Ангармонические процессы рассеяния и релаксация медленных квазипоперечных фононов в кубических кристаллах

© И.Г. Кулеев, И.И. Кулеев, И.Ю. Арапова

Институт физики металлов Уральского отделения Российской академии наук, Екатеринбург, Россия

E-mail: kuleev@imp.uran.ru

(Поступила в Редакцию 30 июня 2008 г.)

Рассмотрена релаксация медленных квазипоперечных фононов в ангармонических процессах рассеяния в кубических кристаллах с положительной (Ge, Si и алмаз) и отрицательной (KCl и NaCl) анизотропией модулей упругости второго порядка. В модели анизотропного континуума проанализированы зависимости скоростей релаксации от направления волнового вектора фононов в процессах рассеяния с участием трех квазипоперечных фононов (механизмы релаксации TTT). Показано, что механизмы релаксации TTT обусловлены кубической анизотропией кристаллов, приводящей к взаимодействию неколлинеарных фононов. Доминирующий вклад в релаксацию фононов вносит рассеяние на большие углы. Для кристаллов с существенной анизотропией упругой энергии (Ge, Si, KCl и NaCl) суммарный вклад механизмов релаксации ТТТ превосходит вклад механизма Ландау-Румера в полную скорость релаксации либо в несколько раз, либо на один-два порядка величины в зависимости от направления. В значительной степени доминирующая роль механизмов релаксации ТТТ по сравнению с механизмом Ландау-Румера обусловлена упругими модулями второго порядка. Найдены полные скорости релаксации медленных квазипоперечных фононов. Показано, что при доминирующей роли ангармонических процессов рассеяния учет одного из механизмов релаксации (Ландау-Румера или механизмов релаксации медленной квазипоперечной моды на двух медленных или двух быстрых модах) недостаточен для описания анизотропии полных скоростей релаксации в кубических кристаллах.

Работа выполнена по плану РАН в рамках темы № 01.2.006.13395 при поддержке программы президиума РАН № 24, ведущей научной школы № НШ 3257.2008.2, а также Фонда содействия отечественной науке.

PACS: 62.20.D-, 62.80.+f, 63.20.-e, 63.20.K-, 63.20.D-

1. Введение

Определение доминирующих механизмов релаксации и расчет полных скоростей релаксации фононов различных поляризаций представляют большой интерес для изучения поглощения ультразвука и фононного транспорта в кубических кристаллах. Согласно сложившемуся в литературе мнению [1-5] основным механизмом релаксации поперечных фононов в нормальных трехфононных процессах рассеяния является механизм Ландау-Румера [6], в котором слияние поперечного фонона с продольным порождает продольный фонон (T + L → L). Этот механизм релаксации считается основным для поперечных тепловых фононов при расчетах решеточной теплопроводности [7-9]. В длинноволновом приближении $\hbar \omega_q^{\lambda} \ll k_{\rm B}T \ (T - {\rm температура},$ $\omega_{a\lambda}$ — частота фонона с волновым вектором q и поляризацией λ) он дает хорошо известную линейную зависимость [1-6] скорости релаксации поперечных фононов от волнового вектора вида $\nu_{\mathrm{TLL}}^{\lambda} \sim q T^4$.

В настоящей работе мы ограничимся длинноволновым приближением и рассмотрим все ангармонические механизмы релаксации медленных квазипоперечных фононов, приводящих к линейной зависимости скорости релаксации от волнового вектора типа Ландау–Румера. Это позволит определить полную скорость релаксации медленных квазипоперечных фононов. Проведенный анализ показал, что такими процессами релаксации кроме механизма Ландау-Румера являются процессы слияния двух поперечных фононов, принадлежащих к различным колебательным ветвям, с образованием поперечного фонона типа $T_1^{\lambda} + T_2^{\lambda_1} \rightarrow T_3^{\lambda_1}$: (λ и λ_1 поляризации фононов, которые принимают два значения: t₁ — быстрая квазипоперечная мода и t₂ — медленная квазипоперечная мода). Эти процессы рассеяния (механизмы TTT) могут приводить к функциональным зависимостям скоростей релаксации длинноволновых поперечных фононов медленной моды t2 такого же вида, как и для механизма Ландау–Румера: $v_{\text{TTT}}^{t_2} \approx qT^4$, и могут конкурировать с механизмом Ландау-Румера [6]. Оценки [1-4] показали, что для изотропных сред механизмы ТТТ неэффективны. Дело в том, что в изотропных средах поперечные моды вырождены, и в процессах $T_1 + T_2 \rightarrow T_3$ могут участвовать только коллинеарные фононы [1-4]. Однако, как показал анализ [10], матричный элемент такого взаимодействия и соответственно скорости релаксации поперечных фононов обращаются в нуль. Использование приближения изотропной среды [3-10] для оценки вероятности различных процессов рассеяния не является адекватным для кристаллов германия, кремния, алмаза и других полупроводниковых соединений, имеющих кубическую симметрию с существенной анизотропией, как гармонической, так и ангармонической энергии. Будет показано, что ангармонические процессы релаксации с участием трех поперечных фононов в таких кристаллах, как Ge, Si, алмаз, КСІ и т.д., обусловлены исключительно кубической анизотропией.

Механизмы ТТТ в кубических кристаллах исследовались в работах [11-13]. Однако приближения, принятые в работах [11–13], не являются адекватными для кубических кристаллов. Во-первых, при расчете трехфононных процессов рассеяния не учитывалось влияние кубической анизотропии на поляризации фононов: колебательные моды считались чисто поперечными модами, как и в изотропных средах. Использованная при этом процедура усреднения по направлениям векторов поляризации в матричном элементе не является корректной для кубических кристаллов. Во-вторых, коэффициенты поглощения ультразвука рассчитывались только для симметричных направлений. Известно [1-5], что в кубических кристаллах распространяются квазипродольные или квазипоперечные колебания, и только в симметричных направлениях, таких как [100], [110] и [111], распространяются чистые моды. Анализ спектра и поляризаций колебательных ветвей, проведенный в [14], показал, что вклад продольных компонент в квазипоперечные моды не является малым, и при усреднении по векторам поляризации в скоростях релаксации квазипоперечных фононов необходимо учитывать продольную компоненту этих мод. Поэтому принятые в [11-13] приближения приводят к большой погрешности при расчете скоростей релаксации поперечных фононов. В настоящей работе влияние кубической анизотропии на спектр и поляризацию фононов в модели анизотропного континуума учтено строго. Удобным приближением для решения таких задач является модель анизотропного континуума. В этой модели гармоническая энергия кубических кристаллов выражается через три модуля упругости второго порядка, а ангармоническая энергия — через шесть модулей упругости третьего порядка. Причем для значительной части кубических кристаллов упругие модули второго и третьего порядка экспериментально определены. Поэтому скорости релаксации фононов, рассчитанные в этой модели, являются надежной основой для интерпретации экспериментальных данных по поглощению ультразвука и фононному транспорту в кубических кристаллах.

Для характеристики упругой анизотропии кубических кристаллов ранее [15] вводился формальный фактор анизотропии $A = 2c_{44}/(c_{11} - c_{12})$, где c_{ij} — упругие модули второго порядка. Однако детальный анализ упругих волн в кубических кристаллах [14] показал, что влияние кубической анизотропии на спектр и векторы поляризации колебательных мод определяется безразмерным параметром $k - 1 = \Delta C/(c_{11} - c_{44})$ (где $\Delta C = c_{12} + 2c_{44} - c_{11}$). Поскольку параметры k - 1 и ΔC имеют одинаковые знаки, все кубические кристаллы могут быть разделены на кристаллы с положительной $\Delta C > 0$ и отрицательной $\Delta C < 0$ анизотропией упругих модулей второго порядка (см. табл. 1 в [14]). Для изотропных сред этот параметр равен нулю. К первому типу относятся кристаллы Ge, Si, алмаза, InSb, GaSb,

GaAs и т.д. Ко второму типу кубических кристаллов $(\Delta C < 0)$ относятся кристаллы KCl, NaCl и т.д. Физической основой классификации, предложенной в [14], является качественно различная анизотропия спектров и поведение векторов поляризации в кубических кристаллах двух типов. Анализ, проведенный в [16,17] для механизма Ландау—Румера, показал, что в кубических кристаллах первого и второго типа не только спектр и поляризации фононов, но и поведение релаксационных характеристик, таких как коэффициенты поглощения ультразвука и скорости релаксации квазипоперечных колебательных мод, качественно различаются.

В настоящей работе проанализированы угловые зависимости скоростей релаксации медленных квазипоперечных фононов в механизмах ТТТ для кубических кристаллов с положительной (Ge, Si и алмаза) и отрицательной (KCl и NaCl) анизотропией упругих модулей второго порядка. Проведено сравнение величин скоростей релаксации в механизмах ТТТ в с результатами, полученными для механизма Ландау-Румера [17], и найдены полные скорости релаксации для медленных квазипоперечных мод. Показано, что нет других вариантов релаксации медленных квазипоперечных мод, приводящих к зависимости типа Ландау-Румера. Расчет полных скоростей релаксации позволит рассчитать поглощение ультразвука с учетом затухания фононных состояний в кубических кристаллах и провести корректный анализ экспериментальных данных. В отличие от работ [11–13] нами проанализированы угловые зависимости скоростей релаксации фононов для двух наиболее актуальных случаев: 1) для волновых векторов, лежащих в плоскости грани куба; 2) для волновых векторов в диагональной плоскости. Это позволяет определить направления, в которых скорости релаксации медленной квазипоперечной моды имеют максимальные и минимальные величины.

2. Скорость релаксации поперечных фононов в механизмах ТТТ для кубических кристаллов

Возможными вариантами релаксации длинноволновых поперечных фононов в кубических кристаллах являются следующие процессы слияния двух поперечных фоновнов с образованием поперечного фонона:

$1) ST_1 + ST_2 \rightarrow ST_3, F$	$\mathrm{FT}_1 + \mathrm{FT}_2 \to \mathrm{FT}_3, \ \omega_{q_1}^{\lambda} = \omega_{q_3}^{\lambda} - \omega_{q_2}^{\lambda},$
$2) \ ST_1 + FT_2 \rightarrow FT_3,$	$\omega_{q_1}^{t_2} = \omega_{q_3}^{t_1} - \omega_{q_2}^{t_1},$
$FT_1+ST_2 \rightarrow ST_3,$	$\omega_{q_1}^{t_1} = \omega_{q_3}^{t_2} - \omega_{q_2}^{t_2},$
$3) \ FT_1+FT_2 \rightarrow ST_3,$	$\omega_{q_1}^{t_1} = \omega_{q_3}^{t_2} - \omega_{q_2}^{t_1},$
$4) \ FT_1+ST_2 \rightarrow FT_3,$	$\omega_{q_1}^{t_1} = \omega_{q_3}^{t_1} - \omega_{q_2}^{t_2},$

 $\mathrm{ST}_1 + \mathrm{ST}_2 \to \mathrm{FT}_3, \quad \omega_{q_1}^{t_2} = \omega_{q_3}^{t_1} - \omega_{q_2}^{t_2}.$ (1) Здесь $\omega_{q\lambda}$ — частота фонона с волновым вектором q

и поляризацией волны λ. В процессах 1) участвуют

три поперечных фонона, принадлежащих либо к верхней (FT, $\lambda = t_1$), либо к нижней (ST, $\lambda = t_2$) колебательным ветвям. В изотропных средах в процессах 1) могут участвовать только коллинеарные фононы [1-4]. Учет дисперсии фононов приводит к обращению в нуль вероятности рассеяния фононов в этом механизме рассеяния. В изотропных средах процессы типа 1) могут иметь место при учете затухания фононных состояний, причем эффект затухания должен доминировать над эффектом дисперсии [1-4]. Для корректного анализа влияния затухания фононных состояний в механизме ТТТ необходимо найти суммарную частоту релаксации поперечных тепловых фононов, которая определяется всеми процессами релаксации. Анализ этого механизма [4] для изотропных сред с учетом затухания фононных состояний дает для скорости релаксации независящий от волнового вектора вклад: $\nu_{\mathrm{TTT}}^{t_2} \sim q^0 T^4 \nu_{t_2}(T)$, где $\nu_{t_2}(T)$ полная скорость релаксации тепловых фононов моды t2. В настоящей работе мы покажем, что для процессов 1) $ST_1 + ST_2 \rightarrow ST_3$ (механизм SSS) закон сохранения энергии строго выполняется и для неколлинеарных фононов. Эти процессы дают зависимости скорости релаксации длинноволновых поперечных фононов такого же вида, как и механизм Ландау–Румера: $v_{SSS}^{t_2} \sim qT^4$. Показано, что для многих кубических кристаллов этот механизм вносит преобладающий вклад в полную скорость релаксации медленной квазипоперечной моды. Процессы типа 2) (механизм SFF) аналогичны процессам релаксации поперечных фононов в механизме Ландау-Румера. Они дают зависимости скорости релаксации длинноволновых поперечных фононов вида $\nu_{\rm SFF}^{t_2} \sim qT^4$ и могут конкурировать с механизмом Ландау–Румера [6]. В процессах 2) энергия рассеянного поперечного фонона равна разности энергий фононов, принадлежащих одной и той же поперечной колебательной ветви. Очевидно, что для изотропных сред такой механизм невозможен, поскольку поперечные ветви вырождены, и спектр фононов изотропен. Поэтому, чем больше кубическая анизотропия (чем значительнее параметр k отличается от единицы), тем более эффективными будут механизмы релаксации, связанные с процессами типа 1) и 2). Процессы типа 3) невозможны, так как для них нельзя обеспечить выполнение закона сохранения энергии. Процессы типа 4) аналогичны процессам релаксации продольных фононов в механизме Херринга [18,19] $(L_1 + ST_2 \rightarrow FT_3,$ $\omega_{q_1}^{\rm L} = \omega_{q_3}^{t_1} - \omega_{q_2}^{t_2}$. В процессах 4) энергия рассеянного поперечного фонона равна разности энергий верхней и нижней поперечных колебательных ветвей. Этот механизм приводит к зависимости скорости релаксации длинноволновых поперечных фононов вида $\nu_{\mathrm{TTT}}^{\lambda} \sim q^2 T^3$, которая менее эффективна в длинноволновом приближении, чем для механизма Ландау–Румера: $v_{TLL}^{\lambda} \sim qT^4$ [3]. Далее приведены расчеты скоростей релаксации медленных квазипоперечных фононов для механизмов SSS и SFF в кубических кристаллах. Это позволит определить полную скорость релаксации медленных квазипоперечных фононов в длинноволновом приближении. Других вариантов релаксации (ST)-моды, приводящих к зависимости типа Ландау-Румера, нет.

Исходное выражение для скорости релаксации фононов с поляризацией λ₁ имеет вид [7]

$$\begin{split} \nu_{\rm phN}(q_1,\lambda_1) &= \frac{\pi\hbar^4}{(2\rho k_{\rm B}T)^3} \frac{1}{V} \\ \times \sum_{\substack{\mathbf{q}_2\mathbf{q}_3\\\lambda_2\lambda_3}} \frac{\operatorname{sh}\left(\frac{z_1}{2}\right) \cdot \delta_{\mathbf{q}_1+\mathbf{q}_2+\mathbf{q}_3,\mathbf{0}}}{z_1 z_2 z_3 \operatorname{sh}\left(\frac{z_2}{2}\right) \operatorname{sh}\left(\frac{z_3}{2}\right)} \left| V_{\mathbf{q}_1\mathbf{q}_2\mathbf{q}_3}^{\lambda_1\lambda_2\lambda_3} \right|^2 \\ \times \left\{ 2\delta(\omega_{q_1\lambda_1} + \omega_{q_2\lambda_2} - \omega_{q_3\lambda_3}) + \delta(\omega_{q_1\lambda_1} - \omega_{q_2\lambda_2} - \omega_{q_3\lambda_3}) \right\}. \end{split}$$

Здесь ρ — плотность, V — нормировочный объем, T — температура, поляризация λ принимает два значения t_1 и t_2 , $z_n = \hbar \omega_{qn}^{\lambda n} / k_B T$. В выражении (2) мы учитываем только первое слагаемое в фигурных скобках, которое соответствует слиянию двух поперечных фононов и рождению поперечного фонона. Процессы распада поперечного фонона на два поперечных не рассматриваются — они могут быть существенны лишь для тепловых и высокочастотных фононов.

Спектр фононов с поляризацией λ и с волновым вектором, величина которого гораздо меньше дебаевского волнового вектора q_d , в модели анизотропного континуума может быть представлена в виде

$$\omega_q^{\lambda} = S_{\lambda}(\theta, \varphi)q. \tag{3}$$

Анизотропия спектра определяется анизотропией фазовой скорости фононов $S_{\lambda}(\theta, \varphi)$, зависящей от угловых переменных θ и φ вектора **q**. В системе координат, связанной с ребрами куба, имеем [14]

$$S_{\lambda}(\theta, \varphi) = \sqrt{\frac{c_{44}}{\rho}} \left(1 + \frac{c_{11} - c_{44}}{c_{44}} \varepsilon_{\lambda} \right)^{1/2}, \quad \varepsilon_{t_{1},t_{2}} = \frac{1}{3} + Z_{t_{1},t_{2}},$$
$$Z_{t_{1},t_{2}} = \frac{2}{3} r \cos\left(\frac{Q}{3} \mp \frac{2\pi}{3}\right), \quad Q = \arccos q,$$
$$q = \left\{ \frac{1 + 4.5(k^{2} - 1)\xi + 13.5\eta(1 - k)^{2}(1 + 2k)}{\sqrt{(1 + 3(k^{2} - 1)\xi)^{3}}} \right\},$$
$$r = \sqrt{1 + 3(k^{2} - 1)\xi}, \quad k = \frac{c_{12} + c_{44}}{c_{11} - c_{44}}, \quad (4)$$

где c_{ij} — упругие модули второго порядка, $\xi = n_1^2 n_2^2 + n_1^2 n_3^2 + n_2^2 n_3^2$ и $\eta = n_1^2 n_2^2 n_3^2$ — кубические гармоники, а **n** = **q**/*q* = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) — единичный волновой вектор фонона. Индексы t_1 и t_2 соответствуют "быстрой" (верхней) и "медленной" (нижней) поперечным колебательным модам. Векторы поляризаций фононов различных колебательных ветвей определяются выражениями [14]

$$e_{j}^{\lambda} = \frac{1}{A_{\lambda}} \left\{ \frac{n_{j}}{\psi_{j}^{\lambda}} \right\}, \quad A_{\lambda} = \pm \sqrt{\sum_{j} \frac{n_{j}^{2}}{\left(\psi_{j}^{\lambda}\right)^{2}}},$$
$$(\mathbf{e}^{\lambda} \mathbf{n}) = \frac{1}{A_{\lambda}} \sum_{j} \frac{n_{j}^{2}}{\psi_{j}^{\lambda}}, \quad \psi_{j}^{\lambda} = \varepsilon_{\lambda} + (k-1)n_{j}^{2}. \tag{5}$$

Как видно из выражений (4) и (5), именно параметр *k* – 1 характеризует влияние упругой анизотропии на спектр и векторы поляризации колебательных мод кубических кристаллов. Анализ, проведенный в [14], показал, что вклад продольных компонент в квазипоперечные моды не является малым. Его максимальные значения, согласно [14], составляют 16.5% для Ge, 10% для Si и 8% для алмаза, а в кристаллах KCl — до 27%. Поэтому далее при расчете скоростей релаксации учтем вклад продольной компоненты в поперечно-продольные колебания в линейном по этой компоненте приближении. Для определения скорости $S_{\lambda}(\theta_3, \varphi_3)$ из закона сохранения импульса выразим угловые переменные θ_3 и φ_3 вектора \mathbf{q}_3 через угловые переменные θ_1 , φ_1 и θ_2 , φ_2 волновых векторов \mathbf{q}_1 и \mathbf{q}_2 и определим соответствующие кубические гармоники

$$\xi_3 = (1 - \psi_3)\psi_3 + \psi_4^2, \quad \eta_3 = \psi_3\psi_4^2,$$

$$\psi_3 = (\cos\theta_3)^2 = (\cos\theta_2 + y\cos\theta_1)^2/(1 - y^2 + 2y\cos\theta_{12}),$$

$$y = q_1/q_2, \tag{6}$$

 $\psi_4 = (\sin \theta_3)^2 \sin \varphi_3 \cos \varphi_3 = \frac{(\sin \theta_2 \sin \varphi_2 + y \sin \theta_1 \sin \varphi_1)}{(1 + y^2 + 2y \cos \theta_{12})}$

 $\times (\sin\theta_2 \cos\varphi_2 + y \sin\theta_1 \cos\varphi_1),$

 $\cos\theta_{12} = (\mathbf{n}_1\mathbf{n}_2) = \sin\theta_1\cos(\varphi_2 - \varphi_1)\sin\theta_2 + \cos\theta_1\cos\theta_2.$

После несложных вычислений для механизмов релаксации ТТТ получим

$$\nu_{\rm TTT}^{\lambda} = B_{\rm TTT}^{\lambda} z_1 T^5,$$

$$B_{\text{TTT}}^{\lambda}(z_{1}, T, \theta_{1}, \varphi_{1}) = B_{0\text{TTT}}^{\lambda}J_{\text{TTT}}^{\lambda}(z_{1}, T, \theta_{1}, \varphi_{1}), \quad z_{1}^{\lambda} = \frac{\hbar\omega_{q1}^{\lambda}}{k_{B}T},$$

$$B_{0\text{TTT}}^{t_{2}}(\theta_{1}, \varphi_{1}) = \frac{\pi^{3}k_{B}^{5}}{15\hbar^{4}\rho^{3}S_{t_{2}}(\theta_{1}, \varphi_{1})(S_{100}^{t})^{8}}, \quad S_{100}^{t} = \left(\frac{c_{44}}{\rho}\right)^{1/2},$$

$$J_{\text{TTT}}^{\lambda}(z_{1}, T) = \frac{15}{16\pi^{4}} \left\{\frac{\mathrm{sh}(0.5z_{1})}{0.5z_{1}}\right\} \sum_{\lambda_{2}\lambda_{3}} \int_{0}^{z_{d}^{L}} dz_{2}F(z_{1}, z_{2})$$

$$\times \int_{-1}^{1} dx \frac{1}{\pi} \int_{0}^{2\pi} d\varphi_{2}\delta(\cos\theta_{12} - S_{\lambda_{1}\lambda_{2}\lambda_{3}}^{**}) \frac{I_{\text{TTT}}^{\lambda_{1}\lambda_{2}\lambda_{3}}(\theta_{2}, \varphi_{2})}{\left(\tilde{S}_{2}^{\lambda_{2}}\right)^{6} \left(\tilde{S}_{3}^{\lambda_{3}}\right)^{2}}. \quad (7)$$

Здесь

$$F(z_1, z_2) = z_2^4 \left[\operatorname{sh}\left(\frac{z_2}{2}\right) \operatorname{sh}\left(\frac{z_1 + z_2}{2}\right) \right]^{-1},$$

$$z_2 = \frac{\hbar \omega_{q_2}^{\lambda_2}}{k_{\mathrm{B}}T}, \quad x = \cos\theta_2,$$

$$S_{\lambda_1\lambda_2\lambda_3}^{**} = \frac{\tilde{S}_1^{\lambda_1} \tilde{S}_2^{\lambda_2}}{\left(\tilde{S}_3^{\lambda_3}\right)^2} + \left[\left(\frac{\tilde{S}_2^{\lambda_2}}{\tilde{S}_3^{\lambda_3}}\right)^2 - 1 \right] \frac{1}{2y} + 0.5y \left[\left(\frac{\tilde{S}_2^{\lambda_2}}{\tilde{S}_3^{\lambda_3}}\right)^2 - 1 \right],$$

$$\tilde{S}_1^{\lambda_1} = \frac{S_{\lambda_1}}{S_{100}'},$$

 $z_d^{\lambda} = \frac{\hbar \omega_d^{\lambda}}{k_B T}, \ \omega_d^{\lambda}$ — дебаевская частота для поперечных фононов. В точном выражении для матричного элемента трехфононных процессов рассеяния [20] учтем только члены, линейные по продольным компонентам квазипоперечных колебаний, а слагаемыми, пропорциональными квадратичным комбинациям величин (e₁n₁), (e₂n₂), (e₃n₃), пренебрежем. Погрешность этого приближения составляет порядка 1% для кристаллов Ge, InSb, GaSb и GaAs и менее 1% для Si и алмаза. Тогда для квадрата матричного элемента найдем

$$\begin{split} I_{\mathrm{TTT}}^{\lambda_1\lambda_2\lambda_3}(\theta_1,\varphi_1,\theta_2,\varphi_2) &= \left(2q_1q_2^2\right)^{-2} \left|V_{q_1q_2q_3}^{\lambda_1\lambda_2\lambda_3}\right|^2 \\ &= \frac{1}{4} \bigg\{ \tilde{c}_{111} \sum_i e_{1i}e_{2i}e_{3i}n_{1i}n_{2i}(n_{2i} + yn_{1i}) \\ &+ \tilde{c}_{112} \sum_i \Big[e_{1i}e_{2i}n_{1i}n_{2i}\frac{q_3}{q_2}(\mathbf{e}_3\mathbf{n}_3) + e_{1i}e_{3i}n_{1i} \\ &\times (n_{2i} + yn_{1i})(\mathbf{e}_2\mathbf{n}_2) + e_{2i}e_{3i}n_{2i}(n_{2i} + yn_{1i})(\mathbf{e}_1\mathbf{n}_1) \Big] \\ &\times \tilde{c}_{155} \sum_i \Big[e_{1i}e_{2i}e_{3i}(n_{1i}(1 + 2y\cos\theta_{12}) \\ &+ n_{2i}(y + 2\cos\theta_{12})) + e_{1i}e_{2i}(n_{2i} + yn_{1i})[n_{1i}(\mathbf{e}_3\mathbf{n}_2) \\ &+ n_{2i}(\mathbf{e}_3\mathbf{n}_1) \Big] + e_{1i}e_{3i}n_{2i}\left[n_{1i}\big[(\mathbf{e}_2\mathbf{n}_2) + 2y(e_{2n})\big] \right] \\ &+ n_{2i}(\mathbf{e}_2\mathbf{n}_1) \Big] + e_{2i}e_{3i}n_{1i}\left[n_{2i}(2(\mathbf{e}_1\mathbf{n}_2) + y(\mathbf{e}_1\mathbf{n}_2)) \\ &+ yn_{1i}(\mathbf{e}_1\mathbf{n}_2) \Big] \Big] + (\tilde{c}_{155} - \Delta C) \sum_i n_{1i}n_{2i}(n_{2i} + yn_{1i}) \\ &\times \left[e_{1i}(\mathbf{e}_2\mathbf{e}_3) + e_{2i}(\mathbf{e}_1\mathbf{e}_3) + e_{3i}(\mathbf{e}_1\mathbf{e}_2) \right] + (c_{144} + c_{456}) \\ &\times \left[y(\mathbf{e}_1\mathbf{n}_1)(\mathbf{e}_2\mathbf{n}_1)(\mathbf{e}_3\mathbf{n}_2) + (\mathbf{e}_2\mathbf{n}_2)(\mathbf{e}_3\mathbf{n}_1)(\mathbf{e}_1\mathbf{n}_3) \\ &+ \frac{q_3}{q_2}(\mathbf{e}_3\mathbf{n}_3)(\mathbf{e}_1\mathbf{n}_2)(\mathbf{e}_2\mathbf{n}_1) \right] + (c_{12} + c_{144}) \\ &\times \left[(\mathbf{e}_2\mathbf{e}_3)(\mathbf{e}_1\mathbf{n}_1)(1 + y\cos\theta_{12}) + (\mathbf{e}_1\mathbf{e}_3)(\mathbf{e}_2\mathbf{n}_2) \\ &+ (c_{44} + c_{456}) \left[(\mathbf{e}_2\mathbf{e}_3)(\mathbf{e}_1\mathbf{n}_2) \right] (y + 2\cos\theta_{12}) \\ &+ y(\mathbf{e}_1\mathbf{n}_1)\cos\theta_{12} \right] + (\mathbf{e}_1\mathbf{e}_2) \left[(\mathbf{e}_3\mathbf{n}_1)(1 + y\cos\theta_{12}) \\ &+ (\mathbf{e}_3\mathbf{n}_2)(y + \cos\theta_{12}) \right] + (\mathbf{e}_1\mathbf{e}_3)((\mathbf{e}_2\mathbf{n}_1) \\ &\times (1 + 2y\cos\theta_{12}) + (\mathbf{e}_2\mathbf{n}_2)\cos\theta_{12}) \right] \bigg\}^2, \tag{8}$$

где

850

$$y = \frac{q_1}{q_2} = \frac{z_1}{z_2} \frac{\tilde{S}_2^{\lambda_2}}{\tilde{S}_1^{\lambda_1}}, \quad \tilde{c}_{112} = c_{112} - c_{123} - 2c_{144},$$
$$\tilde{c}_{155} = c_{155} - c_{144} - 2c_{456},$$
$$\tilde{c}_{111} = c_{111} - 3c_{112} + 2c_{123} + 12c_{144} - 12c_{155} + 16c_{456}$$

$$\Delta C = c_{12} + 2c_{44} - c_{11}, \tag{9}$$

 c_{ijk} — термодинамические модули упругости третьего порядка, $\mathbf{e}_{1,2,3}$ — векторы поляризации. Формулы (6)-(9) позволяют рассчитать скорости релаксации квазипоперечных фононов для всех вариантов релаксации в механизмах ТТТ. Отметим, что слагаемые, содержащие модули упругости третьего порядка \tilde{c}_{111} , \tilde{c}_{112} , \tilde{c}_{155} и ΔC , соответствуют анизотропному рассеянию. Эти члены отличают кубические кристаллы от изотропной среды: они обращаются в нуль при переходе к модели изотропной среды. Остальные слагаемые в формуле (8) соответствуют изотропному рассеянию.

В длинноволновом пределе $y \ll 1$ $(q_1 \ll q_2, q_3)$ при температурах, гораздо меньших температуры Дебая, интеграл по z_2 точно вычисляется. Тогда для скоростей релаксации фононов в процессах SSS $(\lambda_1 = t_2 \text{ и } \lambda_2 = \lambda_3 = t_2)$ и SFF $(\lambda_1 = t_2 \text{ и } \lambda_2 = \lambda_3 = t_1)$ получим

$$\nu_{\text{TTT}}^{t_2} = B_{\text{TTT}}^{t_2} z_1 T^5, \quad B_{\text{TTT}}^{t_2}(\theta_1, \varphi_1) = B_{0\text{TTT}}^{t_2} J_{\text{TTT}}^{t_2}(\theta_1, \varphi_1)
= B_{0\text{TTT}}^{t_2} \Big(J_{\text{SSS}}^{t_2}(\theta_1, \varphi_1) + J_{\text{SFF}}^{t_2}(\theta_1, \varphi_1) \Big),$$
(10)

$$J_{\rm TTT}^{t_2}(\theta_1, \varphi_1) = \sum_{\lambda_2} \int_{-1}^{1} dx \frac{1}{\pi} \int_{0}^{2\pi} d\varphi_2 \delta\left(\cos \theta_{12} - S_{\lambda_1 \lambda_2 \lambda_2}^{**}\right)$$

$$\times \frac{I_{\text{TTT}}^{t_2 \lambda_2 \lambda_2}(\theta_1, \varphi_1, \theta_2, \varphi_2)}{\left(\tilde{S}_2^{\lambda_2}\right)^8}, \quad x = \cos \theta_2, \tag{11}$$

$$S_{t_{2}\lambda_{2}\lambda_{2}}^{**} = \frac{\tilde{S}_{1}^{t_{2}}}{\tilde{S}_{2}^{\lambda_{2}}} - \Delta_{\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}),$$

$$\Delta_{\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) = \lim_{y \to 0} \left\{ \frac{1}{y} \left[\frac{\tilde{S}_{3}^{\lambda_{2}} - \tilde{S}_{2}^{\lambda_{2}}}{\tilde{S}_{2}^{\lambda_{2}}} \right] \right\}.$$
(12)

Здесь уместно отметить, что для процессов релаксации (1) и (2) величина Δ_{λ_2} играет важную роль: для механизма SSS она обеспечивает возможность взаимодействия неколлинеарных фононов, а для механизма SFF существенно расширяет область углов, в которых длинноволновые фононы моды t_2 могут рассеиваться на тепловых фононах верхней колебательной моды. Проведенные оценки показали, что для направлений типа [001] ($\theta_1 = 0, \ \varphi_1 = 0$) и [101] ($\theta_1 = \pi/4, \ \varphi_1 = 0$) максимальные величины Δ_{λ_2} составляют приблизительно 0.6 для кристаллов Ge и InSb и 0.18 для алмаза. Поэтому можно ожидать, что в таких упругоанизотропных кристаллах, как Ge и InSb ($k \cong 1.8$), механизмы TTT будут более существенны, чем для алмаза (k = 1.4). В длинноволновом приближении для процессов рассеяния (1) и (2) при $\mathbf{n}_2 \cong \mathbf{n}_3$ и $\lambda_2 = \lambda_3$ имеем $\mathbf{e}_2 \cong \mathbf{e}_3$. При этом выражение (8) значительно упрощается

$$I_{\text{TTT}}^{\lambda_{1}\lambda_{2}\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) = \frac{1}{4} \left\{ \tilde{c}_{111} \sum_{i} e_{1i} e_{2i}^{2} n_{1i} n_{2i}^{2} + \tilde{c}_{112} \sum_{i} [2e_{1i} e_{2i} n_{1i} n_{2i} (e_{2} n_{2}) + e_{2i}^{2} n_{2i}^{2} (\mathbf{e}_{1} \mathbf{n}_{1})] + \tilde{c}_{155} \sum_{i} [e_{1i} e_{2i}^{2} (n_{1i} + 2n_{2i} \cos \theta_{12}) + 2e_{1i} e_{2i} n_{2i} \times [n_{1i} (\mathbf{e}_{2} \mathbf{n}_{2}) + n_{2i} (\mathbf{e}_{2} \mathbf{n}_{1})] + 2e_{2i}^{2} n_{1i} n_{2i} (\mathbf{e}_{1} \mathbf{n}_{2})] + (\tilde{c}_{155} - \Delta C) \sum_{i} [n_{1i} n_{2i}^{2} (e_{1i} + 2e_{2i} (\mathbf{e}_{1} \mathbf{e}_{2}))] + 2(c_{144} + c_{456}) (\mathbf{e}_{2} \mathbf{n}_{2}) (\mathbf{e}_{2} \mathbf{n}_{1}) (\mathbf{e}_{1} \mathbf{n}_{2}) + (c_{12} + c_{144}) \times [(\mathbf{e}_{1} \mathbf{n}_{1}) + 2(\mathbf{e}_{1} \mathbf{e}_{2}) (\mathbf{e}_{2} \mathbf{n}_{2}) \cos \theta_{12}] + 2(c_{44} + c_{456}) \times ((\mathbf{e}_{1} \mathbf{n}_{2}) \cos \theta_{12} + (\mathbf{e}_{2} \mathbf{n}_{2}) \cos \theta_{12}] + 2(c_{44} + c_{456}) \times ((\mathbf{e}_{1} \mathbf{n}_{2}) \cos \theta_{12} + (\mathbf{e}_{2} \mathbf{n}_{2}) \cos \theta_{12}] \right\}^{2}. (13)$$

В приближении чистых мод $(\mathbf{e}_2\mathbf{n}_2)=(\mathbf{e}_1\mathbf{n}_1)=0$, рассмотренном в [12], имеем

$$I_{\text{TTT}}^{\lambda_{1}\lambda_{2}\lambda_{2}}(\theta_{1},\varphi_{1},\varphi_{2},\varphi_{2}) = \frac{1}{4} \bigg\{ \tilde{c}_{111} \sum_{i} e_{1i} e_{2i}^{2} n_{1i} n_{2i}^{2} \\ + \tilde{c}_{155} \sum_{i} [e_{1i} e_{2i}^{2} (n_{1i} + 2n_{2i} \cos\theta_{12}) + 2e_{1i} e_{2i} n_{2i}^{2} \\ \times (\mathbf{e}_{2}\mathbf{n}_{1}) + 2e_{2i}^{2} n_{1i} n_{2i} (\mathbf{e}_{1}\mathbf{n}_{2})] + (\tilde{c}_{155} - \Delta C) \\ \times \sum_{i} n_{1i} n_{2i}^{2} [e_{1i} + 2e_{2i} (\mathbf{e}_{1}\mathbf{e}_{2})] + 2(c_{44} + c_{456}) \\ \times [(\mathbf{e}_{1}\mathbf{n}_{2}) \cos\theta_{12} + (\mathbf{e}_{1}\mathbf{e}_{2})(\mathbf{e}_{2}\mathbf{n}_{1})] \bigg\}^{2}.$$
(14)

При переходе к модели изотропной среды [10] слагаемые, содержащие модули упругости третьего порядка \tilde{c}_{111} , \tilde{c}_{155} и ΔC , обращаются в нуль, поэтому в (14) остается только последнее слагаемое. Следует отметить, что для рассеяния коллинеарных фононов $\mathbf{n}_1 = \mathbf{n}_2$, и это слагаемое тождественно обращается в нуль, поскольку в изотропных средах распространяются чистые моды, для которых величины $(\mathbf{e}_2\mathbf{n}_2) = (\mathbf{e}_1\mathbf{n}_1) = \mathbf{0}$. Итак, при рассеянии коллинеарных фононов в изотропных средах квадрат матричного элемента тождественно обращается в нуль для произвольного направления волнового вектора фонона. Нетрудно убедиться, что для кубических кристаллов выражение (13) обращается в нуль при рассеянии коллинеарных фононов в направлениях [001] и [101]. Для этого достаточно в (13) подставить выражения для векторов поляризации (так, например, в направлении [101] $\mathbf{e}_{q_1}^{t_1} = (0, 1, 0), \ \mathbf{e}_{q_1}^{t_2} = (1/\sqrt{2}, 0, -1/\sqrt{2}))$ и воспользоваться условием $\mathbf{n}_1 = \mathbf{n}_2$. Однако для других направлений матричный элемент оказывается отличным

от нуля. Так, например, для волновых векторов, лежащих в плоскости грани куба, квадраты матричных элементов для механизмов релаксации SSS ($I_{TTT}^{t_2 t_2 t_2}(\theta_1, 0, \theta_1, 0)$) и SFF ($I_{TTT}^{t_2t_1t_1}(\theta_1, 0, \theta_1, 0)$) при рассеянии коллинеарных фононов отличны от нуля при $heta_1 \neq 0, \pi/4$. В противоположность этому во всех кристаллах второй группы (в том числе в KCl и NaCl) для волновых векторов в плоскости грани куба медленная мода ST является чисто поперечной модой с вектором поляризации, перпендикулярным рассматриваемой грани куба (см. [14]), и квадрат матричного элемента для механизмов релаксации SSS и SFF равен нулю при всех значениях угла θ_1 . Для произвольного направления волнового вектора n₁ анализ выражения (13) показал, что матричный элемент при рассеянии коллинеарных фононов в механизмах релаксации SSS и SFF отличен от нуля, если медленная мода является квазипоперечной — с отличной от нуля продольной компонентой. Он равен нулю, если медленная мода ST является чисто поперечной модой.

Сравним выражение (14) с результатом [12]. Для частного случая [12], когда волновой вектор \mathbf{q}_1 направлен вдоль оси z ($\mathbf{n}_1 = \{0, 0, 1\}$), величины $e_{1i}n_{1i} = 0$ для всех i, а также $\cos \theta_{12} = \cos \theta_2$. При этом слагаемое, пропорциональное модулю \tilde{c}_{111} в (14), пропадает, и для квадрата матричного элемента получим

$$I_{\text{TTT}}^{\lambda_{1}\lambda_{2}\lambda_{2}}(\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}) = \left\{ \tilde{c}_{155} \sum_{i} \left[e_{1i} e_{2i}^{2} n_{2i} \cos \theta_{2} + e_{1i} e_{2i} n_{2i}^{2} (\mathbf{e}_{2} \mathbf{n}_{1}) + e_{2i}^{2} n_{1i} n_{2i} (\mathbf{e}_{1} \mathbf{n}_{2}) \right] + (\tilde{c}_{155} - \Delta C) \sum_{i} n_{1i} n_{2i}^{2} e_{2i} (\mathbf{e}_{1} \mathbf{e}_{2}) + (c_{44} + c_{456}) [(\mathbf{e}_{1} \mathbf{n}_{2}) \cos \theta_{2} + (\mathbf{e}_{1} \mathbf{e}_{2}) (\mathbf{e}_{2} \mathbf{n}_{1})] \right\}^{2}.$$
 (15)

В обозначениях [12] $\tilde{c}_{155} = P_1$, $\Delta C = 2D$ и $c_{44} + c_{456} = I$, поэтому в (15) для механизмов ТТТ входят те же модули упругости третьего порядка, что и в [12]. Однако угловые зависимости матричного элемента (15) для механизмов ТТТ оказываются существенно иными, нежели в [12]. Для того чтобы убедиться в этом, определим векторы поляризации чистых мод, соответствующих модам t_1 и t_2 в кубических кристаллах, согласно [14]

$$\mathbf{e}_{0}^{t_{1}} = (-\sin\varphi, \cos\varphi, 0),$$
$$\mathbf{e}_{0}^{t_{2}} = (\cos\theta\cos\varphi, \cos\theta\sin\varphi, -\sin\theta), \qquad (16)$$

где вектор $\mathbf{e}_{0}^{t_{1}}$ перпендикулярен плоскости $\varphi = \text{const}$, а $\mathbf{e}_{0}^{t_{2}}$ лежит в плоскости $\varphi = \text{const}$ и перпендикулярен вектору $\mathbf{n} = (\sin(\theta) \cos(\varphi), \sin(\theta) \sin(\varphi), \cos(\theta))$. Подставим выражения (16) в (15), тогда для матричных элементов в направлениях типа [001] ($\theta_{1} = 0, \varphi_{1} = 0$) получим различные выражения для процессов релаксации (1) и (2). Однако в [12] для матричного элемента во всех вариантах релаксации поперечных фононов в процессах (1) и (2) получен одинаковый результат после

Рис. 1. Зависимости угла θ_{12} между векторами падающего в направлении типа [001] ($\theta_1 = 0$, $\varphi_1 = 0$) и рассеянного (θ_2 , φ_2) фононов от угла φ_2 согласно решениям уравнений (17); для процессов релаксации SSS в кристаллах Ge (*I*), Si (*2*) и KCl (*3*); для процессов релаксации SFF в кристаллах KCl (*3'*, *3''*). Кривые *4* — для кристаллов Ge, Si, алмаза, NaCl и KCl в механизмах релаксации SSS и SFF.

двух процедур усредненения: сначала по векторам поляризации фононов, затем по углам φ_2 . Очевидно, что процедура усреднения матричного элемента по векторам поляризации фононов [12] не является корректной для кубических кристаллов, а процедура усреднения по углам φ_2 вносит неконтролируемое приближение (см. (17) и (18)).

Для вычисления интеграла $J^{\lambda}_{\text{TTT}}(\theta_1, \varphi_1)$ в (11) необходимо сначала найти корни уравнения

$$F(x, \varphi_2, \theta_1, \varphi_1) = \cos \theta_{12} - S^{**}_{\lambda_1 \lambda_2 \lambda_2}(x, \varphi_2, \theta_1, \varphi_1) = 0$$

при $-1 \le x \le 1, \quad x = \cos \theta_2$ (17)

и снять интеграл по x при помощи δ -функции (при этом корни уравнения (17) x_j становятся функциями углов φ_2 , θ_1 и φ_1). Тогда выражение для $J(\theta_1, \varphi_1)$ примет вид

$$J_{\text{TTT}}^{\lambda}(\theta_{1},\varphi_{1}) = \sum_{j} \frac{1}{\pi} \int_{0}^{2\pi} d\varphi_{2} \frac{I_{\text{TTT}}^{\lambda_{1}\lambda_{2}\lambda_{2}}(\theta_{1},\varphi_{1},x_{j},\varphi_{2})}{\left(\tilde{S}_{2}^{\lambda_{2}}\right)^{8}|F_{j}^{1}|},$$
$$F_{j}^{1} = \frac{dF(x,\varphi_{2},\theta_{1},\varphi_{1})}{dx}\Big|_{x=x_{j}(\varphi_{2},\theta_{1},\varphi_{1})}.$$
(18)

Очевидно, что при учете кубической анизотропии в законе сохранения энергии эта процедура может быть проведена только численным образом. Численный анализ уравнения (17) показал, что для медленной поперечной моды в процессах релаксации SSS ($\lambda_1 = t_2$ и $\lambda_2 = t_2$) и SFF ($\lambda_1 = t_2$ и $\lambda_2 = t_1$) оно имеет решения и для неколлинеарных фононов. Как видно из рис. 1, в направлениях типа [001] ($\theta_1 = 0$, $\varphi_1 = 0$) для процессов релаксации

SSS в кристаллах Ge и Si существуют два решения: одно из них соответствует взаимодействию коллинеарных фононов ($\theta_{12} = \theta_2 = 0$, рис. 1, кривая 4), другое неколлинеарных фононов (рис. 1, кривые 1, 2). Для процессов релаксации SFF в этих кристаллах существует только решение, соответствующее взаимодействию коллинеарных фононов (рис. 1, кривые 4). Для кристаллов алмаза и NaCl с меньшей анизотропией гармонической энергии в процессах релаксации SSS и SFF в направлениях типа [001] могут принимать участие только коллинеарные фононы (рис. 1, кривые 4). В более анизотропных кристаллах КСІ для механизмов релаксации SSS и SFF закон сохранения энергии допускает взаимодействие как коллинеарных (рис. 1, кривые 4), так и неколлинеарных фононов (рис. 1, кривые 3, 3' и 3''). Причем для обоих механизмов релаксации существуют по три решения. Проведенный анализ показал, что доминирующий вклад в скорости релаксации SSS и SFF вносит взаимодействие неколлинеарных фононов. В направлениях типа [101] $(\theta_1 = \pi/4, \ \varphi_1 = 0)$ решения, соответствующие взаимодействию коллинеарных фононов, существуют только для механизма SSS; для механизма SFF в рассмотренных кристаллах они отсутствуют.

Как показано в [18], имеется более простой вариант расчета скоростей релаксации фононов, который позволяет избавиться от процедуры нахождения корней уравнения (17) $F(x, \varphi_2, \theta_1, \varphi_1) = 0$. Однако для этого требуется вычисление двукратного интеграла $J^{\lambda}_{\text{TTT}}(\theta_1, \varphi_1)$ вместо однократного. Он заключается в замене δ -функции, входящей в выражение (12а), на ее представление в виде предельного перехода от лоренцовской или гауссовской функций

$$\delta(F(x,\varphi_2,\theta_1,\varphi_1)) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \frac{\varepsilon}{\left(F(x,\varphi_2,\theta_1,\varphi_1)\right)^2 + \varepsilon^2},$$

$$\delta((x,\varphi_2,\theta_1,\varphi_1)) = \lim_{\varepsilon \to 0} \frac{1}{2\sqrt{\pi\varepsilon}}$$

$$\times \exp\left(-\left(F(x,\varphi_2,\theta_1,\varphi_1)\right)^2/4\varepsilon\right). \quad (19)$$

Численный анализ показал, что обе аппроксимации дают одинаковый результат, но гауссовское приближение б-функции позволяет сократить время расчета скоростей релаксации в 2 раза, поскольку на крыльях она убывает существенно быстрее, чем лоренцовская. Отметим, что вычисленные величины $\nu_{\text{TLL}}^{\lambda}(\theta_1, \phi_1)$ для механизма Ландау-Румера в варианте с затуханием согласуются с точными вычислениями в пределах погрешности, не превышающей 0.1% при $\varepsilon = 10^{-4}$ [18]. Дело в том, что для механизма Ландау-Румера величина $S_{\text{TLL}}^{**}(x, \varphi_2, \theta_1, \varphi_1) \leq 1$ всегда меньше или равна единице. Закон сохранения энергии выполняется как в изотропном приближении, так и при точном учете кубической анизотропии. Для этого механизма величина $\Delta_{\rm L}(\theta_1, \phi_1, \theta_2, \phi_2)$ является плавной функцией углов, и уравнение (17) для различных значений θ_1 и ϕ_1 имеет либо одно, либо два решения, а интервалы значений

углов φ_2 , в которых корни имеют место, достаточно велики [17]. В отличие от этого случая для механизмов SFF и SSS знакопеременная функция Δ_{λ_2} резко меняется как функция углов θ_2 и φ_2 в некоторых интервалах изменения θ_1 ($\varphi_1 = 0, \pi/4$). Число корней уравнения (17) значительно превышает единицу, а интервалы значений углов φ_2 , в которых некоторые из корней имеют место, малы. При $\varphi_2 = \pi/4$ и $\theta_2 = \theta_{111}$ функция $\Delta_{t_2}(\theta_1, \varphi_1, \theta_2, \varphi_2)$ имеет конечный разрыв, связанный с наличием точки пересечения спектров квазипоперечных мод, а функция $\frac{dF(x, \varphi_2, \theta_1, \varphi_1)}{dx}$ претерпевает уже беско-нечный разрыв в этой точке. В связи с отмеченными обстоятельствами при численном интегрировании (18) с использованием процедуры вычисления корней функция $v_{\text{SSS}}^{t_2}(\theta_1, \varphi_1)$ в некоторых узких интервалах углов θ_1 имеет вид "гребенки". Поэтому введение малого, но конечного затухания фононных состояний для механизма SSS является необходимой процедурой усреднения. В идеальных кристаллах затухание фононных состояний обусловлено ангармоническими процессами рассеяния. Как показали экспериментальные исследования [21–23], ангармонические процессы вносят доминирующий вклад в коэффициенты поглощения ультразвука при *T* > 10 K. При $T \sim 100 \,\mathrm{K}$ и $\omega \sim 1 \,\mathrm{GHz}$ параметр $\omega_q^\lambda \tau_2 \approx 1$, а при более высоких температурах происходит переход от режима Ландау–Румера $\omega_a^{\lambda} \tau_2 < 1$ к режиму Ахиезера $\omega_q^{\lambda} \tau_2 > 1$ [24]. При этом зависимости коэффициентов поглощения ультразвука от частоты и температуры качественно изменяются. Оценки, полученные в работах [11-13] из измерений коэффициентов поглощения ультразвука, показывают, что значения параметра $(\omega_a^{\lambda}\tau_2)^{-1}$ в режиме ангармонического рассеяния лежат в интервале 10⁻³-10⁻¹. Физически разумным пределом параметра $\varepsilon \approx (\omega_a^\lambda \tau_2)^{-1}$ для механизма SFF является величина 10^{-6} , а для механизма SSS — $\varepsilon = 10^{-8}$. Вычисленные в этом варианте величины скоростей релаксации $v_{
m SFF}^{t_2}(heta_1, arphi_1)$ для всех кристаллов и $v_{
m SSS}^{t_2}(heta_1, arphi_1)$ для кристаллов второй группы согласуются с расчетами по формулам (17) и (18) в пределах погрешности, не превышающей 1%. Для кристаллов первой группы величины $v_{SSS}^{t_2}(\theta_1, \phi_1)$, рассчитанные с учетом затухания $(\varepsilon = 10^{-8})$, согласуются с расчетами по формулам (17) и (18) только после учета вклада, обусловленного коллинеарными фононами. В этом случае для механизма SSS максимальная погрешность не превышает 10%. Исключение из этого правила представляет направление [001]: для рассеяния коллинеарных фононов ($\theta_{12} = \theta_2 = 0$) результаты расчетов $\nu_{SSS}^{t_2}(0,0)$ и $\nu_{SFF}^{t_2}(0,0)$ зависят от величины параметра затухания. Дело в том, что для этого случая квадрат матричного элемента (13) тождественно обращается в нуль. Поэтому при точном выполнении закона сохранения энергии скорости релаксации $v_{SSS}^{t_2}(0,0)$ и $\nu_{\text{SFF}}^{r_2}(0,0)$ обращаются в нуль, если не возникает решений, соответствующих взаимодействию неколлинеарных фононов. Однако учет малого, но конечного затухания приводит к пренебрежимо малым по сравнению со вкладом механизма Ландау-Румера, но конечным

значениям этих величин за счет малоуглового рассеяния фононов. Далее случаи взаимодействия коллинеарных и неколлинеарных фононов мы обсудим применительно к каждому из рассмотренных кристаллов.

Прежде чем переходить к анализу угловых скоростей релаксации, следует сделать несколько замечаний относительно векторов поляризации квазипоперечных мод в кубических кристаллах. Дело в том, что формулы (4) определяют компоненты векторов поляризации с точностью до знака. В определенных интервалах изменения углов θ и ϕ (для угла ϕ такой интервал равен $\pi/4$) все компоненты векторов поляризации одновременно меняют знак на противоположный (т.е. вектор е меняется на -e). Как видно из выражения (13), в матричный элемент для процессов релаксации (1) и (2) входят только квадратичные комбинации по векторам поляризации e_2 , поэтому такая смена знака не скажется на матричном элементе. Однако для других вариантов ангармонических процессов рассеяния с участием квазипоперечных фононов ситуация может быть иной. Максимальные значения продольных компонент квазипоперечных мод не превышают 17% для кристаллов Ge, GaSb, InSb и GaAs и 27% для КСІ. Однако величины и угловые зависимости компонент векторов поляризации e^{t_1} и e^{t_2} квазипоперечных мод и соответствующих им чистых мод $e_0^{t_1}$ и $e_0^{t_2}$ различаются более значительно (см. рис. 4 в [14]). В [14] показано, что для волновых векторов, лежащих в плоскостях с углом $\varphi \neq 0$, $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$, обе квазипоперечные моды являются смешанными поперечно-продольными модами с точкой вырождения в направлении [001]. Они могут быть классифицированы как "быстрые" и "медленные" моды, поскольку для них $S_{t_1}(\theta, \varphi) \ge S_{t_2}(\theta, \varphi)$. Их векторы поляризации e^{t_1} и e^{t_2} в значительной степени отличаются от векторов поляризации чистых мод $\mathbf{e}_{0}^{t_{1}}$ и $\mathbf{e}_{0}^{t_{2}}$ (см. (15)). Так, например, для кристаллов первого типа вектор поляризации быстрой квазипоперечной моды \mathbf{e}^{t_1} при $\theta \to 0$ стремится к вектору $\mathbf{e}_{0}^{l_{1}}$, т. е. к направлению, перпендикулярному плоскости $\varphi = {
m const},$ а при увеличении угла heta он отклоняется от вектора $\mathbf{e}_0^{t_1}$ и при $\theta \to \pi/2$ стремится к вектору $\mathbf{e}_0^{t_2}$, т.е. переходит в плоскость $\varphi = \text{const.}$ С другой стороны, вектор поляризации медленной моды \mathbf{e}^{t_2} при $\theta \to 0$ стремится к вектору $\mathbf{e}_{0}^{t_{2}}$, лежащему в плоскости $\varphi = \text{const}$, а при увеличении угла θ он выходит из этой плоскости и при $\theta \to \pi/2$ стремится к вектору $\mathbf{e}_0^{t_1}$, т.е. к направлению, перпендикулярному плоскости $\varphi = \text{const.}$ Чем ближе угол φ к значению $\pi/4$, тем более резко изменяются угловые зависимости компонент векторов поляризации \mathbf{e}^{t_1} и \mathbf{e}^{t_2} в окрестности угла $\theta = \theta_{111}$ (см. рис. 4 в [14]). Для волновых векторов q_1 , лежащих в диагональной плоскости ($\phi_1 = \pi/4$), в кристаллах первого типа медленная мода t_2 в области угов $0 < \theta_1 < \theta_{111}$ и $\pi - \theta_{111} < \theta_1 < \pi$ (θ_{111} — угол между осью Z и направлением [111]) является квазипоперечной модой с вектором поляризации $\mathbf{e}_{q_1}^{t_2}$, лежащим в диагональной плоскости, а в области углов $\theta_{111} < \theta_1 < \pi - \theta_{111}$ она является чистой модой с вектором поляризации, перпендикулярным диагональной плоскости ($\mathbf{e}_{q_1}^{t_2} = (-1/\sqrt{2})$,

 $1/\sqrt{2}$, 0). В кристаллах второго типа ситуация обратная [14]. Поэтому использование приближения чистых мод [11–13] может приводить к большой погрешности для угловых зависимостей скоростей релаксации в механизмах ТТТ. Далее мы покажем, что в связи с отмеченным в [14] поведением векторов поляризации на угловых зависимостях скоростей релаксации для механизмов ТТТ в направлениях типа [111] появляются резкие особенности.

3. Результаты численного анализа

Формулы (10)–(13) и (17)–(19) позволяют рассчитать коэффиценты $B_{TTT}^{t_2}(\theta_1, \varphi_1)$, которые характеризуют зависимости скоростей релаксации от направления волнового вектора квазипоперечных фононов для механизмов TTT в различных приближениях. Мы сравним вклады механизмов SSS и SFF с механизмом Ландау–Румера [18] и найдем полную скорость релаксации медленной квазипоперечной моды

$$\begin{aligned} v_{t_2}(z_1, T, \theta_1, \varphi_1) &= v_{\text{SSS}}^{t_2} + v_{\text{SFF}}^{t_2} + v_{\text{TLL}}^{t_2} = B_{t_2}(\theta_1, \varphi_1) z_1 T^5, \\ (20) \\ B_{t_2}(\theta_1, \varphi_1) &= B_{\text{SSS}}^{t_2}(\theta_1, \varphi_1) + B_{\text{SFF}}^{t_2}(\theta_1, \varphi_1) + B_{\text{TLL}}^{t_2}(\theta_1, \varphi_1) \\ &= B_{0\text{TTT}}^{t_2} \Big(J_{\text{SSS}}^{t_2}(\theta_1, \varphi_1) + J_{\text{SFF}}^{t_2}(\theta_1, \varphi_1) \Big) + B_{0\text{TLL}} J_{\text{TLL}}^{t_2}(\theta_1, \varphi_1); \\ B_{0\text{TTL}}^{t_2} &= \frac{\pi^3 k_{\text{B}}^5}{15\hbar^4 \rho^3 S_{t_2}(\theta_1, \varphi_1) \langle S_L \rangle^8}, \\ B_{0\text{TTT}}^{t_2} / B_{0\text{TLL}}^{t_2} &= \frac{\langle S_L \rangle^8}{(S_{100}^{t_0})^8} \approx \left(\frac{c_{11}}{c_{44}}\right)^4. \end{aligned}$$
(21)

Коэффициент $B_{t_2}(\theta_1, \varphi_1)$ характеризует анизотропию полной скорости релаксации моды t_2 . Соответствующие

Таблица 1. Значения термодинамических модулей упругости для исследованных кубических кристаллов (в единицах 10¹² dyn/cm²) [2,25]

Модуль упругости	Ge	Si	Алмаз	KCl	NaCl
<i>c</i> ₁₁	1.289	1.657	10.76	0.398	0.487
c ₁₂	0.483	0.638	1.25	0.062	0.124
C 44	0.671	0.796	5.758	0.0625	0.126
ΔC	0.54	0.57	2.01	-0.211	-0.11
<i>c</i> ₁₁₁	-7.10	-8.25	-62.6	-7.01	-8.8
C ₁₁₂	-3.89	-4.51	-22.6	-0.571	-0.571
C 123	-0.18	-0.64	1.12	0.284	0.284
C 144	-0.23	0.12	-6.74	0.127	0.257
C 155	-2.92	-3.10	-28.6	-0.245	-0.611
C 456	-0.53	-0.64	-8.23	0.118	0.271
\tilde{c}_{155}	-1.63	-1.9	-5.4	-0.61	-1.41
\tilde{c}_{111}	28.01	32.4	138.1	1.62	8.23
\tilde{c}_{112}	-3.25	-4.1	-10.24	-1.11	-1.37
$c_{456} + c_{44}$	0.14	0.156	-2.47	0.181	0.397
$\tilde{c}_{155} - \Delta C$	-2.17	-2.47	-7.41	-0.4	-1.3
k-1	0.87	0.67	0.4	-0.63	-0.31

Рис. 2. Угловые зависимости скоростей релаксации медленной квазипоперечной моды в кристаллах Ge (*a*), Si (*b*) и алмаза (*c*) для волновых векторов в плоскости грани куба, *1* — для механизма релаксации SSS, *2* — для механизма релаксации SFF, *3* — для механизма Ландау–Румера, *4* — полные скорости релаксации. Штриховые линии *1*' и *2*' — результаты расчетов скоростей релаксации в кристаллах Ge и Si в приближении чистых мод согласно формулам (15) и (16) для механизмов SSS и SFF соответственно.

зависимости рассчитаны для двух наиболее актуальных случаев, когда волновые вектора фононов лежат в плоскостях граней куба или в диагональных плоскостях. Далее приводятся результаты расчета с учетом малого (для механизмов SFF $\varepsilon = 10^{-6}$ и $\varepsilon = 10^{-8}$ для SSS), но конечного затухания фононных состояний в соответствии с формулами (10)–(13) и (19). В расчетах использованы экспериментально определенные значения термодинамических модулей упругости второго c_{ik} и третьего c_{ijk} порядков, взятые из работ [2,25] (табл. 1). На рис. 2 приведены результаты расчетов скоростей релаксации квазипоперечных фононов в кубических кристаллах Ge и Si для механизмов SSS и SFF в приближении чистых мод согласно формулам (15) (кривые I' и2') и при точном учете векторов поляризации (кривые I и 2). В направлениях [001] и [101] результаты приближенных расчетов скоростей релаксации $v_{SSS}^{t_2}(\theta_1, \varphi_1)$ и $v_{SFF}^{t_2}(\theta_1, \varphi_1)$ для волновых векторов фононов в плоскостях граней куба отличаются от точных менее чем в 2.5 раза. Так, например, это отношение для вели-

Кристалл	$B_{0TTT}^{t_2} \cdot 10^{24},$ cm ⁴ · dyn ⁻² · s ⁻¹ · K ⁻⁵	$B_{\rm SFF}^{t_2}(\theta_1, \varphi_1), \ {\rm s}^{-1} \cdot {\rm K}^{-5}$			$B_{\rm SSS}^{t_2}(\theta_1,\varphi_1),{\rm s}^{-1}\cdot{\rm K}^{-5}$		
	[001]	[100]	[110]	[111]	[001]	[110]	[111]
Ge	6.22	$3.1 \cdot 10^{-3}$	1.25	2.3	2.25	8.23	3.85
Si	0.83	$5.2 \cdot 10^{-4}$	0.21	0.34	0.28	0.002	0.44
Алмаз	$2.1 \cdot 10^{-4}$	$5\cdot 10^{-6}$	$1.45\cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	$3.3\cdot10^{-5}$	0	0.002
KC1	$6.3 \cdot 10^{5}$	11.02	16.36	336	18.9	56.02	360
NaCl	$2.9\cdot10^3$	0.1	8.8	49.8	0.042	2.46	63.7

Таблица 2. Значения параметров, определяющих скорости релаксации квазипоперечных фононов для механизма релаксации ТТТ

чин $v_{SSS}^{t_2}(\theta_1, \varphi_1)$ составляет 2.4 и 2.5 в направлениях типа [001] и 2.1 и 0.9 в направлениях типа [101] для кристаллов Ge и Si соответственно. Однако, как видно из сравнения кривых 1, 2 и 1', 2', использование приближения чистых мод не дает адекватного описания угловых зависимостей скоростей релаксации квазипоперечных фононов в кубических кристаллах для механизмов SSS и SFF. Оно приводит к нарушению кубической симметрии для скоростей релаксации: значения $v_{SSS}^{t_2}(\theta_1, \varphi_1)$ и $v_{
m SFF}^{t_2}(heta_1, arphi_1)$ для направлений [001] и [100] при точном учете векторов поляризации совпадают (кривые 1 и 2), тогда как в приближении чистых мод они различаются почти на порядок величины. Итак, это приближение не является корректным для количественного описания анизотропии скоростей релаксации медленных квазипоперечных мод в кубических кристаллах.

Анализируя результаты расчета, во-первых, следует отметить, что суммарный вклад механизмов релаксации SSS и SFF для всех рассмотренных кристаллов, за исключением алмаза, значительно превосходит вклад механизма Ландау-Румера либо в несколько раз, либо на один-два порядка величины в зависимости от направления (рис. 2-5). Причем механизм SSS для кристаллов с существенной анизотропией упругой энергии Ge, Si и KCl оказывается более эффективным, чем механизм SFF (табл. 2). Он в значительной мере определяет полную скорость релаксации медленной квазипоперечной моды в Ge, Si и KCl. Во-вторых, угловые зависимости скоростей релаксации медленной квазипоперечной моды в кубических кристаллах первого типа ($\Delta C > 0$, Ge, Si и алмаз) для механизмов релаксации ТТТ и Ландау-Румера качественно различаются (рис. 2). Для кристаллов первого типа (Ge, Si и алмаза) максимальные значения скоростей релаксации $v_{\text{TLL}}^{t_2}(\theta_1, \varphi_1)$ достигаются в кристаллографических направлениях типа [001], а минимальные значения — в направлениях типа [101] и [111]. В противоположность этому для механизмов релаксации ТТТ минимальные значения скоростей релаксации $\nu_{\rm SSS}^{t_2}(heta_1, \varphi_1)$ и $\nu_{
m SFF}^{t_2}(heta_1, \varphi_1)$ достигаются для направлений типа [001], а максималь-

Рис. 3. Угловые зависимости скоростей релаксации медленной квазипоперечной моды в кристаллах KCl (a) и NaCl (b) для волновых векторов в плоскости грани куба. Обозначения кривых 1-4 те же, что на рис. 2.

Рис. 4. Угловые зависимости скоростей релаксации медленной квазипоперечной моды в кристаллах Ge (a), Si (b) и алмаза (c) для волновых векторов в диагональной плоскости куба. Обозначение кривых 1-4 то же, что на рис. 2.

ные значения достигаются в кристаллографических направлениях типа [101] и [111] или в направлениях, близких к ним. Таким образом, угловые зависимости скоростей релаксации для механизмов релаксации ТТТ и Ландау–Румера в кристаллах первого типа имеют обратный характер. В кристаллах КСІ для всех направлений волнового вектора доминирующий вклад в скорость релаксации медленной квазипоперечной моды вносит механизм релаксации SSS. Он в несколько раз больше вклада механизма релаксации SFF и на два порядка превосходит вклад механизма Ландау–Румера. В противоположность этому для кристаллов NaCl в направлениях [001] доминирует вклад механизма Ландау—Румера, тогда как в широкой области углов полная скорость релаксации определяется суммарным вкладом механизомв SFF и SSS.

Следует отметить, что в значительной степени доминирующая роль механизмов релаксации SSS и SFF по сравнению с механизмом Ландау–Румера обусловлена упругими модулями второго порядка. Отношение $B_{0TTT}^{l_2}$ для механизмов релаксации TTT к коэффициенту $B_{0TLL}^{l_2}$ для механизма Ландау–Румера пропорционально

Рис. 5. Угловые зависимости скоростей релаксации медленной квазипоперечной моды в кристаллах KCl (a) и NaCl (b) для волновых векторов в диагональной плоскости куба. Обозначение кривых 1-4 то же, что на рис. 2.

отношению $(c_{11}/c_{44})^4$, которое гораздо больше единицы. Это отношение составляет 26, 32 и 16 для кристаллов первой группы Ge, Si и алмаза соответственно. Заметим, что для ионных кристаллов KCl и NaCl значения коэффициентов $B_{0TTT}^{t_2}$ превосходят $B_{0TLL}^{t_2}$ в 715 и 154 раза соответственно (табл. 2–4). Столь значительное превы-

Таблица 3. Значения параметров, определяющих скорости релаксации квазипоперечных фононов для механизма Ландау–Румера [17]

Кристалл	$\begin{array}{c} B_{0\mathrm{TLL}}^{t_2} \cdot 10^{24},\\ \mathrm{cm}^4 \cdot \mathrm{dyn}^{-2} \cdot \mathrm{s}^{-1} \cdot \mathrm{K}^{-5} \end{array}$	$B_{\mathrm{TLL}}^{t_2}(\theta_1,\varphi_1),\mathbf{s}^{-1}\cdot\mathbf{K}^{-2}$		
	[001]	[100]	[110]	[111]
Ge	0.239	0.87	0.15	0.24
Si	0.026	0.071	0.019	0.023
Алмаз	$1.3 \cdot 10^{-5}$	0.0057	0.00054	0.0017
KCl	88.67	0.59	0.28	79.7
NaCl	19.32	0.93	1.3	26.2

Таблица 4. Значения параметров, определяющих полные скорости релаксации квазипоперечных фононов

Кристалл	$\left(\langle S_{t_1}\rangle/\langle S_{t_2}\rangle\right)^8$	$B_{0\mathrm{TTT}}^{t_2}/B_{0\mathrm{TLL}}^{t_2}$	$B^{t_2}(\theta_1,\varphi_1),\mathbf{s}^{-1}\cdot\mathbf{K}^{-5}$			
			[001]	[110]	[111]	
Ge	2.8	26	3.12	9.63	6.37	
Si	2.5	32	0.35	0.23	0.798	
Алмаз	1.5	16	0.0058	0.00199	0.0055	
KCl	5.96	715	30.51	72.66	775.7	
NaCl	2.0	154	1.076	12.57	139.96	

шение коэффициента $B_{0TTT}^{t_2}$ над $B_{0TLL}^{t_2}$, характеризующим скорость релаксации в механизме Ландау-Румера, для кристалла КСІ связано с аномально малыми величинами модулей упругости второго порядка c_{ik}, определяющих скорости распространения поперечных фононов (табл. 1). Для кристаллов первого типа значения скоростей релаксации $v_{SSS}^{t_2}(\theta_1, \varphi_1)$ и $v_{SFF}^{t_2}(\theta_1, \varphi_1)$ уменьшаются приблизительно на порядок величины при переходе от кристаллов Ge к Si и от кристаллов Si к алмазу. Это уменьшение обусловлено главным образом изменением коэффициента $B_{0TTT}^{t_2}$, который определяется упругими модулями второго порядка (табл. 2). При переходе от кристаллов Ge к Si коэффициент $B_{0TTT}^{t_2}$ уменьшается на порядок величины, а при переходе от кристаллов Si к алмазу коэффициент $B_{0TTT}^{t_2}$ уменьшается на три порядка величины. При этом два порядка величины в кристаллах алмаза компенсируются за счет больших величин упругих модулей третьего порядка, определяющих вероятность ангармонических процессов рассеяния (табл. 1).

Рассмотрим более подробно анизотропию скоростей релаксации медленной квазипоперечной моды t_2 в условиях, когда волновые векторы и векторы поляризации фононов q_1 лежат в плоскости грани куба ($\varphi_1 = 0$) (рис. 2 и 3). Как видно из рисунков, при доминирующей роли ангармонических процессов рассеяния учет одного из механизмов релаксации ТТТ или Ландау–Румера не является адекватным для количественного описания анизотропии скоростей релаксации в кубических кристаллах. Так, например, в направлениях типа [001] вклады механизмов релаксации SSS, SFF и Ландау–Румера в полные скорости релаксации для кристаллов первого

типа составляют 72.1, 0.1 и 27.8% в кристаллах Ge; 80, 0.1 и 19.9% в кристаллах Si соответственно. Как следует из решения уравнения (17), для направлений типа [001] в механизме релаксации SFF в кристаллах Ge и Si могут участвовать только коллинеарные фононы $(\theta_{12} = \theta_2 = 0)$. Квадрат матричного элемента (13) для этого случая тождественно обращается в нуль. Поэтому при точном выполнении закона сохранения энергии скорость релаксации медленной квазипоперечной моды $v_{\text{SFF}}^{t_2}(0,0)$ для этих кристаллов обращается в нуль. Однако учет малого, но конечного затухания ($\varepsilon = 10^{-6}$) приводит к пренебрежимо малому, но конечному значению $v_{\text{SFF}}^{t_2}(0, 0)$ (табл. 2). Для механизма релаксации SSS в направлениях типа [001] закон сохранения энергии допускает взаимодействие как коллинеарных, так и неколлинеарных фононов (рис. 1). Вклад в скорости релаксации от взаимодействия коллинеарных фононов пренебрежимо мал. При этом для неколлинеарных фононов в кристаллах Ge интеграл $J_{SSS}^{t_2}(0,0)$ меньше соответствующего интеграла $J_{\mathrm{TLL}}^{t_2}(0,0)$ для механизма Ландау–Румера в 10 раз, но коэффициент $B_{0TTT}^{t_2}$ превосходит $B_{0TLL}^{t_2}$ в 26 раз. Поэтому скорость релаксации $v_{SSS}^{t_2}(0, 0)$ превосходит вклад механизма Ландау–Румера в 2.6 раза.

В направлениях типа [101] ($\theta_1 = \pi/4$) для кристаллов Ge и Si скорость релаксации $\nu_{TLL}^{t_2}(\theta_1,0)$ достигает минимальных значений, тогда как доминирующий вклад в полную скорость релаксации вносят уже механизмы релаксации ТТТ (рис. 2, a и b, кривые 1, 2 и 4). Они приводят к качественному изменению угловых зависимостей $v_{t_2}(\theta_1, 0)$ по сравнению с механизмом Ландау–Румера. При этом в направлениях типа [101] для полной скорости релаксации в кристаллах Ge реализуется максимум, для Si — минимум (рис. 2, a, b, кривые 4). В этом случае вклады механизмов релаксации SSS, SFF и Ландау-Румера в полную скорость релаксации составляют 85.5, 12.9 и 1.6% в кристаллах Ge; 0.9, 91 и 8.1% в кристаллах Si соответственно. Существенное изменение вкладов механизмов релаксации SSS и SFF при переходе от кристаллов Ge к Si обусловлено уменьшением кубической анизотропии, а именно параметра k - 1 (табл. 1). При этом решение уравнения (17), соответствующее рассеянию на большие углы в кристаллах Ge, для кристаллов Si исчезает, а область существования других корней мала. Поэтому значение интеграла $J_{SSS}^{t_2}(\pi/4, 0)$ для Si становится на четыре порядка меньше, чем для Ge. Несмотря на то что коэффициент $B_{0TLL}^{t_2}$ для кристаллов Si превосходит $B_{0{
m TLL}}^{t_2}$ в 32 раза, величина $\nu_{
m SSS}^{t_2}(\pi/4,0)$ для Si оказывается меньше $v_{TLL}^{t_2}(\pi/4, 0)$ в 9 раз. Отношение значений $v_{t_2}(\pi/4, 0)$ к величинам $v_{t_2}(0, 0)$, соответствующим направлениям [001], составляют 3.1 ии 0.65 для Ge и Si соответственно (табл. 4).

Параметр кубической анизотропии k - 1 для алмаза существенно меньше, чем для кристаллов Ge, поэтому механизмы релаксации TTT для него играют меньшую

роль (рис. 2, c, кривые 1-4). В значительной степени полная скорость релаксации $v_{t_2}(\theta_1, 0)$ определяется механизмом Ландау-Румера. Однако учет механизмов релаксации SSS и SFF приводит к дополнительным особенностям в зависимости $v_{t_2}(\theta_1, 0)$ от угла θ_1 . Для направлений [001] доминирующий вклад в скорость релаксации вносит механизм Ландау-Румера. Из решений уравнения (17) для этих направлений в механизмах релаксации SSS и SFF могут участвовать только коллинеарные фононы ($\theta_{12} = 0$). Поэтому скорости релаксации $v_{\text{SSS}}^{t_2}(0,0)$ и $v_{\text{SFF}}^{t_2}(0,0)$ при точном выполнении закона сохранения энергии обращаются в нуль. Однако учет малого затухания приводит к пренебрежимо малым, но конечным значениям этих величин за счет малоуглового рассеяния. В результате для направлений [001] вклад механизма Ландау-Румера в полную скорость релаксации превышает суммарный вклад механизмов релаксации SSS и SFF в 150 раз. Полная скорость релаксации в этом направлении $v_{t_2}(0, 0)$ имеет локальный минимум. Связано это с тем, что скорость релаксации для механизма SSS достигает максимальных значений в направлениях, близких к [001] ($\theta_1 \cong \pi/2$ $n \pm 0.21$). Эти максимумы обусловлены взаимодействием неколлинеарных фононов. Несмотря на то что их величины меньше значений $\nu_{TLL}^{t_2}(0,0)$ в 2.4 раза, они приводят к появлению максимумов полной скорости релаксации $v_{t_2}(\theta_1, 0)$ при углах $\theta_1 \cong \pi/2$ $n \pm 0.17$. Их величины в 1.2 раза больше значения $v_{t_2}(0, 0)$. Скорость релаксации для механизма SFF достигает максимальных значений в направлениях типа [101] и обусловливает появление локального максимума на зависимости полной скорости релаксации $v_{t_2}(\theta_1, 0)$. Значение $v_{t_2}(\pi/4, 0)$ оказывается меньше величины $v_{t_2}(0, 0)$, соответствующей направлению [001], в 2.9 раза. Функция $v_{t_2}(\theta_1, 0)$ для алмаза достигает равных по величине минимальных значений при углах $\theta_1 \cong \pi/6$ и $\theta_1 \cong \pi/3$, которые меньше значений $v_{t_2}(0, 0)$ в 3.6 раза.

Для кубических кристаллов с отрицательной анизотропией упругих модулей второго порядка KCl и NaCl соотношения вкладов механизмов релаксации SSS и SFF в скорости релаксации фононов значительно различаются (рис. 3, a, b, кривые 1-4). Кристаллы KCl являются наиболее анизотропными из второй группы кристаллов. Для них скорости релаксации $v_{SSS}^{t_2}(0, 0)$ и $v_{SFF}^{t_2}(0, 0)$ обусловлены взаимодействием неколлинеарных фононов, а доминирующий вклад в полную скорость релаксации $v_{t_2}(\theta_1, 0)$ вносит механизм SSS. Преобладающая роль механизма релаксации SSS по сравнению SFF обусловлена тем, что в знаменатель интеграла $J_{\text{SSS}}^{t_2}(heta_1, \varphi_1)$ входит фазовая скорость медленной моды $S_{t_2}(\theta_2, \varphi_2)$ в восьмой степени, тогда как в $J_{
m SFF}^{t_2}(heta_1, arphi_1)$ — фазовая скорость быстрой моды $S_{t_1}(\theta_2, \varphi_2)$ тоже в восьмой степени (см. формулу (11)), причем $S_{t_2}(\theta_2, \varphi_2) \leq S_{t_1}(\theta_2, \varphi_2)$. В табл. 4 приведены отношения средних скоростей быстрой и медленной моды в восьмой степни для всех исследованных кристаллов. Это отношение для KCl равно шести. Поэтому неудивительно, что вклады механизмов

релаксации SSS, SFF и Ландау-Румера в полные скорости релаксации составляют 62, 36 и 2% для направлений типа [001] и 77, 22.5 и 0.5% для направлений типа [101]. Таким образом, для КСІ механизм релаксации Ландау-Румера вносит пренебрежимо малый вклад в скорость релаксации медленной квазипоперечной моды. Полная скорость релаксации $v_{t_2}(\theta_1, 0)$ в KCl достигает максимальных значений для углов $\theta_1 \cong n \pi/2 \pm 0.35$ (n = 0, 1, 2 и т.д.), а минимальных значений — для направлений типа [001], в направлениях [101] ($\theta_1 = \pi/4$) реализуется локальный минимум (рис. 3, a, кривые 4). В противоположность этому для кристаллов NaCl в направлениях [001] доминирует механизм Ландау–Румера, а в широкой области углов 0.12 < θ_1 < 1.45 полная скорость релаксации определяется механизмом SFF (рис. 3, b, кривые 2-4). Для направлений [001] в механизмах релаксации SSS и SFF могут участвовать только коллинеарные фононы ($\theta_{12} = 0$). Поэтому при точном выполнении закона сохранения энергии значения скоростей релаксации $v_{SSS}^{t_2}(0, 0)$ и $v_{SFF}^{t_2}(0, 0)$ в кристаллах NaCl обращаются в нуль. Однако при учете малого затухания их величины становятся отличными от нуля за счет малоуглового рассеяния. При этом суммарный вклад механизмов релаксации SSS и SFF в полную скорость релаксации оказывается на порядок меньше вклада механизма Ландау-Румера (табл. 3). Скорость релаксации $\nu_{\mathrm{SSS}}^{t_2}(heta_1,0)$ достигает максимальных значений в направлениях типа [101] ($\theta_1 = \pi/4$). Ее значения превосходят соответствующие величины для механизма Ландау-Румера в 1.8 раза. В кристаллах NaCl полная скорость релаксации $v_{t_2}(\theta_1, 0)$ достигает максимальных значений для углов $\theta_1 \cong n \pi/2 \pm 0.25$ (n = 0, 1, 2 и т.д.), а в направлениях [101] ($\theta = \pi/4$) реализуется локальный максимум (рис. 3, b, кривые 4). Минимальные значения полной скорости релаксации $v_{t_2}(\theta_1, 0)$ в кристаллах KCl и NaCl достигают в направлениях типа [001]. Следует отметить, что анизотропия полной скорости релаксации $v_{t_2}(\theta_1, 0)$ в значительной степени отличается от анизотропии скорости релаксации $\nu_{TLL}^{t_2}(\theta_1, 0)$ для механизма Ландау-Румера. Так, например, отношение величин $v_{t_2}(\pi/4, 0)$ и $v_{t_2}(0, 0)$ составляет 2.4 и 11.7 для КСІ и NaCl соответственно. Для механизма Ландау-Румера отношение $v_{TLL}^{t_2}(\pi/4, 0)$ и $v_{TLL}^{t_2}(0, 0)$ составляет 0.5 и 1.4 для KCl и NaCl соответственно.

Более сложный вид имеют угловые зависимости скоростей релаксации $v_{SSS}^{t_2}(\theta_1, \pi/4)$, $v_{SFF}^{t_2}(\theta_1, \pi/4)$ и $v_{t_2}(\theta_1, \pi/4)$ в кристаллах первого и второго типа для волновых векторов q_1 , лежащих в диагнональной плоскости ($\varphi_1 = \pi/4$) (рис. 4, 5). Связано это как с пересечением спектров квазипоперечных мод, так и с поведением векторов поляризации поперечных мод. Как уже отмечалось, для кристаллов первого типа медленная мода t_2 в области углов $0 < \theta_1 < \theta_{111}$ и $\pi - \theta_{111} < \theta_1 < \pi$ является квазипоперечной с вектором поляризации $\mathbf{e}_{q_1}^{t_2}$, лежащим в диагональной плоскости. А в области углов $\theta_{111} < \theta_1 < \pi - \theta_{111}$ она является чистой модой с вектором поляризации, перпендикуляр-

ным диагональной плоскости. Для кристаллов второго типа приведенные выше области углов θ_1 меняются местами (см. подробнее [14]). В связи с отмеченными обстоятельствами на угловых зависимостях скоростей релаксации $v_{SSS}^{t_2}(\theta_1, \pi/4)$, $v_{SFF}^{t_2}(\theta_1, \pi/4)$ и $v_{t_2}(\theta_1, \pi/4)$ в направлениях типа [111] появляются особенности: в кристаллах первого типа (Ge, Si и алмазе), а также для кристалла второго типа NaCl имеют место резкие локальные минимумы, тогда как в кристаллах KCl для механизма SFF реализуются абсолютный максимум, а для механизма релаксации SSS — локальный минимум.

Как видно из рис. 4, а, b, угловые зависимости скоростей релаксации $\nu_{\rm SSS}^{t_2}(\theta_1,\pi/4), \nu_{\rm SFF}^{t_2}(\theta_1,\pi/4)$ и
 $\nu_{t_2}(\theta_1,\pi/4)$ для кристаллов Ge и Si качественно подобны. Для них во всей области углов θ_1 доминирует механизм релаксации SSS, и значения полных скоростей релаксации $v_{t_2}(\theta_1, \pi/4)$ и $v_{SSS}^{t_2}(\theta_1, \pi/4)$ близки по величине (рис. 4, а, b кривые 1 и 4). Минимальные величины скоростей релаксации $v_{SSS}^{t_2}(\theta_1, \pi/4)$ и $v_{t_2}(\theta_1, \pi/4)$ достигаются для направлений типа [001], [111], в направлениях близких к [011], и при $\theta_1 \cong \pi/6$. Причем абсолютные минимумы функции $v_{t_2}(\theta_1, \pi/4)$ достигаются при углах $\theta_1 \cong \pi/6$, значения которых оказываются меньше величин $v_{t_2}(0, \pi/4)$ в 1.7 и 1.5 раза для Ge и Si соответственно. В направлениях типа [001] вклад механизма Ландау–Румера, для которого величина $\nu_{\text{TLL}}^{t_2}(\theta_1, \pi/4)$ в этом направлении имеет максимум, составляет 27.8 и 20% соответственно. В направлениях типа [111] вклад механизма Ландау-Румера существенно меньше, а вклады механизмов релаксации SSS и SFF приблизительно равны (рис. 4, a, b кривые 1-3). Максимальные значения полной скорости релаксации $v_{t_2}(\theta_1, \pi/4)$ для Ge и Si достигаются при значениях углов, близких к $\theta_1 = \pi/4$, и обусловлены механизмом релаксации SSS. Эти величины превосходят значения $\nu_{t_2}(0, \pi/4)$ в 8.8 и 9.8 для Ge и Si соответственно (рис. 4, a, b).

Для скоростей релаксации в кристаллах алмаза случаи волновых векторов, лежащих в диагональной плоскости $(\varphi_1 = \pi/4)$ (рис. 4, *c*, кривые 1-4) и в плоскости грани куба ($\phi_1 = 0$), существенно различаются. Доминирующий вклад в полную скорость релаксации в направлениях типа [001] вносит механизм Ландау-Румера, который для этого направления имеет максимальное значение. Однако полная скорость релаксации в этом направлении имеет локальный минимум. Абсолютный максимум полной скорости релаксации $v_{t_2}(\theta_1, \pi/4)$ реализуется при углах $\theta_1 \cong 0.96$ и обусловлен механизмом релаксации SSS. Его значение превосходит величину $v_{t_2}(0, \pi/4)$ приблизительно в 4 раза. При углах $\pi/2 < \theta_1 < \pi/2.4$ вклад механизма релаксации SSS обращается в нуль, а доминирующую роль играет механизм SFF. Скорость релаксации для механизма SFF достигает максимальных значений в направлениях, близких к [111]. В направлениях типа [110] ($\theta_1 \cong \pi/2$) для полной скорости релаксации реализуется минимум, а вклад механизма SFF превосходит вклад механизма Ландау-Румера в 2.5 раза. Функция $v_{t_2}(\theta_1, \pi/4)$ для алмаза имеет локальный максимум при значениях угла $\theta_1 \cong \pi/6$ и два локальных минимума при углах $\theta_1 = \theta_{111}$ и $\theta_1 \cong 0.42$.

Для волновых векторов, лежащих в диагональной плоскости ($\phi_1 = \pi/4$), анизотропия скоростей релаксации в кристаллах KCl и NaCl существенно выше, чем для волновых векторов в плоскости грани куба (рис. 5, a, b, кривые 4). Полная скорость релаксации для кристаллов KCl и NaCl достигает минимальных значений в направлениях типа [001] ($\theta_1 = 0$). Значения $v_{t_2}(0, \pi/4)$ в кристаллах KCl определяются суммарным вкладом механизмов релаксации SSS и SFF, тогда как в кристаллах NaCl — механизмом Ландау-Румера. Абсолютные максимумы полной скорости релаксации $v_{t_2}(\theta_1, \pi/4)$ обусловлены механизмом релаксации SSS и реализуются при углах $\theta_1 \cong 1.19$ и $\theta_1 \cong 1.1$ для кристаллов КСІ и NaCl соответственно. Их величины превосходят минимальные значения $v_{t_2}(0, \pi/4)$ в 41 и 490 раза для KCl и NaCl соответственно. Кроме этого, функция $v_{t_2}(\theta_1, \pi/4)$ в кристалах KCl имеет локальные максимумы при углах $\theta_1 \cong 1.03$, $\theta_1 = \theta_{111}$ и $\theta_1 \cong 0.6$, значения которых превосходят $v_{t_2}(0,0)$ в 29, 25 и 28 раза соответственно. Первый из них обусловлен механизмом релаксации SFF, а второй — механизмом релаксации SSS. В кристаллах NaCl в отличие от KCl для направлений типа [111] полная скорость релаксации $v_{t_2}(\theta_1, \pi/4)$, а также величины $v_{SSS}^{t_2}(\theta_1, \pi/4)$ и $v_{\text{SFF}}^{t_2}(\theta_1, \pi/4)$ имеют резкие локальные минимумы, как и в кристаллах первой группы (рис. 4, b, кривые 1, 2 и 4). Величина $v_{t_2}(\theta_{111}, \pi/4)$ превосходит минимальные значения $v_{t_2}(0, 0)$ в направлениях типа [001] в 109 раз. Вклады механизмов релаксации SSS, SFF и Ландау-Румера в полные скорости релаксации для направлений типа [111] составляют 46.4, 43.3 и 10.3% для кристаллов КСІ и 45.5, 35.6 и 18.9% для кристаллов NaCl.

Итак, из всех рассмотренных кристаллов полные скорости релаксации достигают максимальных значений в кристаллах КСІ: коэффициент $B^{t_2}(\theta_1, \varphi_1) = 1240 \,\mathrm{s}^{-1} \cdot \mathrm{K}^{-5}$ при $\theta_1 \cong 1.19$. Минимальные значения они имеют в кристаллах алмаза: коэффициент $B^{t_2}(\theta_1, \pi/4) = 0.0016 \,\mathrm{s}^{-1} \cdot \mathrm{K}^{-5}$ при θ_1 , равных $\pi/6$ и $\pi/3$. Максимальная анизотропия скоростей релаксации имеет место в кристаллах NaCl: отношение минимальных значений к максимальным достигает почти 500 раз.

4. Заключение

Исследованы механизмы релаксации и квазипоперечных фононов в ангармонических процессах рассеяния. В длинноволновом приближении рассмотрены механизмы релаксации SSS, SFF и Ландау–Румера в кубических кристаллах с положительной (Ge, Si и алмаз) и отрицательной (KCl, NaCl) анизотропией модулей упругости второго порядка. В модели анизотропного континуума проанализированы угловые зависимости скоростей релаксации медленной квазипоперечной моды и найдены полные скорости релаксации. Показано, что использование приближения чистых мод не является адекватным для количественного описания анизотропии скоростей релаксации квазипоперечных фононов в кубических кристаллах. Основные результаты работы могут быть сформулированы следующим образом.

1) Рассчитаны скорости релаксации медленных длинноволновых квазипоперечных фононов в кубических кристаллах для механизмов ТТТ. Показано, что для кристаллов с существенной анизотропией упругой энергии (Ge, Si, KCl и NaCl) суммарный вклад механизмов релаксации ТТТ превосходит вклад механизма Ландау–Румера в полную скорость релаксации либо в несколько раз, либо на один-два порядка величины. Доминирующая роль механизмов релаксации ТТТ по сравнению с механизмом Ландау–Румера обусловлена упругими модулями второго порядка. В кристаллах алмаза с меньшей анизотропией упругой энергии значительную роль в релаксации фононов играет механизм Ландау–Румера.

2) Найдены полные скорости релаксации медленных квазипоперечных фононов. Показано, что при доминирующей роли ангармонических процессов рассеяния учет одного из механизмов релаксации (Ландау-Румера, механизмов SSS или SFF) является недостаточным для описания анизотропии полных скоростей релаксации фононов в кубических кристаллах.

3) В кристаллах с существенной анизотропией упругой энергии Ge, Si и KCl вклад механизма SSS либо в несколько раз, либо на порядок величин превосходит вклад механизма SFF. В кристаллах алмаза и NaCl оба вклада имеют одинаковый порядок величины. Преобладание вклада SSS над механизмом SFF главным образом связано с анизотропией упругой энергии.

 Показано, что механизмы релаксации SSS и SFF обусловлены кубической анизотропией кристаллов, приводящей к взаимодействию неколлинеарных фононов.

5) Установлено, что пересечение спектров квазипоперечных мод и изменение направлений векторов поляризации моды ST в направлениях [111] приводят к резким особенностям в скоростях релаксации медленных квазипоперечных фононов для механизмов SSS и SFF в окрестности этих направлений.

Авторы выражают благодарность А.П. Танкееву за обсуждение результатов работы и критические замечания.

Список литературы

- [1] В.Л. Гуревич. Кинетика фононных систем. Наука, М. (1980). 400 с.
- [2] B. Truel, C. Elbaum, B.B. Chick. Ultrasonic methods in sold state physics. Academic press, N.Y.–London (1969). 307 p.
- [3] Дж. Такер, В. Рэмптон. Гиперзвук в физике твердого тела. Мир, М. (1975). 453 с.
- [4] H.J. Maris. Phys. Acoustics 7, 280 (1971).
- [5] А.П. Жернов, А.В. Инюшкин. УФН 171, 827 (2001); УФН 172, 573 (2002).

- [6] L. Landau, J. Rumer. Sov. Phys. 11, 18 (1937).
- [7] Б.М. Могилевский, А.Ф. Чудновский. Теплопроводность полупроводников. Наука, М. (1972). 536 с.
- [8] Р. Берман. Теплопроводность твердых тел. Мир, М. (1979). 288 с.
- [9] И.Г. Кулеев, И.И. Кулеев. ЖЭТФ 120, 649 (2001); 121, 558 (2002).
- [10] R.A.H. Hamilton, J.E. Parrot. Phys. Rev. 178, 1284 (1969).
- [11] P.J. King. J. Phys. C: Solid State Phys. 4, 1306 (1971).
- [12] I.C. Simpson. J. Phys. C: Solid State Phys. 8, 399 (1975).
- [13] I.C. Simpson. J. Phys. C: Solid State Phys. 8, 1783 (1975).
- [14] И.Г. Кулеев, И.И. Кулеев. ФТТ 49, 422 (2007).
- [15] C. Kittel. Introduction to Solid State Physics. 2nd ed. John Wiley and Sons, Inc., N.Y. (1956). 523 p.
- [16] I.G. Kuleyev, I.I. Kuleyev, I.Yu. Arapova. J. Phys.: Cond. Matter 19, 406 216 (2007).
- [17] И.Г. Кулеев, И.И. Кулеев, И.Ю. Арапова. ФТТ 49, 1272 (2007).
- [18] C. Herring. Phys. Rev. 95, 954 (1954).
- [19] S. Simons. Proc. Cambridge Phil. Soc. 53, 702 (1957).
- [20] И.Г. Кулеев, И.И. Кулеев. ФТТ 47, 300 (2005).
- [21] Ю.В. Илисавский, Д. Чиплис. ФТТ 14, 2412 (1972).
- [22] Ю.В. Илисавский, В.М. Стернин. ФТТ 27, 385 (1985).
- [23] В.В. Леманов, Г.А. Смоленский. УФН 108, 465 (1972).
- [24] А.И. Ахиезер. ЖЭТФ 8, 1318 (1938).
- [25] И.Н. Францевич, Ф.Ф. Воронов, С.А. Бакута. Упругие постоянные и модули упругости металлов и неметаллов. Наук. думка, Киев (1982). 355 с.