические приложения биоуглерода могут быть такими же, как и в случае наноуглерода. Однако наличие в нем сквозных каналов микронных размеров может представлять интерес при использовании биоуглерода в качестве накопителя различных газов. При условии наличия в нем наноканалов такие микронные "путепроводы" могут достаточно быстро доставлять (и извлекать) газы в более мелкие каналы (включая и наноканалы).

Приготовление образцов, их идентификация и методики измерений

Приготовление биоуглеродных матриц сапели проводилось по стандартной методике получения биоуглерода [4,5,8,9]. Вырезанная из дерева сапели пластина с "питательными" каналами, вытянутыми вдоль направления роста дерева (при наличии небольшой доли радиальных каналов [10]), была подвергнута пиролизу (карбонизации) в токе аргона при $T_{carb} = 1000^{\circ}$ С. Из пластины были вырезаны образцы вдоль (SA-C-1000 (1)) и поперек (SA-C-1000 (2)) роста дерева для измерения соответственно теплопроводностей ($\varkappa_{\parallel}(T)$ и $\varkappa_{\perp}(T)$) и электропроводностей ($\sigma_{\parallel}(T)$ и $\sigma_{\perp}(T)$). Размер образцов для измерений \varkappa и σ составлял 4 × 4 × 10 mm, а для рентгеноструктурных исследований — 3.6 × 2.5 × 2.5 mm.

На рис. 1, *с* представлена микрофотография одного из образцов биоуглеродной матрицы сапели, а на рис. 1, *a*, *b* для сравнения приведены соответственно микрофотографии биоуглеродных матриц белого эвкалипта и белой сосны. Все микрофотографии получены с помощью сканирующего электронного микроскопа Hitachi S-3400.

Все биоуглеродные матрицы получены при $T_{carb} = 1000^{\circ}$ С, но каждая из них имеет особую, присущую только ей структуру углеродного каркаса: размер и геометрию расположения по сечению пустых каналов, процент пористости.

У биоуглеродной матрицы сапели наблюдается два вида пустых каналов [6]: большого и небольшого диаметров со средними размерами $\sim 108 \,\mu m$ (около 11.5%) и $\sim 9.5 \,\mu m$ (около 54.6%) соответственно. К сожалению,

Рис. 1. Микрофотографии, полученные с помощью сканирующего электронного микроскопа для образцов биоуглеродных матриц белого эвкалипта (*a*), белой сосны (*b*) и сапели (*c*) для сечения, перпендикулярного направлению ростовых каналов дерева. Все биоуглеродные матрицы получены при $T_{\rm carb} = 1000^{\circ}$ С.

в литературе нет сведений о наличии (или отсутствии) в биоуглеродной матрице сапели наноканалов. Отсутствуют в литературе и данные о плотности ее углеродного каркаса. Однако можно полагать, что она не будет сильно отличаться от таковой для биоуглеродных матриц белого эвкалипта и белой сосны, полученных при $T_{\text{carb}} = 1000^{\circ}$ С, а также для стеклоуглерода, сажи, угля антрацита и других форм аморфного углерода. Для них плотность располагается в диапазоне от 1.56 до 1.9 g/cm³ [1,3,13]. Общая пористость биоуглеродной матрицы сапели составляет ~ 63.1 vol.% [6]. Рентгеновские дифрактометрические кривые интенсивности образцов SA-C-1000 были получены при 300 К на аппарате ДРОН-2 на Си K_{α} -излучении (35 kV, 15 mA, Ni-фильтр). Результаты измерений представлены на рис. 2. Дифрактограмма содержит диффузионные гало, характерные для аморфного (или рентгеноаморфного) материала. Подобные результаты в литературе были получены для 90

Рис. 2. Картина рентгеновской дифракции для образца SA-C-1000 (1).

50

 2θ , deg

70

30

10

биоуглеродных матриц белого эвкалипта, дуба, сосны, тополя [1,3,8,9,11]. К обсуждению результатов, приведенных на рис. 2, мы еще вернемся. Теплопроводность и электропроводность измерялись в интервале температур 5-300 К в вакууме 10^{-5} mm Hg на установке, аналогичной использованной в [14].

До начала измерений $\sigma(T)$ и $\varkappa(T)$ для удаления влаги и газов, которые, возможно, находились в порах биоуглерода [7], исследуемые образцы в течение суток находились в экспериментальной установке при постоянной откачке системы от 10^{-5} mm Hg.

3. Экспериментальные результаты и их обсуждение

В настоящей работе при 300 К проведено исследование рентгеноструктурных свойств, а в интервале 5–300 К — измерение $\sigma(T)$ и $\varkappa(T)$ образцов SA-C-1000 (1) и SA-C-1000 (2) биоуглеродной матрицы сапели.

3.1. Рентгеноструктурные исследования. Основная цель рентгеноструктурных исследований состояла в определении и оценке средних размеров *D* кристаллитов, принимающих участие в формировании углеродного каркаса биоуглеродной матрицы сапели.

Определение размеров кристаллитов проводилось по всем рефлексам дифрактограммы (рис. 2). Для расчетов использовалась формула

$$D = k\lambda/B_{2\theta}\cos\theta,\tag{1}$$

где λ — длина волны используемого рентгеновского излучения, $B_{2\theta}$ — интегральная полуширина рефлекса, θ — угол Брэгга, величина параметра k принималась равной единице для рефлексов 002 и 1.84 для рефлексов

100 и 110 [15–17]. Измерения величины $B_{2\theta}$ и определение D производились для двух ориентаций расположения каналов в образце по отношению к падающему рентгеновскому излучению: аксиальной (вдоль каналов; D_{α}) и радиальной (поперек каналов; D_r). В литературе имеются достаточно подробно разработанные схемы для проведения теоретического анализа экспериментальных рентгеноструктурных данных для биоуглеродных матриц [3,11].

Полученные в настоящей работе результаты для биоуглеродной матрицы сапели хорошо укладываются в схему, которая подробно проанализирована для биоуглеродной матрицы белой сосны [3]. Таким образом, следуя [3], для биоуглеродной матрицы сапели можно сделать ряд заключений.

 Три размытых максимума на дифрактометрической кривой интенсивности (рис. 2) соответствуют несколько смещенным по углам рефлексам 002, 100 и 110 графита. Смещение максимумов рефлексов 002 в сторону малых углов и рефлексов 100 и 110 в сторону больших углов аналогично смещениям для биоуглеродной матрицы белой сосны [3], но несколько меньше по величине.

2) Появление первого максимума связано с образованием областей графитовой кристаллизации, содержащих не менее двух графитовых слоев. Его сравнительно высокая интенсивность показывает, что в исследованном образце графитовые осколки являются основными кристаллическими образованиями. Эти образования можно рассматривать как появление трехмерного порядка.

 Второй и третий максимумы, относящиеся соответственно к рефлексам 100 и 110, связаны с двумерной дифракцией от отдельных беспорядочно ориентированных слоев графита.

4) Помимо слоистых частиц исследованный образец SA-C-1000 (1) содержит также и аморфную фазу. Подтверждением этого может служить плавное повышение фона $I = f(2\theta)$ с уменьшением угла Брэгга (рис. 2). Отметим, что по сравнению с биоуглеродной матрицей белой сосны фон рассеяния в образце SA-C-1000 (1) уменьшился, что указывает на снижение содержания аморфной фазы в биоуглеродной матрице сапели.

5) Серьезным качественным различием в свойствах биоуглеродных матриц белой сосны и сапели является увеличение отношения интегральных интенсивностей I_{100}/I_{002} у последней. Для белой сосны среднее значение этого отношения ~ 0.42, а для сапели — 0.65, что свидетельствует об увеличении количества беспорядочно ориентированных слоев графита по отношению к количеству областей графитовой кристаллизации.

Подводя итог, для рассмотренного выше поведения рентгеноструктурных свойств биоуглеродной матрицы сапели отметим следующее. Ее можно рассматривать как материал, состоящий из двух фаз: аморфного углерода, сохраняющего только ближний порядок, и углеродного вещества, частицы которого образуют слои ("графитовые осколки" и "беспорядочно ориентированные отдельные слои графита").

Рефлексы, соответствующие	SA-C-1000		PI-C-1000 [3]		EU-C-1000 [1,3]
максимумам на дифрактограммах биоуглеродных матриц	$D_{lpha}, { m \AA}$	$D_r, m \AA$	$D_{lpha}, { m \AA}$	$D_r, m \AA$	$D_{lpha}, { m \AA}$
002	11	11	12	12	12
100	30	31	35	31	35
110	30	27	31	31	41

Таблица 1. Размеры кристаллитов D_{α} и D_{r} в биоуглеродных матрицах сапели (SA-C-1000), белой сосны (PI-C-1000) и белого эвкалипта (EU-C-1000), полученных при $T_{\text{carb}} = 1000^{\circ}\text{C}$

Размеры кристаллитов для исследованного образца SA-C-1000 (1), рассчитанные по формуле (1) для всех рефлексов, зафиксированных дифрактограммой (рис. 2), при аксиальной и радиальной ориентациях каналов в образце по отношению к падающему рентгеновскому излучению приведены в табл. 1. Видно, что радиальная и аксиальная ориентации дают очень близкие результаты.

В табл. 1 для сравнения приведены также литературные значения D_{α} и D_r для кристаллитов (нанокристаллитов), обнаруженных в биоуглеродных матрицах белого эвкалипта [1,3] и белой сосны [3], полученных при $T_{\rm carb} = 1000^{\circ}$ С.

Следует отметить, что и в нанопористом аморфном углероде [18], который имеет картину рентгеновской дифракции, подобную биоуглеродным матрицам [19], его углеродный каркас конструируется из нанокристаллитов с размерами от 10 до 100 Å [19–21].

Рис. 3. Температурные зависимости электропроводности $\sigma_{\parallel}^{\exp}(T)$ (1) и $\sigma_{\parallel}^{0}(T)$ (2) образца SA-C-1000 (1), измеренные в направлении ростовых каналов дерева без учета и с учетом пористости образца соответственно.

Рис. 4. Температурные зависимости электропроводностей $\sigma_{\perp}^{\exp}(T)$ (1) и $\sigma_{\perp}^{0}(T)$ (2) образца SA-C-1000 (2), измеренные в направлении, перпендикулярном ростовым каналам дерева, без учета и с учетом пористости образца соответственно.

3.2. Электропроводность. На рис. 3 и 4 приведены экспериментальные данные для электропроводности образцов SA-C-1000 (1) (при измерении σ_{\parallel} вдоль ростовых каналов дерева; рис. 3) и SA-C-1000 (2) (при измерении σ_{\perp} поперек ростовых каналов дерева; рис. 4): σ_{\parallel}^{exp} и σ_{\perp}^{exp} — это величины, полученные без учета, а σ_{\parallel}^{0} и σ_{\perp}^{0} — с учетом пористости образцов.

Учет пористости проводился с помощью простой формулы [22,23]

$$\sigma^{\exp} = \sigma^0 (1 - p), \qquad (2)$$

где p — величина пористости образца. В расчетах, как отмечалось в разделе 2, для обоих образцов величина p принималась равной 0.631.

Таблица 2. Величина анизотропии электропроводности $\beta_1 = \sigma_{\parallel}^0 / \sigma_{\perp}^0$ и теплопроводности $\beta_2 = \varkappa_{\parallel}^0 / \varkappa_{\perp}^0$ углеродного каркаса биоуглеродной матрицы сапели, полученной при $T_{\rm carb} = 1000^{\circ}{\rm C}$

<i>Т</i> ,К	β_1	β_2
300	2.1	1.6
200	2.1	1.5
100	2.1	1.4
50	2.3	1.3

Как видно из рис. 3 и 4, электропроводность для исследованых образцов имеет "полупроводниковый характер" — σ увеличивается с ростом температуры.

Величина анизотропии электропроводности углеродного каркаса биоуглеродной матрицы сапели $(\beta_1 = \sigma_{\parallel}^0 / \sigma_{\perp}^0)$ в интервале температур 50–300 К равна ~ 2 (табл. 2).

Рис. 5. Температурные зависимости теплопроводности образца SA-C-1000 (1). Измерения проводились вдоль ростовых каналов дерева без учета (I) и с учетом (2) пористости образца. Более крупно участок A показан на рис. 6.

3.3. Теплопроводность. Экспериментальные данные для теплопроводности образца SA-C-1000 (1) $\varkappa_{\parallel}^{\exp}(T)$ приведены на рис. 5 и 6, а для образца SA-C-1000 (2) $\varkappa_{\perp}^{\exp}(T)$ — на рис. 7 и 8. В эксперименте

измерялась общая теплопроводность $\varkappa_{\text{tot}} = \varkappa^{\text{exp}}$

$$\chi_{\rm tot} = \chi_e + \chi_{\rm ph},$$
(3)

где \varkappa_e и $\varkappa_{\rm ph}$ — соответственно электронная и фононная составляющие теплопроводности. Оценки \varkappa_e по закону

Рис. 6. Низкотемпературный участок *А* теплопроводности образца SA-C-1000 (1). *а* и *b* — теплопроводность без учета и с учетом пористости образца соответственно.

Рис. 7. Температурные зависимости теплопроводности образца SA-C-1000 (2). Измерения проводились поперек ростовых каналов дерева без учета (1) и с учетом (2) пористости образца. Более крупно участки B и C показаны на рис. 8.

Видемана-Франца

$$\varkappa_e = LT\sigma \tag{4}$$

(L -число Лоренца) показали, что во всем интервале температур даже при наивысшем значении $L = L_0 = 2.45 \cdot 10^{-8} \text{ W} \cdot \Omega/\text{K}^2$ для всех образцов, приведенных на рис. 5–8, $\varkappa_e \ll \varkappa_{\text{ph}}$, и поэтому величина $\varkappa^{\text{ехр}}$ для всего исследованного интервала температур будет равна \varkappa_{ph} (но пока без учета пористости исследованных образцов). Наиболее интересную информацию о природе углеродного материала и особенностях поведения теплопроводности его кристаллической решетки можно получить из анализа данных о теплопроводности углеродного каркаса пористого материала $\varkappa^0_{\text{ph}}(T)$, которую можно вычислить с помощью формулы (5) [24]

$$\varkappa_{\rm ph} = \varkappa^{\rm exp} = \varkappa^0_{\rm ph} (1-p) \sqrt{1-p}, \tag{5}$$

где $\varkappa_{\rm ph}(\varkappa^{\rm exp})$ и $\varkappa^0_{\rm ph}$ — соответственно теплопроводности без учета и с учетом пористости образца.² Данные для теплопроводности исследованных образцов с учетом их пористости (p = 0.631) также представлены на рис. 5–8.

На рис. 9 в логарифмическом масштабе приведены зависимости $\varkappa^0(T)$ для углеродных каркасов биоуглеродных матриц сапели (образец SA-C-1000 (1)), белой

сосны (образец РІ-С-1000) [3] и белого эвкалипта (образец ЕU-С-1000) [1], полученных при $T_{carb} = 1000^{\circ}$ С, и одного из образцов нанопористого углерода из работы [25]. Все данные, приведенные на рис. 9 для биоуглеродных матриц, относятся к значениям $x_{\parallel}^{0}(T)$ — теплопроводностям, измеренным вдоль "питательных" каналов соответствующих видов дерева.

Отметим наиболее интересные результаты, полученные при исследовании теплопроводности биоуглеродной матрицы сапели.

1) Величина анизотропии теплопроводности $\beta_2 = \varkappa_{\parallel}^0 / \varkappa_{\perp}^0$ (рис. 5 и 7) в интервале температур 50–300 К находится в интервале 1.3–1.6 (табл. 2). При этом полученные нами значения для величины анизотропии электропроводности $\beta_1 = \sigma_{\parallel}^0 / \sigma_{\perp}^0$ для того же интервала температур равны ~ 2 (табл. 2).

2) Непредсказуемые результаты получены для низкотемпературной теплопроводности образцов SA-C-1000 (1) и SA-C-1000 (2) (рис. 6 и 8). Оказалось, что у $\varkappa_{\parallel}^{0}(T)$ (так же как и у $\varkappa_{\parallel}^{exp}(T)$) образца SA-C-1000 (1) при $T \sim 20$ К наблюдается излом в зависимости, после которого она выходит на небольшое своеобразное "плато" (рис. 6). Такого эффекта не

Рис. 8. Низкотемпературные участки теплопроводности образца SA-C-1000 (2) без учета (область C на рис. 7) (a) и с учетом (область B на рис. 7) (b) пористости образца.

Физика твердого тела, 2009, том 51, вып. 10

² В дальнейшем для простоты и избежания сложной "многоярусной" индексации при обозначении \varkappa мы не будем пользоваться для нее индексом "ph", но при этом будем помнить, что все приведенные на рис. 5, 8 данные относятся к фононной теплопроводности.

Рис. 9. Температурные зависимости фононных теплопроводностей образцов биоуглеродных матриц: *I* — сапели (образец SA-C-1000 (1)), *2* — белой сосны (образец PI-C-1000) [3], *3* — белого эвкалипта (образец EU-C-1000) [1], *4* — нанопористого углерода [25]. Вертикальными штрихами отмечены температуры, при которых происходит смена наклона прямых.

обнаружено в поведении теплопроводности (\varkappa_{\perp}^{0} и \varkappa_{\perp}^{\exp}) у образца SA-C-1000 (2) (рис. 8). Появление "плато" на температурной зависимости теплопроводности образца SA-C-1000 (1) более четко проявляется в логарифмических координатах ($\lg \varkappa - \lg T$), представленных на рис. 9.

3) У образца SA-C-1000 (1) обнаружена интересная своеобразная температурная зависимость $\varkappa_{\parallel}^{0}(T)$ (рис. 9). В области низких температур (5–10 K) теплопроводность возрастает по закону $\varkappa_{\parallel}^{0} \sim T$, затем в интервале 10–20 K ее рост замедляется и она выходит на "плато", а в интервале 20–200 K начинает снова возрастать, но уже по закону $\varkappa_{\parallel}^{0} \sim T^{1.7}$. При $T \gg 200$ K ее рост несколько замедляется.

На рис. 9 для сравнения представлены результаты для теплопроводностей ($\varkappa_{\parallel}^{0}(T)$) образцов биоуглеродных матриц белой сосны (образец PI-C-1000) [3], белого эвкалипта (образец EU-C-1000) [1], полученных при $T_{\rm carb} = 1000^{\circ}$ С, и нанопористого углерода [25], приготовленного путем химического удаления Si из монокристалла 6*H*-SiC [18].

У всех представленных на рис. 9 материалов (включая и биоуглеродную матрицу сапели) наблюдаются нестандартные для аморфных тел температурные зависимости теплопроводностей, которые не укладываются в рамки классической теории теплопроводности аморфных материалов, согласно которой при изменении температуры от низких к высоким в отдельных температурных интервалах теплопроводность последовательно меняется по законам: T^2 , const, T, затем снова const, где теплоемкость, согласно закону Дюлонга и Пти, стремится к постоянной величине, и только при достаточно высоких температурах может наблюдаться рост теплопроводности из-за появления фононной составляющей теплопроводности.

У биоуглеродных матриц белого эвкалипта и белой сосны на температурных зависимостях теплопроводностей можно выделить два участка: низкотемпературный, где $\varkappa_{\parallel}^0 \sim T$, и высокотемпературный, где $\varkappa_{\parallel}^0 \sim T^{1.7}$. У биоуглеродной матрицы сапели, как отмечалось выше, к аналогичным температурным участкам добавляется третий — "плато" при 10–20 К.

Более сложная температурная зависимость теплопроводности наблюдается у нанопористого аморфного углерода [3,25]. Однако в ней присутствуют участки с температурными зависимостями, характерными для биоуглеродных матриц.

К сожалению, снова, как и в [1,3], приходится констатировать, что существующая теория теплопроводности пока не может объяснить поведение теплопроводности биоуглеродных матриц и нанопористого углерода. Для этого необходимо разработать новую теорию, учитывающую отмеченное выше нестандартное поведение теплопроводности исследуемого в настоящей работе нового класса аморфных углеродных материалов.

4. Заключение

По результатам проведенных рентгеноструктурных исследований, а также измерений электропроводности и теплопроводности высокопористой ($\sim 63 \text{ vol.}\%$) биоуглеродной матрицы сапели с канальным типом пор, полученной путем карбонизации дерева сапели при $T_{\text{carb}} = 1000^{\circ}$ С, можно сделать следующие выводы.

1) На основании полученных при 300 К рентгенодифракционных данных показано, что биоуглеродная матрица сапели относится к аморфным (рентгеноаморфным) телам, а ее углеродный каркас состоит из двух фаз: аморфного углерода, сохраняющего ближний порядок, и углеродного вещества, состоящего из двух типов независимых кристаллитов. Первый тип представляет "графитовые осколки" (с размерами 11 Å), а второй беспорядочно ориентированные отдельные слои графита (с размерами кристаллитов ~ 30 Å).

 Обнаружен рост электропроводности с повышением температуры от 5 до 300 К у образцов биоуглеродной матрицы сапели, вырезанных вдоль и поперек пустых "питательных" каналов дерева сапели.

3) На этих же образцах в том же интервале температур измерена теплопроводность. При измерении вдоль каналов обнаружены нестандартные для классических аморфных материалов температурные зависимости теплопроводности кристаллической решетки: в интервале 5-10 к она возрастает пропорционально *T*, затем при 10-20 к выходит на "плато", а в интервале 20-200 к изменяется как $T^{1.7}$.

Подобные температурные зависимости теплопроводности (за исключением наличия области с "плато") были обнаружены ранее у биоуглеродных матриц белого эвкалипта [1] и белой сосны [3].

Следует отметить, что "плато" в районе 10–20 К не проявилось в настоящем эксперименте и в биоуглеродной матрице сапели при измерении ее теплопроводности поперек каналов.

4) Оценена величина анизотропии электропроводности и теплопроводности биоуглеродной матрицы сапели в интервале 50–300 К. Она оказалась равной соответственно ~ 2 и 1.3–1.6.

Список литературы

- Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, J. Mucha, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ФТТ 48, 3, 415 (2006).
- [2] Л.С. Парфеньева, Б.И. Смирнов, И.А. Смирнов, D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria, A.I. Krivchikov. ФТТ 48, 11, 1938 (2006).
- [3] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, T.E. Wilkes, К.Т. Faber. ФТТ 50, 12, 2150 (2008).
- [4] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Domínguez-Rodriguez, V. Fernandez-Quero, M. Singh. Int. J. Appl. Ceram. Technol. 1, 95 (2004).
- [5] C. Zollfrank, H. Siber. J. Eur. Ceram. Soc. 24, 495 (2004).
- [6] F.M. Varela-Feria. Ph.D. Thesis. Universidad de Sevilla (2004).
- [7] B.K. Kardashev. B.I. Smirnov, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. Mater. Sci. Eng. A 442, 444 (2006).
- [8] C. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961 (1998).
- [9] C.E. Byrne, D.C. Nagle. Carbon 35, 267 (1997).
- [10] J. Martinez-Fernandez, A. Munor, A.R. de Arellano-Lopez, F.M. Varela-Feria, A. Domínguez-Rodriguez, M. Singh. Acta Mater. 51, 3259 (2003).
- [11] A.K. Kercher, D.C. Nagle. Carbon 40, 1321 (2002); 41, 15 (2003).
- [12] C.E. Byrne, D.C. Nagle. Carbon 35, 259 (1997).
- [13] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоиздат, М. (1991). 1232 с.
- [14] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 20, 1500 (1987).

- [15] А.И. Китайгородский. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. Гос. изд-во техн.-теорет. лит., М.–Л. (1952). 588 с.
- [16] B.E. Warren. Phys. Rev. 9, 693 (1941).
- [17] А. Гинье. Рентгенография кристаллов. ГИФМЛ, М. (1961). 604 с.
- [18] С.К. Гордеев, А.В. Вартанова. ЖПХ 66, 1080, 1375 (1994).
- [19] Р.Н. Кютт, Э.А. Сморгонская, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. ФТТ 41, 891, 1484 (1999).
- [20] Э.А. Сморгонская, Р.Н. Кютт, А.В. Щукарев, С.К. Гордеев, А.В. Гречинская. ФТП 35, 690 (2001).
- [21] Р.Н. Кютт, А.М. Данишевский, Э.А. Сморгонская, С.К. Гордеев. ФТП 37, 811 (2003).
- [22] Э.А. Бельская, А.С. Тарабанов. В сб.: Теплофизические свойства твердых тел. Наук. думка, Киев (1970). С. 111.
- [23] A.L. Lovc. J. Appl. Phys. 22, 252 (1951).
- [24] Е.Я. Литовский. Изв. АН СССР. Неорган. материалы 16, 559 (1980).
- [25] В.В. Попов, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. Тез. докл. Всесоюз. конф. "Физика полупроводников и полуметаллов". Изд-во РГПУ им. А.И. Герцена, СПб (2002). С. 122.