Сегнетоэлектрики находят свою «нишу» среди управляющих устройств СВЧ

© О.Г. Вендик

Санкт-Петербургский электротехнический университет (ЛЭТИ), Санкт-Петербург, Россия

E-mail: OGVendik@mail.eltech.ru

С развитием физики сегнетоэлектричества появляются новые требования к реализации СВЧ-фазовращателей, служащих основой фазированных антенных решеток, которые наряду с традиционным применением в радиолокации широко используются в различных телекоммутационных системах.

В настоящее время не существует никакого другого способа реализации СВЧ-фазовращателей, предназначенных для работы на повышенном уровне СВЧ-мощности при ограниченной мощности в цепях управления и снижения стоимости массового производства, кроме фазовращателей на основе тонкопленочных сегнетоэлектрических СВЧ-интегральных схем. Основой разработки фазовращателей служат надежные модели диэлектрического отклика сегнетоэлектрика на постоянное и высокочастотное электрическое поле.

Работа выполнена при поддержке проекта NANOSTAR 6-й Рамочной программы Европейской комиссии (проект № 016340).

PACS: 77.55.+f, 77.84.-s

1. Введение

Исследование возможности применения сегнетоэлектрических материалов в технике сверхвысоких частот (СВЧ) началось в середине 60-х годов ХХ-века. Первой работой в этом плане была диссертация Бете, защищенная в университете города Аахен в 1970 г. и опубликованная в Докладах фирмы Филипс [1]. Следующим содержательным изданием была работа [2], подготовленная группой авторов из Ленинграда и Москвы и изданная в 1979 г. Интерес к проблеме не затухает в течение многих десятилетий. В 2003 г. появился большой обзор Таганцева с соавторами, озаглавленный "Сегнетоэлектрические материалы для микроволновых перестраиваемых устройств" [3]. Однако до недавнего времени ни одна из промышленных фирм не реализовала массового производства изделий, в которых физические свойства сегнетоэлектриков были бы использованы для решения проблем техники СВЧ. Возникает вопрос: почему физики и инженеры в течение десятилетий исследуют свойства сегнетоэлектриков на СВЧ, но их усилия не завершаются промышленным выпуском СВЧ-изделий, основанных на оригинальных физических особенностях сегнетоэлектрических материалов?

Сформулируем следующий тезис. Неиспользованное ранее физическое явление находит применение в технике, если на его основе решается техническая проблема, которая не может быть решена на основе других известных физических явлений.

Все эти годы происходило "соревнование" между сегнетоэлектриками, ферритами и полупроводниковыми материалами. Технология производства ферритов и полупроводников стремительно развивалась, и эти материалы оказывались в выигрыше, когда проводился техникоэкономический анализ целесообразности производства требуемых изделий на основе тех или иных материалов или физических эффектов. Далее постараемся указать техническую проблему, возникшую в технике СВЧ, которая может быть решена только на основе сегнетоэлектрических материалов. Необходим фазовращатель для фазированной антенной решетки (ФАР), обладающий следующими свойствами: высоким быстродействием, малой мощностью в цепях управления, большой мощностью СВЧ-сигнала, низкой стоимостью массового производства.

В основе физического явления, позволяющего осуществить создание такого фазовращателя, лежит диэлектрическая нелинейность сегнетоэлектрика.

Современный уровень понимания физики сегнетоэлектричества и технологии получения микроэлектронных сегнетоэлектрических элементов позволяет осуществить производство фазовращателей для ФАР, обладающих названными выше свойствами. Сочетание названных выше свойств в одном изделии не удается осуществить на основе существующих ферритовых или полупроводниковых материалов.

В недавно изданной работе [4] подробно исследуется проблема разработки ФАР и, в частности, способы осуществления входящих в состав ФАР фазовращателей на основе ферритов, полупроводников, сегнетоэлектриков и микроэлектромеханических структур. Каждая ФАР содержит от сотен до десятков тысяч фазовращателей. На первых этапах разработки ФАР стоимость производства фазовращателя не играла существенной роли, потому что ФАР разрабатывались как в СССР, так и в США по заказу военных ведомств. В настоящее время появилась потребность в антеннах с управляемой диаграммой направленности для использования в системах связи, передачи Интернет-информации и т.п. Поэтому стоимость производства фазовращателя приобрела решающее значение.

2. Модель диэлектрического отклика сегнетоэлектрика

Интерес к сегнетоэлектрикам в виде тонких пленок на диэлектрической подложке существенно усилился в связи с развитием технологии пленочных структур высокотемпературных сверхпроводников [5–7]. При этом существенно возросло число лабораторий или исследовательских групп, которые проявляли интерес к сегнетоэлектрическим пленочным структурам и их свойствам на СВЧ. Параллельно с этим начались разработки феноменологических моделей свойств сегнетоэлектриков на низких частотах и на СВЧ [8–13]. Приведем основное содержание модельного описания диэлектрического отклика сегнетоэлектрика.

2.1. Диэлектрическая проницаемость сегнетоэлектрика в парафазе. Она может быть представлена в следующем виде:

$$\varepsilon_{\rm eff} = \frac{\varepsilon_{00}}{[(\xi^2 + \eta^3)^{1/2} + \xi]^{2/3} + [(\xi^2 + \eta^3)^{1/2} - \xi]^{2/3} - \eta}.$$
(1)

Здесь параметр ξ определяется смещающим полем и качеством сегнетоэлектрика,

$$\xi = \sqrt{\left(\frac{E_{\rm dc}}{E_N}\right)^2 + \xi_s^2}.$$
 (2)

Зависимость от температуры задается формулой

$$\eta(T) = \frac{\theta_F}{T_c} \sqrt{\frac{1}{16} + \left(\frac{T}{\theta_F}\right)^{[2]}} - 1.$$
(3)

Здесь использованы следующие обозначения: ε_{00} — аналог постоянной Кюри, T_C и θ_F — температура Кюри и эффективная температура Дебая, E_N — нормирующее поле смещения, ξ_s — мера плотности дефектов.

2.2. Модели основных механизмов потерь в сегнетоэлектрике (1 < f < 100 GHz). Приведем следующие выражения: для многофононного рассеяния мягкой моды

$$\lg \delta_1(\xi_s, T, E) = A_1 \frac{f}{f_0} \left(\frac{T}{T_c}\right)^2 \varepsilon_{00}^{-3/2} \varepsilon(\xi_s, T, E)^{3/2}, \quad (4)$$

для квазидебаевского механизма потерь

$$tg \,\delta_2(\xi_s, T, E) = A_2 \frac{f}{f_0 \left[1 + (2\pi f \,\tau\,)^2\right]} \\ \times y(\xi_s, T, E)^2 \varepsilon_{00}^{-1} \varepsilon(\xi_s, T, E), \qquad (5)$$

для рассеяния на заряженных дефектах

$$tg \,\delta_3(\xi_s, T, E) = A_3 \,\frac{f}{f_0} \,\xi_s^2 \varepsilon_{00}^{-1} \varepsilon(\xi_s, T, E). \tag{6}$$

Здесь f₀ — собственная частота мягкой моды.

Рис. 1. Диэлектрическая проницаемость объемного сегнетоэлектрика в зависимости от смещающего поля при различных значениях параметра ξ .

Рис. 2. Фактор потерь монокристалла SrTiO₃ в зависимости от смещающего поля (квазидебаевский эффект): эксперимент и теория [3].

На рис. 1 показана диэлектрическая проницаемость объемного сегнетоэлектрика в функции от смещающего поля при различных значениях параметра ξ . На рис. 2 представлен фактор потерь монокристалла SrTiO₃ в функции от смещающего поля (квазидебаевский эффект): эксперимент и теория. На рис. 3 показан фактор потерь пленки BSTO в функции от частоты и смещающего поля.

Введенный выше параметр ξ_s представляет собой меру статистической дисперсии поля смещения, наведенного заряженными дефектами [8]. Оценка показывает, что эта величина зависит от размеров кристаллитов и плотности зарядов на их границах [12]. Потери возникают вследствие возбуждения низкочастотных акустических фононов за счет наведенного пьезоэффекта.

Изложенные сведения о модели диэлектрического отклика сегнетоэлектрика позволяют оптимизировать

Рис. 3. Фактор потерь пленки ВSTO в зависимости от частоты и смещающего поля. E = 0 (1) и 100 kV/cm (2).

параметры сегнетоэлектрических пленок, предназначенных для работы в СВЧ-управляющих устройствах. Развивающаяся технология получения позволяет получать пленки, пригодные для использования в устройствах СВЧ.

3. Коммутационный коэффициент качества активного элемента

Рассмотренные модельные представления дают возможность определить и в некоторыхв случаях оптимизировать два основных параметра элемента.

3.1. Управляемость элемента (микроконденсатора). В реализации управляющих устройств решающую роль играет зависимость диэлектрической проницаемости материала или емкости микроконденсатора на его основе от приложенного управляющего напряжения. Эта зависимость позволяет ввести понятие управляемости элемента

$$n = \frac{C(0)}{C(U_{\text{max}})}.$$
(7)

3.2. Фактор качества элемента $(tg \delta)$. Он определяется по формулам (4)–(6) как $tg \delta$ материала с учетом потерь, вносимых электродами. Этот фактор определяется для двух значений управляющего напряжения приложенного к элементу: U = 0 и $U = U_{max}$.

3.2. Коммутационный коэффициент качества К. К — это инвариант по отношению к внешним цепям, характеризующий управляемость материала и меру вносимых им потерь при взаимодействии с электромагнитной волной. Этот параметр был определен ранее и подробно проанализирован в [3,4]. Численно он определяется следующим соотношением:

$$K = \frac{(n-1)^2}{n \operatorname{tg} \delta_1 \operatorname{tg} \delta_2}.$$
(8)

Установлено, что СВЧ-фазовращатель будет удовлетворять условиям по заданной величине фазового сдвига и допустимым внутренним потерям, если сегнетоэлектрический элемент, положенный в основу конструкции фазовращателя, удовлетворяет условию

$$K \ge 1000. \tag{9}$$

Соотношения (8) и (9) определяют техническое задание на разработку материала [2–4].

Допустимая мощность СВЧ-сигнала на фазовращателе

Заметим, что фактор потерь сегнетоэлектрика с ростом СВЧ-мощности существенным образом не изменяется и в подавляющем числе случаев даже слегка падает [14]. При большой мощности СВЧ-сигнала проявится модуляция емкости управляемого элемента, вызванная СВЧ-электрическим полем. Чтобы устранить модуляцию емкости переменным полем, нужно разделить влияние постоянного управляющего напряжения и переменного напряжения. Для этого можно использовать симметрию вольт-фарадной характеристики (ВФХ) элемента.

4.1. Использование симметрии ВФХ сегнетоэлектрика. На рис. 4 показана симметричная ВФХ сегнетоэлектрического элемента. Представим, что элемент образован двумя параллельно соединенными конденсаторами. К каждому из них приложено управляющее напряжение в виде суммы постоянного смещающего напряжения $U_{\rm dc}$ или $-U_{\rm dc}$ и переменного

Рис. 4. Симметричная ВФХ сегнетоэлектрического элемента. Элемент образован двумя параллельно соединенными конденсаторами. К каждому из них приложено управляющее напряжение в виде суммы постоянного смещающего напряжения U_{dc} или $-U_{dc}$ и переменного напряжения в соответствии с формулой (10).

напряжения, образованного СВЧ-сигналом,

$$U_1(t) = U_{dc} + U_m \cos \omega t,$$

$$U_2(t) = -U_{dc} + U_m \cos \omega t.$$
 (10)

Модуль величины постоянного напряжения одинаково изменяет емкость обоих конденсаторов. Переменное напряжение в разную сторону изменяет емкость каждого из конденсаторов, так что суммарная емкость двух параллельно соединенных конденсаторов практически не зависит от амплитуды переменного напряжения. Пусть емкость конденсаторов изменяется в 2 раза при приложении к каждому из них управляющего напряжения в 200 V. На рис. 5, *а* показана зависимость усредненной емкости двух конденсаторов в функции от постоянного управляющего напряжения при разных значениях амплитуды переменного напряжения. Для количественных оценок удобно ввести следующую величину:

$$\Delta(U_m) = \frac{C_{\text{eff}}(U_0, 0) - C_{\text{eff}}(U_0, U_m)}{C_{\text{eff}}(U_0, 0)} \cdot 100\%.$$
(11)

На рис. 5, *b* показано относительное изменение эффективной емкости двух параллельно соединенных конденсаторов в зависимости от амплитуды переменного напряжения при различных значениях постоянного управляющего напряжения. В процессе управления ФАР входящие и в ее состав фазовращатели находятся в различных состояниях, заданных управляющим напряжением U_0 . Чтобы средняя погрешность задания фазового сдвига не превосходила 1%, максимальную ошибку можно допустить в пределах 2–3%. Фазовая ошибка повторяет ошибку задания емкости. Из графиков рис. 5, *b* можно заключить, что при $U_{0,max} = 200$ V относительное изменение емкости не превысит 2–3%, если амплитуда переменного напряжения не превысит 50 V.

Рис. 5. Зависимость усредненной емкости двух конденсаторов в зависимости от постоянного управляющего напряжения и амплитуды переменного напряжения. a — емкость двух конденсаторов в зависимости от постоянного напряжения при значениях амплитуды переменного напряжения $U_m = 0, 50, 75 \text{ V}$ (сверху вниз); b — относительное изменение емкости двух конденсаторов в зависимости от амплитуды переменного напряжения при различных значениях постоянного управляющего напряжения.

Рис. 6. Соединение двух конденсаторов, при котором по переменному напряжению они включены параллельно, а по постоянному напряжению — последовательно. В схему включены *LC*-фильтры, разделяющие постоянное напряжение и

напряжение СВЧ-сигнала.

На рис. 6 показана схема соединения двух конденсаторов таким способом, что по переменному напряжению они включены параллельно, а по постоянному напряжению — последовательно.

4.2. Максимально допустимая мощность СВЧ-сигнала на одном фазовращателе. Положим, что управляемый конденсатор служит нагрузкой передающей линии, выполняя при этом функцию отражательного фазовращателя [15].

Амплитуда переменного СВЧ-напряжения на конденсаторе определяется следующей формулой:

$$U_C = \sqrt{2Z_0 P_{\text{inc}}} (1+\Gamma), \qquad (12)$$

где Γ — коэффициент отражения, Z_0 — волновое сопротивление линии передачи, P_{inc} — мощность падающей волны. Максимальное напряжение на конденсаторах получится, когда $\Gamma = 1$. Для этого случая находим

$$P_{\rm inc}^{\rm (max)} = \frac{[U_{\rm RF}^{\rm (max)}]^2}{8Z_0}.$$
 (13)

При стандартной величине $Z_0 = 50 \,\Omega$ и найденном выше значении $U_{\rm RF}^{(\rm max)} = 50 \,\rm V$ получаем максимально допустимую мощность CBЧ-сигнала $P_{\rm inc}^{(\rm max)} \cong 6 \,\rm W$. Заметим, что полупроводниковые фазовращатели на основе варакторов на p-n-переходе или полевом транзисторе не допускают работы с CBЧ-сигналом, мощность которого превосходит $0.01-0.02 \,\rm W$ [4].

5. Быстродействие и энергетические характеристики элемента

5.1. Длительность процесса переполяризации. В парафазе, т.е. при $T > T_c$, время переполяризации сегнетоэлектрического элемента составляет [2,3] $\tau \simeq 10^{-11}$ s, что вполне удовлетворяет техническим требованиям к фазовращателю. При этом следует учесть возможное замедление процесса переполяризации за 5.2. Ток и мощность в цепях управления. В стационарном состоянии ток проводимости через сегнетоэлектрический элемент даже при достаточно большой напряженности приложенного электрического поля невелик ($1 < 10^{-7}$ A), и им можно пренебречь.

Пусть емкость управляемого конденсатора $C = 0.5 \, \mathrm{pF}$ и максимальное управляющее напряжение $U_{\max} = 200 \, \mathrm{V.}$ Энергия заряженного состояния $W = \frac{CU_{\max}^2}{2}, W = 10^{-8} \, \mathrm{J.}$ Мощность в цепях управления при 10^3 переключений в секунду: $P_{\text{control}} \cong 10^{-5} \, \mathrm{W.}$ Эта мощность на несколько порядков меньше мощности в цепях управления ферритовых фазовращателей или фазовращателей на основе p-i-n-диодов при сопоставимой мощности CBЧсигнала.

5.3. Снижение стоимости массового производства. Снижение стоимости массового производства возможно на основе использования достижений СВЧ-микроэлектроники. Следует выделить два технологических приема: планарная пленочная технология и получение сегнетоэлектрических и металлических пленочных элементов в едином технологическом процессе.

Примеры изготовления СВЧ-отражательных фазовращателей в виде СВЧ-интегральных схем, в которых как сегнетоэлектрические, так и металлические пленочные элементы изготовляются в едином технологическом процессе, представлены в виде разработок, выполненных в университетских лабораториях [16,17]. Отметим также рекламную публикацию промышленной фирмы nGimat Co. [18]. В ней описано семейство сегнетоэлектрических аналоговых фазовращателей с малой стоимостью производства для военного и коммерческого использования и применения в системах общественной безопасности. Работа над совершенствованием сегнетоэлектрических элементов для СВЧ-устройств непрерывно продолжается [19].

6. Заключение

Развитие физики сегнетоэлектричества идет параллельно с появлением новых требований к СВЧ-фазовращателям, служащим основой фазированных антенных решеток, предназначенных для работы на повышенном уровне СВЧ-мощности при ограниченной мощности в цепях управления и малой стоимости массового производства. В настоящее время не существует никакого другого способа реализации такого рода СВЧ-фазовращателей, кроме фазовращателей на основе тонкопленочных сегнетоэлектрических СВЧ-интегральных схем. Основой разработки фазовращателей служат надежные модели диэлектрического отклика сегнетоэлектрика на постоянное и высокочастотное электрическое поле.

- [1] K. Bethe. Philips Res. Rep. Suppl. 2, 1 (1970).
- [2] О.Г. Вендик. Сегнетоэлектрики в технике СВЧ. Сов. радио, М. (1979). 272 с.
- [3] A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter. J. Electroceram. 11, 5 (2003).
- [4] О.Г. Вендик, М.Д. Парнес. Антенны с электрическим сканированием, Введение в теорию / Под ред. Л.Д. Бахраха. САЙНС-ПРЕСС (2002). 232 с.
- [5] M.J. Lancaster, J. Powell, A. Porch. Supercond. Sci. Technol. 11, 11, 1323 (1998).
- [6] C.L. Chen, H.H. Feng, Z. Zang, A. Brazdeikis, Z.J. Guang, W.K. Chu, C.W. Chu, F.A. Miranda, F.W. Van Keuls, R.R. Romanofsky. Appl. Phys. Lett. 75, 412 (1999).
- [7] O.G. Vendik, E.K. Hollmann, A.B. Kosyrev, A.M. Prudan. J. Supercond. **12**, 325 (1999).
- [8] O.G. Vendik, S.P. Zubko. J. Appl. Phys. 82, 4475 (1997).
- [9] O.G. Vendik, L.T. Ter-Martirosyan, S.P. Zubko. J. Appl. Phys. 84, 993 (1998).
- [10] O.G. Vendik, S.P. Zubko. J. Appl. Phys. 88, 5343 (2000).
- [11] A. Tagantsev. Appl. Phys. Lett. 76, 1182 (2000).
- [12] O.G. Vendik, L.T. Ter-Martirosyan. J. Appl. Phys. 87, 1435 (2000).
- [13] O.G. Vendik, S.P. Zubko, M.A. Nikol'ski. J. Appl. Phys. 92, 7448 (2002).
- [14] С.П. Зубко, А.Н. Васильев. XVIII Всерос. конф. по физике сегнетоэлектриков (ВКС-XVIII). ФТТ **51**, *8*, 1457 (2009).
- [15] И.Б. Вендик, О.Г. Вендик, М.Д. Парнес, Р.Г. Шифман. Электромагнит. волны и электрон. системы 11, 12, 63 (2006).
- [16] V. Sherman, K. Astafiev, N. Setter, A. Tagantsev, O. Vendik, I. Vendik, S. Hoffmann-Eifert, R. Waser. IEEE Microwave Wireless Components. Lett. 11, 10, 407 (2001).
- [17] O.G. Vendik. IEEE Trans. Microwave Theory Techn. 55, 425 (2007).
- [18] nGimat Co. Microwave J. 49, 152 (2006).
- [19] T. Riekkinen, T. Mattila, S. van Dijken, A. Lüker, Qi Zhang, P.B. Kirby, A.M. Sánchez. Appl. Phys. Lett. 91, 252 902 (2007).