Особенности температурной зависимости конформационной динамики полимеров

© А.И. Слуцкер, Ю.И. Поликарпов*, Д.Д. Каров*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия * Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия

E-mail: AlexanderSlutsker@mail.ioffe.ru

(Поступила в Редакцию 18 сентября 2008 г.)

В широких диапазонах частот и температур проведены измерения диэлектрических и механических потерь в аморфном полярном полимере — поливинилацетате (ПВА). Установлена нелинейная (в аррениусовских координатах) температурная зависимость частоты конформационных переходов, определившая температуру размораживания конформационной динамики ПВА (~ 300 K). Эта температура оказалась близкой температуре квантового размораживания одной из мод молекулярной динамики ПВА (данные спектроскопии комбинационного рассеяния). Сделано предположение, что найденное снижение барьера конформационных переходов с температурой обусловлено ослаблением межмолекулярного взаимодействия и увеличением свободы подстройки соседних звеньев в окрестности конформационного перехода, вызванными возбуждением молекулярной динамики.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 08-03-00148-а).

PACS: 61.41.+e, 65.90.+i

1. Введение

В полимерах — телах, построенных из цепных молекул, — наряду с присущей всем твердым телам вибрационной динамикой (высокочастотные колебания атомов сравнительно малой амплитуды) существует специфическая форма динамики — конформационная. Эта форма динамики обусловлена возможностью вращения звеньев цепной молекулы вокруг скелетных ковалентных связей, которое вследствие отличия валентных углов в скелете макромолекулы от 180° (валентные углы в скелетах карбоцепных макромолекул составляют $\alpha \approx 109^{\circ}$) приводит к резким изменениям формы участка цепной молекулы (схема на рис. 1) [1-3]. Такой участок, минимально состоящий из четырех скелетных атомов и соответственно из четырех скелетных связей и изменяющий свою форму при вращении вокруг средней связи, носит название конформера. Конформер, имеющий форму плоского зигзага (рис. 1, a), принято называть транс-конформером (t). Транс-конформер при повороте вокруг средней связи (как правило на 120°) переходит в неплоскую "свернутую" форму, носящую название гош-конформера (g) (рис. 1, *b*). Переходы $t \to g$ (и обратно $g \to t$) происходят с преодолением потенциального барьера $U_{\rm conf}$, включающего следующие составляющие [1-3]: 1) взаимодействие боковых соседних (по цепи) привесков, определяющих "барьер внутреннего вращения"; 2) энергию упругого деформирования прилегающих участков макромолекулы (соседних конформеров); 3) энергию межмолекулярного взаимодействия (энергию когезии). Переходы $t \leftrightarrow g$ носят название конформационных переходов и являются элементарными актами общего понятия конформационной динамики в полимерном теле.

Характерные значения $U_{\rm conf}$ в полимерах составляют ~ 0.2 eV. Поэтому в области температур ~ 100-500 $U_{\rm conf} \gg kT$ ($k = 8.6 \cdot 10^{-5}$ eV/K — постоянная Больцмана) и преодоление барьеров конформационных переходов происходит за счет локальных флуктуаций тепловой энергии ($E_{\rm fl}$) при условии $E_{\rm fl} \ge U_{\rm conf}$. Тогда среднее время ожидания конформационного перехода определяется средним временем ожидания флуктуаций энергии [4] и составляет

$$\tau_{\rm conf} \approx \tau_0 \exp(U_{\rm conf}/kT),$$
 (1)

где $\tau_0 \approx 10^{-12} - 10^{-13}$ s, а средняя частота обратимых конформационных переходов

$$v_{\rm conf} \approx 1/2\tau_{\rm conf} \approx \exp(-U_{\rm conf}/kT)/2\tau_0.$$
 (2)

Выражения (1) и (2) устанавливают резкую зависимость интенсивности конформационной динамики от темпера-

Рис. 1. Схема конформеров и конформационного перехода. *а* — транс-конформер, *b* — гош-конформер.

туры. Именно эта зависимость определяет изменения многих свойств полимеров при повышении температуры: 1) переход полимера из "хрупкого" (застеклованного) состояния в высокоэластическое с резким (на порядки) падением модуля упругости; 2) резкое возрастание теплоемкости и коэффициента термического расширения; 3) падение скорости и рост затухания акустических волн; 4) изменение диэлектрических характеристик.

В разработке конформационной динамики полимеров остаются открытыми некоторые вопросы. В частности, нуждаются в объяснении реальная зависимость конформационной частоты от температуры и значения температуры размораживания конформационной динамики. Выяснение этих вопросов является задачей настоящей работы.

2. Методы исследования

Методы исследования конформационного состояния и конформационных процессов в полимерах разнообразны. Метод инфракрасной спектроскопии, где полосы поглощения, отвечающие колебаниям t- и g-конформеров различны, позволяет непосредственно регистрировать и измерять концентрации t- и g-конформеров [5,6]. Однако определять частоту переходов $t \leftrightarrow g$ здесь затруднительно. Метод дифференциальной сканирующей калориметрии по зависимости изменения теплоемкости от скорости подъема температуры позволяет судить о динамике конформационных переходов [7], но небольшой диапазон вариации скорости нагрева (один-два порядка) дает ограниченную информацию. Наиболее информативными являются резонансно-динамические методы исследования конформационной динамики: измерение потерь энергии переменных полей (механических и электрических), действующих на полимеры [8]. Эти методы и выбраны в настоящей работе. В основе названных методов лежат два связанных между собой общих положения относительно актов, происходящих с преодолением барьера: 1) поле снижает барьер для перехода вдоль направления действия поля и повышает барьер перехода против поля; 2) при переходе по полю происходит захват энергии поля (потери энергии поля), а при переходе против поля — передача энергии полю.

Механические поля (растягивающие или сжимающие напряжения) и электрические поля (для полярных полимеров, в которых звенья макромолекул обладают дипольными моментами) влияют на барьеры конформационных переходов в полимерах. Размеры *t*и *g*-конформеров различны (осевая длина *t*-конформера больше, чем *g*-конформера (рис. 1)). С изменением длины конформера при переходе его из одного состояния в другое и связана работа поля (положительная или отрицательная).

При приложении постоянного поля к полимерному телу (ансамблю конформеров) сначала происходит больше переходов по полю, чем против поля, но затем, через некоторое время — время релаксации τ_r ($\tau_r \approx \tau_{conf}/2$) — устанавливается новое равновесное соотношение концентраций *g*- и *t*-конформеров, при котором числа переходов по полю и против поля равны. В таком равновесном состоянии захваты и отдачи энергии поля компенсируются, и потерь энергии поля не происходит.

Обратимся к действию переменного поля с частотой v_f . Для низких частот поля $v_f \ll v_{conf}$ за полупериод колебаний поля происходит много циклов конформационных переходов, в которых в силу квазиравновесных условий захваты и отдачи энергии компенсируют друг друга, и потери здесь малы. При высоких частотах $v_f \ll v_{conf}$ конформационные переходы происходят при случайных значениях поля (по знаку и величине), и тогда имеется статистическая компенсация захватов и отдач энергии поля, так что и здесь потери малы.

Интересен случай резонанса: $v_f \approx v_{conf}$. Здесь на первом полупериоде действия поля превалирование переходов по полю приводит к захвату энергии поля потерям энергии. А на втором полупериоде, когда поле изменило знак, опять превалируют переходы по полю и опять имеют место потери энергии. Таким образом, именно при условии $v_f \approx v_{conf}$ должны проявляться относительно большие потери энергии поля.

На отмеченном "запаздывании" установления равновесного конформационного состояния основано описание действия на полимер переменных по знаку гармонических полей [8]. Принимается, что в поле с круговой частотой $\omega_f = 2\pi v_f$ накопление переходов по полю происходит гармонически с такой же частотой, но со сдвигом по фазе на угол δ . Сдвиг по фазе вызывает потери энергии поля, величина которых пропорциональна tg δ . Приближенно [8]

$$\operatorname{tg} \delta \propto \omega_f \tau_r / [1 + (\omega_f \tau_r)^2]. \tag{3}$$

Из (3) следует, что максимум потерь имеет место при $\omega_f \tau_r \approx 1$. Отсюда $\nu_f = 1/2\pi\tau_r \approx 1/\pi\tau_{\text{conf}}$, что близко к полученному выше из рассуждений резонансному условию для потерь: $\nu_f \approx \nu_{\text{conf}} \approx 1/2\tau_{\text{conf}}$.

Найденные резонансные условия можно наглядно проиллюстрировать на примере с одиночным конформером в переменном поле. Допустим, что конформер "дождался" флуктуации энергии на первом полупериоде поля (это достаточно вероятно при условии $v_f \approx v_{conf}$) и скачком совершил переход по полю, вызвав потери энергии поля. Обратный переход может произойти через время $\sim \tau_{\rm conf}$. Но за это время поле изменит свой знак, так что обратный переход произойдет опять по полю и вновь вызовет потери энергии поля. Дальнейшие переходы конформера могут повторяться с подобной энергетикой. Таким образом, и на переходах одиночного конформера можно увидеть резонансные условия увеличения потерь энергии поля: условие близости частоты поля частоте обратимых конформационных переходов. Такая ситуация с конформером в переменном поле похожа на ситуацию с передачей энергии переменого электрического поля заряженной частице в циклотроне, когда электрическое поле между дуантами циклотрона меняет знак с частотой полуоборота частицы в магнитном поле внутри дуантов, так что каждый проскок частицы между дуантами происходит по направлению электрического поля с захватом энергии этого поля.

Резонанс между частотами колебаний поля и частотами конформационных переходов (определяемыми частотами соответствующих локальных флуктуаций тепловой энергии) может быть назван флуктуационным резонансом. Его отличием от привычных механических и электрических резонансов является то, что частота конформационных переходов v_{conf} — это в значительной мере усредненная величина, которая резко, экспоненциально зависит от температуры. Но поскольку имеются основные черты резонансного явления (перекачка энергии при близости частот внешних и внутренних "колебаний"), термин "флуктуационный резонанс" представляется уместным.

В соответствии с условием резонанса $v_f \approx v_{\text{conf}} \approx \exp(U_{\text{conf}}/kT)/2\tau_0$ максимумы потерь должны наблюдаться: 1) на определенной частоте поля v_f при заданной температуре T; 2) при определенной температуре T_m на заданной частоте поля v_f , при этом $T_m = U_{\text{conf}}/k \ln(2v_f\tau_0)$.

Таким образом, образуются экспериментальные возможности нахождения важной характеристики конформационной динамики — частоты конформационных переходов, установления ее зависимости от температуры, определения барьеров переходов.

3. Экспериментальное исследование конформационной динамики

Удобным объектом здесь оказался аморфный полимер — поливинилацетат (ПВА). Структурная формула звена ПВА $[-CH_2-CRH-]_n$. Боковой радикал R $(-O-CO-CH_3)$ имеет значительный дипольный момент $\mu = 2.3$ D $(1 D = 1 \text{Дебай} = 3.34 \cdot 10^{-30} \text{C} \cdot \text{m})$ [9], что определяет высокую полярность ПВА и обеспечивает большие, легко измеряемые диэлектрические потери.

Измерения диэлектрических потерь ПВА проводились с применением комплекса установок, перекрывающих область частот от $3 \cdot 10^{-2}$ до 10^7 Hz в диапазоне температур 300-400 K. Проводились также измерения механических потерь в ПВА в более узком интервале частот $3 \cdot 10^{-2} - 5 \cdot 10^2$ Hz. Во всех случаях характеристикой потерь выступал tg δ и находились зависимости tg δ от температуры при разных частотах как электрических, так и механических полей.

На рис. 2, а представлены примеры измеренных для диэлектрических потерь зависимостей tg $\delta_E(T)$ при трех частотах электрического поля. Можно видеть хорошо разрешающиеся пики потерь. С ростом частоты электрического поля ν_E пики перемещаются в сторону повышения температуры. Для каждого пика определяется

Puc. 2. Температурные зависимости диэлектрических (*a*) и механических (*b*) потерь в поливинилацетате при различных частотах. *a* — частота электрического поля $v_E = 3 \cdot 10^{-2}$ (*1*), $1.6 \cdot 10^4$ Hz (*2*), $6 \cdot 10^6$ Hz (*3*); *b* — частота механического поля $v_m = 3 \cdot 10^{-2}$ (*1*) и $4.7 \cdot 10^2$ Hz (*2*).

температура T_m — температура, отвечающая центру тяжести пика. Этим самым на основе условия резонанса $v_E \approx v_{\text{conf}}$ находятся частоты конформационных переходов, отвечающие температуре $T = T_m$. По данным рис. 2, *a* с включением подобных данных для промежуточных частот находим зависимость $v_{\text{conf}}(T)$, которая в аррениусовских координатах $\lg v_{\text{conf}}(1/T)$ представлена на рис. 3. Как видно, эта зависимость является криволинейной.

Данные о криволинейности зависимости lg $v_{conf}(1/T)$ для ряда полимеров, следующие из диэлектрических измерений, содержатся в работах [10–12].

На рис. 2, *b* представлены примеры измеренных в ПВА механических потерь — зависимостей tg $\delta_m(T)$ при двух частотах механического поля. И здесь видно смещение максимумов потерь в сторону более высоких температур с ростом частоты. По данным рис. 2, *b* с включением данных для других частот находим зависимость $v_{conf}(T)$, которая представлена на рис. 3 (кривая 6). Можно видеть достаточную близость зависимостей $v_{conf}(T)$, найденных по диэлектрическим и механическим измерениям.

Это важное обстоятельство свидетельствует о том, что природа диэлектрических и механических потерь фактически одинакова и заключается в единстве элементарных актов регистрируемой динамики, на барьеры переходов в которых электрические и механические поля действуют подобным образом.

Рис. 3. Температурная зависимость частоты конформационных переходов в поливинилацетате. Кривая *а* получена по измерениям диэлектрических потерь, кривая *b* — по измерениям механических потерь; *q* и *c* — асимптоты для кривой *a*.

4. Обсуждение результатов

Обсуждение сосредоточим на данных по диэлектрическим потерям, поскольку они охватывают существенно более широкий диапазон частот — около девяти десятичных порядков.

Выявленная нелинейность зависимости $\lg v_{conf}(1/T)$ позволяет детализировать молекулярную динамику полимера. Для зависимости $\lg v_{conf}(1/T)$ — кривая *a* на рис. 3 — можно наметить две асимптоты. При высоких температурах $(1/T \rightarrow 0)$ асимптотой выступает наклонная прямая q, которая при 1/T = 0 экстраполируется к значению $\lg v_f \approx 12$. В области низких температур намечается вертикальная асимптота *с* на температуре $T_c \approx 300$ К. В области повышенных температур зависимость $\lg v_{conf}(1/T)$ приближается к асимптоте q (рис. 3) и поэтому может быть аппроксимирована функцией $v_{conf} = v_0 \exp(-U_{conf}/kT)$, где $\nu_0 \approx 10^{12} \, \text{s}^{-1}$. Следует подчеркнуть, что значение $u_0 \approx 1/2 \tau_{\rm conf} \approx 10^{12} \, {\rm s}^{-1}$ является обоснованным теоретически и результатами компьютерного моделирования динамики атомов [4,13,14], что важно учитывать при определении барьера переходов по экспериментальным данным для зависимости $\lg v_{conf}(1/T)$. Исходя из функции $v_{conf} = v_0 \exp(-U_{conf}/kT)$, величину барьера Uconf можно находить двумя способами: либо как $U_{conf} = kT(\ln v_0 - \ln v_{conf});$ либо как $U_{\rm conf} = -k\Delta \ln v_{\rm conf}/\Delta(1/T).$

При линейной зависимости $\lg v_{conf}(1/T)$ оба способа, естественно, приводят к одному и тому же значению U_{conf} . Из высокотемпературной части зависимости

lg ν_{conf}(1/*T*), близкой к асимптоте *q* на рис. 3, получаем $U_{conf} \approx 0.4 \, \text{eV}$. Такое значение U_{conf} является близким к величине барьера в элементарных актах так называемой *β*-релаксации ПВА, которая трактуется как одиночный конформационный переход при влиянии межмолекулярного взаимодействия и упругой деформации близлежащих звеньев макромолекулы ПВА [2,3,7]. Таким образом, для области повышенных температур (в районе ~ 400 K) можно заключить, что диэлектрические потери действительно отражают конформационную динамику, причем в форме одиночных конформационных переходов в макромолекулах ПВА.

Из рис. З видно, что с понижением температуры зависимость $\lg \nu_{conf}(1/T)$ становится все более крутой, приближаясь к вертикальной асимптоте с. Распространен способ описывать малые квазилинейные участки нелинейной зависимости $\lg v_{conf}(1/T)$ функцией $v_{conf} = A_i \exp(U_i/kT)$ и находить барьер как $U_i = -k\Delta \ln v_{\rm conf}/\Delta(1/T)$. При этом игнорируется несоответствие предэкспоненты А_i теоретической величине $u_0 \approx 10^{12} \, {
m s}^{-1}$. В этом случае значение U_i не отвечает реальной величине барьера, поэтому U_i называют кажущейся величиной барьера [8,15]. Реальное значение барьера следует находить по соотношению $U_{\rm conf} = kT(\ln v_0 - \ln v_{\rm conf})$, используя теоретически обоснованное значение $\nu_0 \approx 10^{12} \, {
m s}^{-1}$ [8,15]. Из данных рис. З тогда находим $U_{conf}(T)$, что представлено на рис. 4. Видно, что истинный барьер переходов возрастает с понижением температуры, асимптотически уходя к очень высоким значениям у температуры $T_c \approx 300$ K.

Причинами возрастания барьера конформационных переходов можно назвать: 1) увеличение устойчивости межмолекулярных связей с понижением температуры; 2) затруднение подстройки соседних звеньев при конформационных переходах. Таким образом, с понижением температуры возрастает эффективная жесткость цепной

Рис. 4. Температураня зависимость барьера конформационных переходов в поливинилацетате.

молекулы, что и замедляет конформационную динамику вплоть до ее фактического прекращения при асимптотически определяемой температуре Т_с. Следующее из рис. З значение $T_c \approx 300 \, {\rm K}$ практически совпадает со "статической температурой стеклования" ПВА температурой, характеризующей переход полимера из высокоэластического в застелованное (хрупкое) состояние [7]. Если двигаться от низких температур к высоким, то Т_с тогда носит название температуры расстекловывания. Температуру Тс можно также называть температурой размораживания конформационной динамики. И здесь обращает на себя внимание резкость (по температуре) наступления конформационного размораживания (асимтота с на рис. 3). Создается впечатление, что при нагревании полимера от низких температур у температуры Т_с в полимере происходит некоторое достаточно резкое изменение, приводящее к такому уменьшению барьера конформационных переходов, которое и обеспечивает размораживание конформационной динамики.

Вопрос о температуре расстекловывания полимеров является предметом различных теоретических разработок (подытожено в [7]), однако причины температурной резкости расстекловывания полимеров объяснения не находили. Поэтому приобретает смысл привлечение к рассмотрению конформационного размораживания еще одного фактора, характеризующегося достаточной резкой активизацией при какой-либо температуре. В качестве такого фактора можно предположительно назвать эффект квантового размораживания вибрационной (колебательной) динамики. Как известно, квантованность колебательной динамики приводит к тому, что эффективное тепловое возбуждение (размораживание) колебаний с частотой v наступает достаточно резко вблизи температуры $T_{\rm exc} \approx h\nu/3k$ (*h* — постоянная Планка), что видно на схеме (рис. 5) [16]. Тогда представляется интересным сопоставление температуры конформационного размораживания полимера с температурой квантового размораживания колебаний молекул в нем. Частоты различных мод колебаний определяются по соответствующим линиям в спектрах комбинационного (рамановского) рассеяния. На рис. 6 показан спектр комбинационного рассеяния для исследованного в настоящей работе полимера — ПВА [17]. Можно видеть ряд линий, среди которых выделяется своей интенсивностью линия на частоте $\nu = 620 \,\mathrm{cm}^{-1} = 1.9 \cdot 10^{13} \,\mathrm{Hz}.$ Температура размораживания колебаний этой частоты $T_{\rm exc} \approx h v / 3k \approx 300$ К. Как видно, температуры конформационного размораживания и квантового размораживания колебаний в этом полимере оказались близкими: $T_{\rm conf} \approx T_{\rm exc} \approx 300 \, {\rm K}$. Точной идентификации линии 620 cm⁻¹ в ПВА не приводится. Есть основания полагать, что эта линия отвечает одной из мод деформационных колебаний. Тогда можно предположить, что размораживание данных колебаний ведет к снижению барьера конформационных переходов, вызывая: 1) увеличение свободы "подстройки" соседних звеньев при переходе; 2) нарушение межмолекулярных "мостиков".

Рис. 5. Температурная зависимость энергии тепловых колебаний с частотой *v*. Заштрихованная полоса обозначает температурную зону эффективного возбуждения (квантового размораживания) колебаний.

Рис. 6. Фрагмент спектра комбинационного рассеяния для поливинилацетата (по данным [17]).

Обоим процессам способствует то обстоятельство, что квант энергии данных колебаний $\Delta E = hv = 0.08 \text{ eV}$ имеет достаточно большую величину. Дальнейшее (после прохождения T_c) повышение температуры ведет к интенсификации возбужденных при T_c колебаний и тем самым — к дальнейшему снижению барьера конформационных переходов.

Таким образом, высказывается предположение, что резко выступающая температура конформационного размораживания, а следовательно, и температура расстекловывания полимера отвечают температуре квантового размораживания вибрационной динамики молекул. Подобные корреляции между температурами релаксационных переходов и температурами возбуждения колебательной динамики полимерных молекул были найдены ранее [8]. Для ряда полимеров установлена близость температур α - и β -релаксации температурам возбуждения колебания деформационных и торсионных колебаний соответственно.

Разумеется, вопросы связи конформационной динамики и других релаксационных процессов в полимерах с квантовыми характеристиками вибрационной динамики полимерных молекул требуют дальнейшей экспериментальной разработки и расчетно-теоретического анализа.

Авторы признательны В.И. Веттегреню за обсуждение и полезные советы.

Список литературы

- М.В. Волькенштейн. Конфигурационная статистика полимерных цепей. Изд-во АН АСССР, М.–Л. (1959). 466 с.
- [2] В.Г. Дашевский. Конформации органических молекул. Химия, М. (1974). 432 с.
- [3] Ю.Я. Готлиб, А.А. Даринский, Ю.Е. Светлов. Физическая кинетика макромолекул. Химия, Л. (1986). 272 с.
- [4] Я.И. Френкель. Кинетическая теория жидкостей. Наука, М. (1975). 460 с.
- [5] J. Dechant, R. Danz, W. Kimmer, R. Schmolke. Ultrarotspektroskopische Untersuchungen an Polymeren. Academie Verlag, Berlin (1972). 474 p.
- [6] П.М. Пахомов. Конформационная структура и механика полимеров, Изд-во ТГУ, Тверь (1999). 234 с.
- [7] В.А. Берштейн, В.М. Егоров. Дифференциальная сканирующая калориметрия в физикохимии полимеров. Химия, Л. (1990). 256 с.
- [8] Энциклопедия полимеров. Сов. энциклопедия, М. (1972). Т. 1. С. 62.
- [9] Энциклопедия полимеров. Сов. энциклопедия, М. (1972).
 Т. 1. С. 726.
- [10] П.Ф. Веселовский, А.И. Слуцкер. ЖТФ 25, 7, 1204 (1955).
- [11] Г.П. Михайлов, А.М. Лобанов. ФТТ 5, 7, 1917 (1963).
- [12] J. Koppelmann. Kolloid-Z. Z. Polymere 216/217, 6 (1967).
- [13] А.И. Слуцкер, А.И. Михайлов, И.А. Слуцкер. УФН 164, 4, 357 (1994).
- [14] А.И. Слуцкер. ФТТ 47, 5, 777 (2005).
- [15] А.И. Слуцкер, Ю.И. Поликарпов, К.В. Васильева. ФТТ 44, 8, 1529 (2002).
- [16] Ч. Киттель. Введение в физику тверого тела. Наука, М. (1978). 792 с.
- [17] А.Х. Купцов, Г.Н. Жижин. Фурье-КР и Фурье-ИК спектры полимеров. Физматлит, М. (2001). 582 с.
- [18] В.И. Веттегрень, С.В. Бронников, И.И. Иброгимов. Высокомолекуляр. соединения А **36**, *8*, 1994).