Моделирование магнитных свойств марганцевого оксида Pb₃Mn₇O₁₅

© С.С. Аплеснин^{*,**}, А.И. Москвин^{*}

* Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева,
Красноярск, Россия
** Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук,
Красноярск, Россия

E-mail: apl@iph.krasn.ru

(Поступила в Редакцию 4 июля 2008 г.)

Методом Монте-Карло вычислены магнитная восприимчивость, теплоемкость, спин-спиновые корреляционные функции для марганцевого оксида Pb₃Mn₇O₁₅. Найдены две критические температуры, связанные с образованием модулированной структуры вдоль гексагональной оси выше $T_1 \approx 20$ K и исчезновением дальнего магнитного порядка при $T_2 \approx 70$ K. Оценены параметры антиферромагнитного обменного взаимодействия в гексагональной плоскости ($J_1 \sim 7$ K) и два типа обмена — соответственно антиферромагнитное ($J_2 \sim 3$ K) и ферромагнитное ($K \sim 50$ K) взаимодействия между плоскостями.

PACS: 75.10.-b, 75.40.Mg, 75.40.Cx

1. Введение

Магнитные системы с фрустрированными обменными взаимодействиями [1], которые образуются не только в стохастических магнетиках [2], но и в химически упорядоченных соединениях из-за топологии решетки [3], обладают высоким вырождением и необычными магнитными свойствами [4]. Это отражается в богатом разнообразии фаз и фазовых переходов [5] и обусловливает их высокую чувствительность к различного рода возмущающим взаимодействиям. К этому классу соединений относится Pb₃Mn₇O₁₅ [6] с конкурирующими ферромагнитным и антиферромагнитным обменными взаимодействиями.

Рентгеновские исследования [6] кристаллов показали, что они кристаллизуются в гексагональной сингонии, пространственная группа Р63/тст, с параметрами элементарной ячейки a = 10.0287(4) Å, c = 13.61376(6) Å. На элементарную ячейку приходится четыре формульные единицы. Кристаллическая структура имеет ярко выраженный слоистый характер, что оказывает сильное влияние на ряд физических свойств. Каждый ион марганца находится в октаэдрическом окружении ионов кислорода. Ионы марганца Mn³⁺ и Mn⁴⁺ содержатся в кристалле в соотношении 4:3 и распределены по четырем неэквивалентным позициям (рис. 1, a). Ионы свинца расположены посередине между слоями и занимают две неэквивалентные позиции Pb1 и Pb2. Магнитную структуру этого соединения можно представить в виде двух элементарных гексагонально плотноупакованных ячеек, соединенных ферромагнитными обменными взаимодействиями, изображенными на рис. 1, b.

Экспериментальные результаты [6] позволяют выделить несколько характерных температурных диапазонов, в которых формируются различные магнитные состояния кристалла. От высоких температур и до $\sim 200 \,\mathrm{K}$ поведение намагниченности характерно для парамагнитного состояния. Начиная с $T \sim 160 \,\mathrm{K}$ на кривой температурной зависимости намагниченности наблюда-

ется небольшой, но сильно уширенный пик, связанный с возникновением ближнего магнитного порядка. При $T_2 \approx 70 \text{ K}$ [6] ясно виден острый узкий пик, который свидетельствует об установлении дальнего магнитного порядка. Ниже 70 K Pb₃Mn₇O₁₅ находится в нескомпенсированном антиферромагнитном состоянии со спонтанным слабоферромагнитным моментом (0.06 μ_B на формульную единицу при 2 K), лежащим в базисной плоскости кристалла. При $T_1 \sim 20 \text{ K}$ наблюдаются еще один магнитный фазовый переход и гистерезис в температурном поведении восприимчивости ниже 45 K, измеренной на образцах, охлажденных в поле $H = 500 \text{ Oe и в отсутствие магнитного поля [6].$

2. Модель

Часть элементарной ячейки этого кристала представляет собой гексагональную плотноупакованную (ГПУ) решетку с антиферромагнитными обменными взаимодействиями (J). Магнитная структура ГПУ-решетки с различными типами взаимодействия анализировалась в классической модели Гейзенберга [7]. В зависимости от величины межплоскостного взаимодействия и значения константы одноионной анизотропии (D) найдена фазовая диаграмма магнетика на плоскости анизотропия-температура. В области параметров 0 < D < J обнаружены три характерные точки, связанные с изменением спиновой структуры. При понижении температуры из области, в которой спины полностью парамагнитны, сначала возникает ближний порядок в различных слоях ГПУ-решетки ($T = T_3$). Дальнейшее понижение температуры приводит к возникновению спиновых корреляций между слоями и к появлению вектора модуляции по продольной компоненте спина при $T = T_2$. После достижения температуры $T = T_1$ вклад в магнитный структурный фактор вносят поперечные компоненты спинов. Поэтому качественные оценки для трех температур, при которых наблюдаются аномалии в

Рис. 1. *а*) Схематическое представление кристаллографической структуры $Pb_3Mn_7O_{15}$. Катионы Mn расположены в центре кислородных октаэдров, ионы Pb показаны светлыми (позиция Pb1) и темными (позиция Pb2) кружками. *b*) Магнитная структура с тремя параметрами обмена.

Рис. 2. Зависимость восприимчивости $\chi = M/H$ (*a*) и теплоемкости C = dE/dT (*b*) от температуры, нормированной на величину обмена в плоскости, для $J_2/J_1 = -0.5$; $K/J_1 = 2$ (*I*), 8 (2), 20 (3) ($J_1 = abs(J_1)$).

Рис. 3. Спин-спиновые корреляционные функции в гексагональной плоскости на расстоянии r = 1 (1, 3), 6 (2, 4) и перпендикулярно плоскости на расстоянии r = 3 (5, 6) для $J_2/J_1 = -0.5$; $K/J_1 = 8$ (1, 2, 5) и 20 (3, 4, 6).

магнитной восприимчивости в Pb₃Mn₇O₁₅, можно получить из фазовой диаграммы, приведенной в работе [7].

Согласно экспериментальным данным [6], между критическими температурами выполняются следующие соотношения при $T_2 = 70$ К: $T_3/T_2 = 2.3$, $T_1/T_2 = 0.3$ и $T_{ir}/T_2 = 0.64$, где T_{ir} — температура, соответствую-

щая образованию гистерезиса восприимчивости образца, охлажденного в поле и без поля. Используя известные величины коэрцитивного магнитного поля $H_c = 20$ kOe, парамагнитной температуры Кюри $\Theta = -520$ K [6], оценим с помощью соотношения $\theta = 2/3S(S + 1)zJ$ (где S — величина спина, z — число ближайших соседей) среднее значение обмена $J \sim 5$ K и эффективную константу анизотропии $D/J \sim 0.3$, для которой моделирование магнитной структуры ГПУ-решетки [7] приводит к следующим значениям: $T_3/T_2 = 1.5$, $T_{ir}/T_2 = 0.7$. Однако кристаллическая структура Pb₃Mn₇O₁₅ имеет более сложный вид, и моделирование магнитной структуры необходимо провести с учетом упорядочения ионов марганца в марганцевом феррите.

Для формирования спонтанного момента необходимо учесть ферромагнитное взаимодействие между ГПУ-плоскостями. Рассмотрим модель Гейзенберга с изотропными обменными взаимодействиями

$$H = -\sum_{i,j}^{L} (J_{1,i,j}S_iS_j + J_{2,i,k}S_iS_k + K_{nm}S_nS_m + H_iS_i),$$

где $J_1 < 0$ — обменное взаимодействие в гексагональной плоскости, $J_2 < 0$ и K > 0 — соответственно антиферромагнитное и ферромагнитное обменные взаимодействия между ионами марганца, расположенными в двух неэквивалентных позициях между плоскостями, S — классический спин с компонентами $S(\cos\theta, \sin\theta\sin\phi, \cos\theta\cos\phi), H$ — внешнее магнитное поле. Для вычисления магнитных характеристик используется метод Монте-Карло (МС) с периодическими граничными условиями на решетке размером $N = 18 \times 18 \times 18$ и числом шагов 5000–10000 MC/spin. Магнитная структура определялась из спин-спиновой корреляционной функции, а температуры, при которых происходят изменения в магнитной структуре, — по аномалиям в температурном поведении восприимчивости $\chi = M/H$, где M — величина намагниченности, индуцируемая внешним магнитным полем Н, и теплоемкости C = dE/dT, определенной по изменению энергии E от температуры Т.

На рис. 2 приведены зависимости восприимчивости от температуры для ряда параметров ферромагнитного обменного взаимодействия. Для параметров *K*/*J* < 6 восприимчивость имеет вид характерный для антиферромагнетика (рис. 2, a). Это связано с конкуренцией ферромагнитных и антиферромагнитных взаимодействий, пара спинов имеет в ближайшем окружении шесть спинов, связанных антиферромагнитным обменом. При увеличении ферромагнитного обмена K/J > 6 пары спинов через ГПУ-плоскости упорядочиваются ферромагнитным образом, что подтверждается расчетом спин-спиновых корреляционных функций (рис. 3) в направлении OZ, перпендикулярном гексагональной плоскости. С повышением температуры ферромагнитное упорядочение спинов исчезает, и возникает модулированная структура. Спин-спиновая корреляционная функция на расстоянии r = 3 меняет знак при $T = T_1$, а корреляциии между спинами вдоль одного из направлений решетки в базисной плоскости сохраняют положительный знак и исчезают при температуре Нееля. Теплоемкость, изображенная на рис. 2, *b*, имеет ярко выраженный максимум при $T = T_N$. Сравнение отношения T_1/T_N , вычисленного методом MC, с экспериментом $T_1/T_2 \approx 0.3$ и $T_N/JS^2 = 2.5$ позволяет оценить параметры обмена $J_1 \sim 7$ K, $J_2 \sim 3$ K, $K \sim 50$ K.

3. Заключение

Итак, низкотемпературный переход в $Pb_3Mn_7O_{15}$ вызван образованием модулированной структуры в направлении [001] при T > 20 К. Ниже этой температуры пары спинов упорядочиваются ферромагнитно, что приводит к образованию спонтанного магнитного момента. Максимум теплоемкости соответствует исчезновению дальнего магнитного порядка. Найдены эффективные параметры обменных констант в $Pb_3Mn_7O_{15}$.

Авторы благодарят Н.В. Волкова за обсуждение кристаллической и магнитной структур Pb₃Mn₇O₁₅ и за предоставление опубликованных результатов.

Список литературы

- S. Khmelevskyi, J. Kudrnovsky, B.L. Gyorffy, P. Mohn, V. Drchal, P. Weinberger. Phys. Rev. B 70, 224 432 (2004).
- [2] K. Binder, A.P. Young. Rev. Mod. Phys. 58, 801 (1986).
- [3] N. Mohapatra, K.K. Iyer, S. Rayaprol, E.V. Sampathkumaran. Phys. Rev. B 75, 214 422 (2007).
- [4] I.S. Suzuki, M. Suzuki. Phys. Rev. B 73, 094448 (2006).
- [5] T. Hamasaki, T. Ide, H. Kuroe, T. Sekine, M. Hase, I. Tsukada, T. Sakakibara. Phys. Rev. B 77, 134 419 (2008).
- [6] N.V. Volkov, K.A. Sablina, O.A. Bayukov, E.V. Eremin, G.A. Petrakovskii, D.A. Velicanov, A.D. Balaev, A.F. Bovina, P. Boni, E. Clementyev. J. Phys.: Cond. Matter 20, 055 217 (2008).
- [7] С.С. Аплеснин, Р.С. Гехт. ЖЭТФ 96, 2163 (1989).