Мессбауэровское исследование феррита меди при разбавлении ионами Ga³⁺ и Al³⁺

© Л.Г. Антошина, Е.Н. Евстафьева, А.А. Опаленко

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

E-mail: lantoshina@yandex.ru

(Поступила в Редакцию 17 июня 2008 г. В окончательной редакции 25 сентября 2008 г.)

При температуре 295 К исследованы мессбауэровские спектры системы $CuGa_x Al_{2x}Fe_{2-3x}O_4$ (x = 0.1, 0.2, 0.3, 0.4 и 0.5). Проведено сравнение полученных результатов с данными мессбауэровских исследований для системы $CuGa_x Al_x Fe_{2-2x}O_4$. Установлено, что для ферритов обеих систем, имеющих ферримагнитное упорядочение, значения сверхтонкого магнитного поля H_B (для октаэдрических узлов) и H_A (для тетраэдрических и тетраэдрических из обеих систем.

PACS: 75.10.-b,76.80.+y,76.50.-g

1. Введение

Фрустрированной магнитной структурой называется характерная структура, которая возникает, в частности, при замещении определенной части магнитных ионов немагнитными. В результате в магнитной системе рвутся обменные связи и возникают неоднородные состояния, при этом реализуется возможность для формирования кластеров — взаимодействующих областей с дальним или ближним магнитным порядком. Спиновое стекло представляет собой кластеры, образованные ближним магнитным порядком, тогда как фрустрированная магнитная структура — это структура с порванными магнитными связями, вследствие чего могут образоваться кластеры, обусловленные дальним магнитным порядком.

Таким образом, разбавленные ферриты-шпинели в зависимости от концентрации в них немагнитных ионов в *A*- и *B*-узлах могут находиться в ферримагнитном, антиферромагнитном, парамагнитном состояниях или в состоянии спинового стекла [1]. Особенно интересным является тот факт, что только при одновременном немагнитном разбавлении двух подрешеток может образоваться фрустрированная магнитная структура.

В работе [2] была рассчитана критическая концентрация магнитных ионов в обеих подрешетках шпинелей, так называемый порог перколяции, при котором разрушается дальний магнитный порядок. Для шпинелей с одним сортом магнитных ионов порог перколяции составляет примерно 33% от содержания магнитных ионов в каждой подрешетке шпинельной структуры. Следовательно, при небольшом замещении магнитных ионов немагнитными у ферритов-шпинелей наблюдается обычное ферримагнитное упорядочение.

Нами были исследованы магнитные свойства разбавленных ферритов меди двух систем $CuGa_xAl_xFe_{2-2x}O_4$ (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6 и 0.7) — система I [3] и $CuGa_xAl_{2x}Fe_{2-3x}O_4$ (x = 0, 0.1, 0.2, 0.3, 0.4 и 0.5) —

система II [4]. Было установлено, что составы с $x \ge 0.5$ системы I и $x \ge 0.3$ системы II имеют фрустрированную магнитную структуру. Для этих ферритов наблюдалось аномальное поведение температурных зависимостей спонтанной намагниченности $\sigma_s(T)$ и коэрцитивной силы $H_c(T)$. Оказалось, что для данных составов уменьшение величины σ_s происходит при более низкой температуре (T_{tr}), чем убывание величины $H_c(T_c)$. В качестве примера на рис. 1 приведены зависимости $\sigma_s(T)$ и $H_c(T)$ для состава CuGa_{0.4}Al_{0.8}Fe_{0.8}O₄. Видно, что в интервале температур от 80 K до T_{tr} зависимость $\sigma_s(T)$ почти линейно уменьшается с ростом температуры. Температура перехода T_{tr} определялась как из экстра-

Рис. 1. Температурные зависимости спонтанной намагниченности $\sigma_s(T)$ и коэрцитивной силы $H_c(T)$ для феррита CuGa_{0.4}Al_{0.8}Fe_{0.8}O₄.

Образец	$T_{ m tr}, { m K}^*$	T_C, \mathbf{K}^*	$\gamma + \Delta \gamma^{**}$	Сумма немагнитных ионов (у)
CuFe ₂ O ₄	_	720	_	0
$CuGa_xAl_xFe_{2-2x}O_4$				
$CuGa_{0.1}Al_{0.1}Fe_{1.8}O_4$		680		0.2
CuGa _{0.2} Al _{0.2} Fe _{1.6} O ₄	_	640	_	0.4
CuGa _{0.3} Al _{0.3} Fe _{1.4} O ₄	_	595	_	0.6
$CuGa_{0.4}Al_{0.4}Fe_{1.2}O_4$	540	555	0.97 ± 0.04	0.8
$CuGa_{0.5}Al_{0.5}FeO_4$	445	485	0.92 ± 0.04	1.0
$CuGa_{0.6}Al_{0.6}Fe_{0.8}O_4$	340	390	0.87 ± 0.05	1.2
	337***	400***		
$CuGa_{0.7}Al_{0.7}Fe_{0.6}O_4$	215	270	0.80 ± 0.07	1.4
	216***	267***		
$CuGa_xAl_{2x}Fe_{2-3x}O_4$				
$CuGa_{0.1}Al_{0.2}Fe_{1.7}O_4$	_	680	—	0.3
$CuGa_{0.2}Al_{0.4}Fe_{1.4}O_4$	_	635	_	0.6
$CuGa_{0.3}Al_{0.6}Fe_{1.1}O_4$	520	570	0.91 ± 0.04	0.9
$CuGa_{0.4}Al_{0.8}Fe_{0.8}O_4$	410	460	0.89 ± 0.04	1.2
	413***	460***		
$CuGa_{0.5}Al_{1.0}Fe_{0.5}O_4$	220	275	0.80 ± 0.07	1.5

Температуры Кюри T_C и температуры перехода T_{tr} исследованных составов

* Абсолютная ошибка в определении $T_{\rm tr}$ и T_C составляла $\Delta T = \pm 10$ К. ** $\gamma = T_{\rm tr}/T_C$.

*** Температуры Ttr и TC определены из изменения энергии активации.

поляции зависимости $\sigma_s(T)$ к $\sigma_s = 0$, так и методом термодинамических коэффициентов.

В таблице для всех исследованных составов приведены температуры Кюри T_C , температуры перехода T_{tr} и отношение температуры перехода T_{tr} к температуре Кюри T_C для ферритов с фрустрированной магнитной структурой $\gamma = T_{tr}/T_C$. Кроме того, для каждого состава указано суммарное количество немагнитных ионов Ga³⁺ и Al³⁺ (γ). Курсивом выделены составы, имеющие по данным магнитных измерений фрустрированную магнитную структуру.

Представляло интерес провести мессбауэровские исследования образцов системы II и сравнить их с данными для исследованной ранее системы I [5]. Также интересно было выяснить, как зависят микроскопические свойства ферритов от количества немагнитных ионов в составе образцов обеих систем.

2. Эксперимент

Исследовались поликристаллические образцы системы $CuGa_xAl_{2x}Fe_{2-3x}O_4$ (x = 0.1, 0.2, 0.3, 0.4 и 0.5). Условия приготовления ферритов описаны в работе [4].

Измерение мессбауэровских спектров было проведено при комнатной температуре. Источником γ -излучения служил изотоп ⁵⁷Со в матрице радия, поглотители изготовлялись из поликристалла поверхностной плотности $10-20 \text{ mg/cm}^2$.

3. Результаты и обсуждение

На рис. 2 представлены зависимости относительной спонтанной намагниченности $(\sigma_s/\sigma_{s0})(T/T_C)$ для образцов системы CuGa_xAl_{2x}Fe_{2-3x}O₄ (x = 0, 0.1, 0.2, 0.3, 0.4и 0.5). Стрелками показаны концентрации немагнитных ионов x, причем для составов с x = 0.1, 0.2, 0.3 и 0.4 вертикальные стрелки показывают относительные температуры, при которых регистрировались мессбауэровские спектры (T = 295 K). Видно, что с увеличением степени фрустрации зависимость спонтанной намагниченности (σ_s/σ_{s0})(T/T_C) изменяется от кривой Q-типа (по Неелю) к линейной зависимости величины $\sigma_s(T)$ в большом температурном интервале. Следует отметить, что температура 295 K, при которой измерялись мессбауэровские спектры, для состава с x = 0.4 попадает на линейный участок зависимости $\sigma_s(T)$.

На рис. 3 приведены мессбауэровские спектры ферритов системы II (x = 0.1, 0.2, 0.3, 0.4 и 0.5), полученные при температуре T = 295 К. Спектры для составов с x = 0.1, 0.2, 0.3 можно представить в виде суперпозиции для секстетов, соответствующих ионам Fe³⁺ в *A*- и *B*-узлах. Влияние случайного распределения ионов Ga³⁺ и Al³⁺ вокруг ионов Fe³⁺ проявляется в расширении зеемановских компонент спектра для этих составов.

Спектр для состава с x = 0.4, по-видимому, свидетельствует о появлении фрустрированной магнитной структуры. Мессбауэрвоский спектр состоит из квадрупольного дублета с расщеплением $\Delta E = 0.46 \pm 0.01$ mm/s

Рис. 2. Температурная зависимость относительной спонтанной намагниченности для образцов системы $CuGa_x Al_{2x} Fe_{2-3x} O_4$. Вертикальными стрелками показаны относительные температуры, при которых исследовались мессбауэровские спектры.

и небольшого "размытого" фона у основания дублета, характерного для магнитного упорядочения. Можно предположить, что у состава с x = 0.4 при T = 295 К магнитная структура представляет собой в основном достаточно крупные кластеры, образованные ближним магнитным порядком. Согласно таблице, температура возникновения дальнего магнитного порядка у этого феррита $T_{\rm tr} = 410 \pm 10 \, {\rm K}$, тогда как сверхтонкая структура при комнатной температуре не разрешена. Следует заметить, что температура 295 К принадлежит линейному участку зависимости $\sigma_s(T)$ (рис. 1). Вид этого спектра подтверждает сделанное ранее предположение о том, что при $T = T_{\rm tr}$ не происходит образования доменной структуры, а при $T < T_{\rm tr}$ имеет место фрустрированная магнитная структура, по-видимому состоящая из кластеров, внутри которых существует дальний магнитный порядок.

Ранее на основании результатов анализа магнитных свойств феррита с замещением x = 0.5 было сделано предположение, что дальний магнитный порядок в этом соединении возникает при температуре $T \approx 220$ K [4]. Температура Кюри этого образца составляет 275 К. Спектр для состава с x = 0.5 при T = 295 К представляет собой дублет, что свидетельствует об отсутствии дальнего магнитного порядка.

Полученная нами последовательность мессбауэровских спектров в зависимости от концентрации примеси является характерной для ферритовшпинелей. Например, аналогичные мессбауэровские спектры при T = 300 К были получены авторами ра-

Рис. 3. Мессбауэровские спектры ферритов системы $CuGa_x Al_{2x} Fe_{2-3x} O_4$ при T = 295 K.

Рис. 4. Зависимости магнитного поля на ядре ⁵⁷Fe для исследуемых ферритов от общего количества у немагнитных ионов Ga³⁺ и Al³⁺, измеренные при T = 295 К. Темными символами обозначены значения эффективного поля для системы CuGa_x Al_xFe_{2-2x}O₄, а светлыми — для системы CuGa_x Al_{2x}Fe_{2-3x}O₄. Треугольниками обозначены значения эффективного поля H_B для октаэдрических позиций, квадратами — значения H_A для тетраэдрических позиций. Показаны также зависимости отношения температуры перехода T_{tr} и температуры Кюри $T_C \gamma_1(y)$ и $\gamma_2(y)$ для систем CuGa_x Al_xFe_{2-2x}O₄ и CuGa_x Al_{2x}Fe_{2-3x}O₄ соответственно.

боты [6] для разбавленных ферритов-хромитов никеля $NiAl_x Cr_x Fe_{2-2x} O_4$.

Результаты мессбауэровских исследований, проведенных нами для системы $CuGa_xAl_{2x}Fe_{2-3x}O_4$, подтверждают сделанное ранее на основе макроскопических измерений предположение о том, что магнитная структура составов с $x \ge 0.3$ является фрустрированной.

На рис. 4 приведены значения сверхтонкого магнитного поля $H_{\rm eff}$ на ядрах $^{57}{\rm Fe}$ от общего количества (y) немагнитных ионов Ga³⁺ и Al³⁺ в образцах обеих систем, измеренные при комнатной температуре. Для медного феррита CuFe₂O₄ значения H_A и H_B взяты из работы [7]. Данные для ферритов системы $CuGa_xAl_xFe_{2-2x}O_4$ (x = 0.1 - 0.7) взяты из работы [5]. На данном рисунке темными символами показаны значения эффективного поля для системы CuGa_xAl_xFe_{2-2x}O₄, а светлыми для системы $CuGa_x Al_{2x} Fe_{2-3x} O_4$. Для обеих систем треугольниками показаны значения эффективного поля Н_В для октаэдрических позиций, квадратами — значения На для тетраэдрических позиций. Видно, что значения *H_B* и *H_A* линейно уменьшаются с увеличением общего количества немагнитных ионов у до значения у = 0.9. Линейное уменьшение сверхтонких полей с увеличением у свидетельствует об уменьшении степени ферримагнитного упорядочения в ферритах исследуемых систем. Следует отметить, что как значения Н_В, так и значения H_A уменьшаются по одному линейному закону вне зависимости от того, какие немагнитные ионы (Ga³⁺ или Al³⁺) входят в состав образцов обеих систем. Также значения H_A и H_B уменьшаются линейно вне зависимости от того, в каких узлах (тетраэдрических или октаэдрических) расположены ионы Ga³⁺ и Al³⁺. Таким образом, установлено, что величины H_B и H_A зависят от степени общего разбавления исследованных ферритов.

На рис. 4 приведена зависимость $\gamma(y)$. Видно, что значения γ_1 для системы CuGa_xAl_xFe_{2-2x}O₄ и γ_2 для системы CuGa_xAl_{2x}Fe_{2-3x}O₄ в пределах ошибки измерения одинаковы по величине и линейно уменьшаются с увеличением числа немагнитных ионов *y*. Причем это уменьшение не зависит от конкретного содержания ионов Ga³⁺ и Al³⁺ в тетраэдрических и октаэдрических узлах.

4. Выводы

1) Впревые исследованы мессбауэровские спектры разбавленных ферритов $CuGa_xAl_{2x}Fe_{2-3x}O_4$ (x = 0.1, 0.2, 0.3, 0.4 и 0.5) при комнатной температуре.

2) Проведено сравнение полученных результатов с измерениями сверхтонкого поля для образцов системы CuGa_xAl_xFe_{2-2x}O₄. Установлено, что для ферритов обеих систем, имеющих ферримагнитное упорядочение, величина сверхтонкого поля убывает линейно и зависит только от общего количества немагнитных ионов в составе образцов.

3) Обнаружено, что для ферритов обеих систем, имеющих фрустрированную магнитную структуру, отношение температур двух фазовых магнитных переходов в зависимости от общего количества немагнитных ионов практически равно по величине и не зависит от их расположения в составе ферритов.

Список литературы

- [1] C.P. Poole, H.A. Farach. Z. Phys. B 47, 55 (1982).
- [2] J. Hubsch, G. Gavoille, J. Bolfa. Appl. Phys. 49, 3, 1363 (1978).
- [3] Л.Г. Антошина, Е.Н. Кукуджанова. ФТТ **40**, *8*, 1505 (1998).
- [4] L.G. Antoshina. J. Phys.: Cond. Matter 13, 127 (2001).
- [5] А.А. Опаленко, Л.Г. Антошина, А.И. Кокорев, А.И. Фиров. Вестн. МГУ. Сер. 3. Физика, астрономия 5, 76 (2002).
- [6] U.V. Chhaya, B.S. Trivedi, R.G. Kulkarni. J. Mater. Sci. Lett. 18, 1177 (1999).
- [7] J. Janicki, J. Pietrzak, A. Porebski, J. Suwalski. Phys. Status Solidi A 72, 95 (1982).