Влияние степени совершенства кристаллов и отклонения от стехиометрического состава на процессы диффузии в сульфиде самария

© В.В. Каминский, А.В. Голубков, В.А. Дидик, М.В. Романова, Е.А. Скорятина, В.П. Усачева, Б.Н. Шалаев, Н.В. Шаренкова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия E-mail: Didik@mail.ioffe.ru

(Поступила в Редакцию 10 февраля 2009 г.)

Исследованы процессы диффузии самария и европия в нестехиометрическом SmS в температурном интервале $950-1600^{\circ}$ C как методом радиоактивных изотопов, так и методом потери веса образцов при испарении избыточного самария. Обнаружена связь между величинами коэффициентов диффузии D и размером областей когерентного рассеяния рентгеновского излучения (OKP) в образцах SmS, а также степенью отклонения состава от стехиометрии: коэффициент диффузии примесей уменьшается при увеличении OKP и по мере приближения состава к стехиометрическому. Расчет коэффициента диффузии электронов в SmS при T = 77-300 K показал, что значение D увеличивается с ростом температуры и областей когерентного рассеяния.

Работа выполнена при поддержке РФФИ (проект № 07-08-00289), а также ООО "Эс эм Эс-тензо" (Санкт-Петербург).

PACS: 66.30.-h, 68.35.Fx

1. Введение

Тема данного исследования инициирована изучением термовольтаического эффекта в материалах на основе сульфида самария (SmS). Эффект заключается в том, что при нагревании этих материалов в условиях отсутствия внешних градиентов температуры возникает значительное по величине электрическое напряжение: 2.5 V в импульсе длительностью 1.3 s [1] и 0.6 V в непрерывном режиме [2]. Для возникновения данного эффекта необходимо наличие в образце градиента концентрации примесных ионов. Это могут быть избыточные по отношению к стехиометрии ионы самария или ионы других элементов. Электрическое напряжение возникает в направлении градиента концентрации примеси. Как показано в [3], величина напряженности электрического поля прямо пропорциональна величинам градиента концентрации примеси N_i и коэффициента диффузии электронов D (SmS — полупроводник *n*-типа проводимости)

$$E = (D/n\mu) \operatorname{grad} n, \tag{1}$$

где n — концентрация электронов проводимости, μ — их подвижность. Или, выражая n через величину N_i и другие параметры данного полупроводникового материала, мы приходим к выражению [3]

$$E = K \operatorname{grad} N_i, \tag{2}$$

где K — коэффициент, который сложным образом зависит от температуры, эффективной массы электронов в зоне проводимости, глубины залегания донорных уровней, величины N_i , а также от механизма рассеяния электронов проводимости.

Изучение диффузии примесей в материалах на основе SmS позволяет получить сведения о распределении и величине градиента их концентрации.

Рис. 1. Концентрационные профили распределения европия в SmS по глубине образца x в зависимости от размера OKP [4]. OKP: 1 - 1100 Å, 2 - 650 Å.

Рис. 2. Концентрационные профили распределения никеля в SmS по глубине образца в зависимости от размера ОКР [5]. ОКР: *1* — 2500 Å, *2* — 750 Å.

Исследования диффузии проводились в поликристаллических материалах на основе SmS с различным отклонением от стехиометрии. За меру степени совершенства образцов был принят размер области когерентного рассеяния рентгеновского излучения (ОКР). По существу, размер ОКР является средним размером областей материала, в которых он ведет себя как идеальный кристалл. Изучение процессов диффузии осуществлялось с использованием радиоактивного изотопа ¹⁵²Eu, а также методом потери веса образцов Sm_{1+x}S при испарении избыточного самария в вакууме. В проведенных ранее исследованиях диффузии примесей ¹⁵²Eu и ⁶³Ni в SmS стехиометрического состава нами были получены зависимости концентрационных профилей от размера ОКР в образцах (рис. 1 [4] и 2 [5]). Было показано, что коэффициенты диффузии примесей уменьшаются при увеличении размеров ОКР.

Изучение диффузии европия с помощью радиоактивных изотопов в образцах SmS с отклонением от стехиометрического состава

Поликристаллические образцы $Sm_{1+x}S$ были синтезированы из простых веществ (самария и серы) с различной нестехиометрией по самарию (x = 0.02, 0.008, -0.04), сбрикетированы, после чего подвергались гомогенизирующему отжигу при различных температурах в запаянных молибденовых тиглях. Радиоактивный изотоп 152 Еu наносился на одну из поверхностей образца из

спиртового раствора. Образец помещался в танталовый контейнер, не позволяющий Sm_{1+x}S реагировать с кварцем. Диффузионный отжиг проводили в вакууме при температуре 950°С. После отжига образцы извлекались из ампул, подвергались радиографированию, позволяющему оценить равномерность распределения примеси по площади образца. Для определения концентрационного профиля использовался метод секционирования, состоящий в измерении гамма-активности снятых тонких слоев, последовательно удаляемых с образца. Радиоактивные измерения осуществлялись с помощью детектора БДЗА2-01 со сцинтилляционным кристаллом NaI (TI) в сочетании с комплектом электронно-измерительной аппаратуры.

В наших предыдущих исследованиях было показано, что диффузия примесей (европия, никеля) в поликристаллических образцах SmS происходит значительно быстрее и в бо́льших концентрациях, чем в монокристаллических образцах [4]. При этом, если в монокристаллических образцах концентрационные профили описывались зависимостью, соответствующей одному коэффициенту диффузии D, то в поликристаллическом SmS профили описывались зависимостью, соответствующей двум компонентам диффузии, "быстрой" (D_f) и "медленной" (D_s) . Медленная компонента соответствовала, на наш взгляд, преимущественной диффузии европия в объеме зерен поликристаллов, а быстрая компонента диффузии примеси по межзеренным границам. Связь

Рис. 3. Концентрационные профили распределения европия в SmS по глубине образца в зависимости от нестехиометрии по Sm. $1 - \text{Sm}_{1.02}$ S, $2 - \text{Sm}_{1.008}$ S, $3 - \text{Sm}_{0.96}$ S.

Метод исследования	Материал	Диффузант	OKP, Å	Коэффициент диффузии, cm ² /s	Температура диффузии, °С
Диффузия	SmS	Eu	1100	$5.6 \cdot 10^{-12}$	
радиоактивных	(поликристалл)		650	$D_s = 5.5 \cdot 10^{-10}$	950
ИЗОТОПОВ				$D_f = 4.8 \cdot 10^{-8}$	
		Ni	2500	$D = 1.8 \cdot 10^{-10}$	
			МОНО	10	1050
			700	$D_s = 1.2 \cdot 10^{-10}$	
				$D_f = 5.3 \cdot 10^{-9}$	
	$Sm_{1.02}S$	Eu	1200	$D_s = 9.0 \cdot 10^{-11}$	
	(поликристалл)			$D_f = 1.5 \cdot 10^{-9}$	
	$Sm_{1.008}S$		1250	$D_s = 8.5 \cdot 10^{-11}$	950
	(поликристалл)			$D_f = 1.2 \cdot 10^{-9}$	
	$Sm_{0.96}S$		1190	$D_s = 1.32 \cdot 10^{-10}$	
	(поликристалл)			$D_f = 1.2 \cdot 10^{-9}$	
Потеря веса	Sm _{1.13} S	Sm	1200	$1.15 \cdot 10^{-3}$	1000
при испарении	(поликристалл)			$2.4 \cdot 10^{-2}$	1100
избыточного Sm	$Sm_{1.04}S$		1200	0.018	1500
	(поликристалл)			0.192	1600
Электрические	SmS	ē	2000 - 2500	0.23-0.65	20-30
измерения	(монокристалл)	-			
1	SmS (пленка)	ē	200-300	~ 0.01	

Параметры процессов диффузии в исследованных материалах на основе SmS

диффузии с размерами ОКР в поликристаллических образцах (см. таблицу) позволила нам предположить, что диффузия быстрой компоненты осуществляется по границам ОКР.

Концентрационные профили распределения европия в $Sm_{1+x}S$ получены после отжига образцов при одной и той же температуре в течение одного и того же времени — 4 h 40 min. Было обнаружено, что профили европия во всех исследованных образцах описывались зависимостью, соответствующей двум компонентам диффузии D_f и D_s (рис. 3). Показано, что при избытке самария, при приближении состава к стехиометрическому, D_f европия уменьшается (см. таблицу). Что касается образцов с недостатком самария, то мы обнаружили возрастание медленной компоненты диффузии D_s , отвечающей за диффузию в объеме OKP SmS. Скорее всего, недостаток самария способствует увеличению количества вакансий в подрешетке самария, что и приводит к возрастанию D_s .

Исследование диффузии методом потери веса образцов при испарении избыточного самария

Метод определения коэффициента диффузии на основе потери веса образца при его нагревании в вакууме описан в [6]. Образец нагревается в течение определенного времени t при заданной температуре T. Поскольку самарий может испаряться только с поверхности, для осуществления процесса необходим подвод атомов вещества из глубины образца, что и обеспечивает диффузия. Диффузия идет с гораздо меньшей скоростью по сравнению с испарением с поверхности, поэтому именно диффузия и определяет весь процесс. Связь количества испаряющегося вещества *q* с коэффициентом диффузии самария при температуре испарения, согласно [6], выражается формулой

$$q = 2\sqrt{\pi}(C_0 S\sqrt{Dt}),\tag{3}$$

где S — площадь, с которой происходит испарение, C_0 — количество избыточного самария, соответствующее величине x в исследуемом составе $Sm_{1+x}S$ и

Рис. 4. Схема эксперимента по испарению самария из $Sm_{1+x}S$. *I* — танталовая ячейка, *2* — образец $Sm_{1+x}S$.

рассчитываемое по формуле

$$C_0 = (A_{\rm Sm} x d) / (A_{\rm Sm} x + A_{\rm SmS}),$$
 (4)

здесь A_{Sm} — атомный вес самария (150.35), A_{SmS} — молекулярный вес SmS (182.41), d — удельный вес материала состава Sm_{1+x}S.

Испарение материала проводилось в цилиндрической танталовой ячейке (рис. 4). Верхняя и нижняя крышки ячейки герметично закрывались. Диаметр отверстия, через которое происходило испарение самария, и соотношение других размеров ячейки были выбраны согласно рекомендациям [6]. Эксперименты проводились на образцах с избытком составов по самарию (x = 0.13и 0.04) при различных температурах (см. таблицу). В результате исследования были рассчитаны коэффициенты диффузии Sm в Sm_{1+x}S и показано, что при трансформации состава SmS от избытка самария к стехиометрии коэффициент диффузии самария уменьшается (см. таблицу). Увеличение температуры диффузии от 1000-1100 до 1500-1600°C при переходе от составов с x = 0.13 к составам с x = 0.04 связано с необходимостью увеличить количество испаряющегося самария из-за слишком малых коэффициентов диффузии.

4. Определение коэффициентов диффузии электронов в SmS

Для того чтобы вычислить напряжение, возникающее в результате термовольтаического эффекта, необходимо знание коэффициента диффузии электронов. Коэффициент диффузии электронов *D* в SmS вычислялся из результатов электрических измерений исходя из соотношения Эйнштейна

$$\mu = eD/kT,\tag{5}$$

где е — заряд электрона.

Удельное электросопротивление ρ связано с подвижностью μ соотношением

$$\rho = 1/ne\mu. \tag{6}$$

Используя (5) и (6), получаем

$$D = kT/e^2 n\rho. \tag{7}$$

Эта формула справедлива для SmS по причине того, что он является ярко выраженным полупроводником *n*-типа проводимости. Значения *n* определялись из измерений эффекта Холла. Величина ρ измерялась четырехзондовым методом при постоянном электрическом поле. Измерения проводились на большом количестве монокристаллических и тонкопленочных образцов SmS при температуре 300 К. Полученные значения ρ для монокристаллов находились в интервале $0.02-0.05 \Omega \cdot$ сm, концентрация электронов проводимости составляла $(3.5-0.5) \cdot 10^{19} \text{ cm}^{-3}$. Из этих величин

Рис. 5. Температурная зависимость подвижности электронов проводимости (1) и коэффициента диффузии электронов в монокристалле SmS (2).

по формуле (7) был оценен интервал возможных значений коэффициентов диффузии электронов для монокристаллов SmS: 0.23-0.65 cm²/s. На лучшем монокристаллическом образце SmS ($n = 5 \cdot 10^{18} \, {\rm cm}^{-3}$) была измерена температурная зависимость холловской подвижности и из полученных значений по соотношению Эйнштейна (5) найдена температурная зависимость коэффициента диффузии электронов (рис. 5). Для тонких полупроводниковых пленок SmS среднее значение ρ составило 0.02 $\Omega \cdot cm$, величина концентрации электронов при этом измерялась неточно ввиду малости эдс Холла и может быть оценена как 10²¹ cm⁻³. Для тонких пленок SmS величина значений коэффициентов диффузии электронов составила $\sim 0.01 \, {\rm cm^2/s.}$ Для поликристаллических образцов SmS значения коэффициентов диффузии электронов представляют собой среднюю величину между коэффициентами диффузии электронов в монокристалле и в тонких пленках SmS.

5. Заключение

На основании проведенных экспериментов и расчетов можно сделать следующие выводы.

1) Диффузия европия и самария в $Sm_{1+x}S$ монотонно замедляется по мере приближения к стехиометрии и происходит с наименьшим коэффициентом диффузии в образцах стехиометрического состава.

2) Коэффициент диффузии примесей (европия, никеля) увеличивается в SmS по мере уменьшения ОКР.

 Возрастание медленной составляющей диффузии в поликристаллическом SmS с недостатком самария объясняется появлением вакансий в подрешетке металла.

4) Коэффициент диффузии электронов в SmS уменьшается по мере уменьшения ОКР, что связано с рассеянием на границах ОКР.

Список литературы

- [1] В.В. Каминский, С.М. Соловьев. ФТТ 43, 3, 423 (2001).
- [2] В.В. Каминский, С.М. Соловьев, А.В. Голубков. Письма в ЖТФ 28, 6, 29 (2002).
- [3] В.В. Каминский, А.В. Голубков, Л.Н. Васильев. ФТТ 44, 8, 1501 (2002).
- [4] А.В. Голубков, В.А. Дидик, В.В. Каминский, Е.А. Скорятина, В.П. Усачева, Н.В. Шаренкова. Конденсированные среды и межфазные границы 7, *1*, 28 (2005).
- [5] В.А. Дидик, В.В. Каминский, Е.А. Скорятина, В.П. Усачева, Н.В. Шаренкова, А.В. Голубков. Письма в ЖТФ 32, 13, 1 (2006).
- [6] F. Holtzberg, M.A. Frisch. Rev. Chim. Miner. 10, 355 (1973).