Магнитооптическая спектроскопия и оптическое детектирование ЭПР парамагнитных центров Yb³⁺ кубической симметрии в монокристаллах MeF₂ (Me = Cd, Ca, Pb)

© К.И. Герасимов, М.Л. Фалин

Казанский физико-технический институт им. Е.К. Завойского Российской академии наук, Казань, Россия E-mail: falin@kfti.knc.ru

(Поступила в Редакцию 21 мая 2008 г.)

В кристаллах типа флюорита MeF₂ (Me = Cd, Ca, Pb) проведено исследование парамагнитных центров кубической симметрии, образуемых примесным ионом Yb³⁺, методами ЭПР, магнитного циркулярного дихроизма и циркулярной поляризации люминесценции, зеемановских расщеплений оптических линий поглощения и люминесценции, оптического детектирования ЭПР. Определены *g*-факторы состояния ${}^{2}\Gamma_{7}$ в возбужденном мультиплете ${}^{2}F_{5/2}$ Yb³⁺ в MeF₂, константа сверхтонкого взаимодействия ${}^{171}A$ (${}^{171}Yb$) в возбужденном мультиплете ${}^{2}F_{5/2}$ g CaF₂, значения энергий и свойства симметрии всех энергетических уровней Yb³⁺ в MeF₂. Вычислены параметры кристаллического поля в исследуемых кристаллах.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 06-02-17481), Министерства образования и науки РФ (РНП 2.2.2.3.1091) и фонда CRDF (программа BRHE N Y3-P-07-03).

PACS: 71.70.-d, 76.30.Kg, 76.70.Hb, 78.30.Hv

1. Введение

Кристаллы структурного ряда флюорита MeF₂ (Me = Cd, Ca, Sr, Pb, Ba), активированные редкоземельными ионами (РЗИ), с одной стороны, находят широкое практическое применение (сцинцилляторы, ионные проводники, материалы квантовой электроники и т.д.), а с другой стороны, на протяжении многих лет являются модельными объектами экспериментальных и теоретических исследований. Кристаллы имеют кубическую кристаллическую решетку и легко активируются РЗИ, образуя парамагнитные центры (ПЦ) как кубической, так и более низкой симметрии. Примером модельной системы являются кристаллы MeF₂, активированные Yb³⁺. Данный ион имеет основную электронную конфигурацию — $4f^{13}$ — и соответственно простую схему энергетических уровней (только один терм ${}^{2}F$). В кристаллическом поле кубической симметрии основной (2F7/2) и возбужденный $({}^{2}F_{5/2})$ мультиплеты расщепляются на три $({}^{1}\Gamma_{7}, {}^{1}\Gamma_{8}, \Gamma_{6})$ и два $({}^{2}\Gamma_{7}, {}^{2}\Gamma_{8})$ энергетических уровня соответственно. Экспериентальная информация о таких модельных системах имеет особое значение для развития и апробации новых теоретических представлений о характере взаимодействий ионов в кристалле и природе дефектообразования [1–4]. ПЦ кубической симметрии (T_c) в таких расчетах, как правило, служат отправной точкой, и полнота экспериментальной информации о таких ПЦ имеет большое значение. Известно, что трехвалентные ионы иттербия образуют Т_с во всей структурной серии кристаллов типа флюорита. Несмотря на то что Т_с в данных кристаллах интенсивно изучались методами магнитного резонанса [4], магнитооптики [5] и оптической спектроскопии [6-12], информация о штарковской структуре энергетических уровней не является достаточно полной для определения надежных феноменологических параметров кристаллического поля (КП). Например, для CaF_2 , SrF₂, PbF₂ и BaF₂ имеется неопределенность в экспериментальном значении энергии Г₆. В CdF₂ из спектров поглощения установлены значения энергий уровней верхнего (${}^{2}F_{5/2}$) мультиплета для T_{c} [11]. Сведения об энергетических уровнях нижнего мультиплета $({}^{2}F_{7/2})$ из спектров люминесценции Yb³⁺ в этом кристалле неоднозначны [12], поскольку в данной работе отсутствуют какие-либо сведения о типах ПЦ в кристалле, а предложенные несколько вариантов значений энергий уровней не согласуются с соответствующими значениями для T_c в остальных кристаллах MeF₂. Это в свою очередь не позволило определить параметры КП для T_c Yb³⁺ в CdF₂.

Настоящая работа представляет детальные исследования Yb^{3+} (T_c) в кристаллах CdF₂, CaF₂ и PbF₂ методами ЭПР, оптической и магнитооптической спектроскопии, включая оптическое детектирование ЭПР (ОД ЭПР).

2. Экспериментальные результаты

Кристаллы MeF₂ (Me = Cd, Pb, Ca) были выращены методом Бриджмена–Стокбаргера в графитовых тиглях в атмосфере фтора. Активация кристаллов осуществлялась введением YbF₃ в шихту. Далее под концентрацией (c) Yb³⁺ понимается количество YbF₃ в шихте в процентном отношении.

Измерения ЭПР проводились на модифицированном спектрометре ERS-231 (Германия) [13] при *T* = 4.2 K. Оптико-магнитные спектры (оптические, магнитной циркулярной поляризации люминесценции — МЦПЛ, зе-

Рис. 1. Спектры люминесценции (a-c) и поглощения (d) Yb³⁺ в CdF₂ (концентрации YbF₃ указаны около спектров). T = 2 K. На вставках справа показаны фрагменты спектров люминесценции (спектры нормированы на значение наиболее интенсивной линии в данной области), слева — схема энергетических уровней Yb³⁺ (T_c).

емановского расщепления линий поглощения и люминесценции, ОД ЭПР) регистрировались на многофункциональном спектрометре [14] при T = 2, 4.2, 77и 300 К. Спектры люминесценции измерялись как при возбуждении светом ксеноновой лампы высокого давления, так и при селективном возбуждении. В качестве источника селективного возбуждения люминесценции использовался полупроводниковый лазерный диод АТС-С1000-100-ТМГ-965 (Санкт-Петербург) мощностью 1 W с шириной линии излучения порядка 2 nm и возможностью перестройки длины волны излучения от 963 nm $(10\,381\,\text{cm}^{-1})$ до 969 nm $(10\,317\,\text{cm}^{-1})$. Для наблюдения спектров ОДЭПР исследуемый образец помещался в пучность магнитной компоненты СВЧ-волны прямоугольного резонатора TE_{102} с отверстиями (d = 4 mm) для прохождения света. Оптический гелиевый криостат с резонатором находился в межполюсном зазоре электромагнита (80 mm). Для возбуждения и регистрации люминесценции вдоль направления магнитного поля использовались 90° призмы. Источником СВЧ-накачки служил клистрон K-88A на $9.5 \,\text{GHz}$ ($W = 800 \,\text{mW}$). В качестве анализатора поляризации люминесценции применялись ячейки Поккельса и поляризатор, в остальном при регистрации спектров ОД ЭПР использовалась стандартная методика [15,16]. Экспериментальные значения длин волн линий люминесценции и поглощения переводились в длины волн в вакууме. Соотношение ($\lambda_{vac} = 0.006342 + 1.000267\lambda$), по которому делался этот перевод, было получено линейной аппроксимацией данных [17]. Далее длины волн и частоты оптических линий в тексте и на рисунках приведены с учетом данного перевода.

На рис. 1 представлены спектры люминесценции и поглощения Yb³⁺ в CdF₂ при различных концентрациях иттербия (c = 0.001, 0.01 и 0.1%), на вставке рисунка показана диаграмма энергетических уровней Т_с. При c = 0.001% в области частот $10\,360 - 10\,400\,\mathrm{cm}^{-1}$ наблюдаются две линии люминесценции. Согласно [11], наиболее интенсивная из них принадлежит T_c Yb³⁺ (переход ${}^{1}\Gamma_{7} \leftrightarrow {}^{2}\Gamma_{7}$), а вторая — ПЦ ромбической симметрии Yb^{3+} (R_{Na^+}). Однако в работе [11] данная линия наблюдалась в спектрах поглощения кристаллов, синтезированных с добавкой NaF. В нашем случае эта линия наблюдается для кристаллов, выращенных без специальных добавок. Для подтверждения предположения о принадлежности данной линии R_{Na⁺} были проведены исследования кристаллов CdF2: 0.001% YbF_3 и CdF_2 : 0.001% YbF_3 + 0.01% NaF методом ЭПР. В обоих случаях угловые зависимости спектров ЭПР в плоскости (110) (рис. 2) показали, что в указанных кристаллах присутствуют центры T_c (g = 4.329) с нелокальной компенсацией избыточного положительного заряда и шесть магнитонеэквивалентных комплексов ромбической симметрии R_{Na⁺} с ионом-компенсатором Na⁺, замещающим ближайший к Yb³⁺ катион вдоль оси С2 кристаллической решетки. Следует отметить

Рис. 2. Угловая зависимость спектров ЭПР Yb³⁺ в CdF₂ при вращении магнитного поля в плоскости (110). T = 4.2 K, $\nu = 9.33$ GHz. Штриховые линии — теоретическая аппроксимация линий ЭПР (^{even}Yb), соответствующих ПЦ R_{Na^+} . На вставках показаны фрагменты структурных моделей ПЦ T_c и R_{Na^+} Сверхтонкая структура Yb³⁺ (T_c) показана на нижней вставке, где числа соответствуют изотопам ¹⁷¹Yb (I = 1/2) и ¹⁷³Yb (I = 5/2).

Уровень	CdF_2		CaF ₂		PbF ₂	
	Эксперимент	Теория	Эксперимент	Теория	Эксперимент	Теория
$^{2}\Gamma_{8}$	10867	10871	10840	10848	10761	10764
$^{2}\Gamma_{7}$	10392	10374	10381	10343	10346	10333
$g(^{2}\Gamma_{7})$ — Зееман	-1.42 ± 0.07	-1.396	-1.42 ± 0.07	-1.401	-1.43 ± 0.07	-1.403
$g(^{2}\Gamma_{7})$ — ОД ЭПР	-1.411 ± 0.006		-1.414 ± 0.004		-1.414 ± 0.005	
$^{171}A(^{2}\Gamma_{7})$ — ОД ЭПР			2759 ± 30			
Γ_6	755	741	778	749	642	632
${}^{1}\Gamma_{8}$	676	669	644	629	561	556
${}^{1}\Gamma_{7}$	0	0	0	0	0	0
$g({}^{1}\Gamma_{7})$ — ЭПР	3.429 ± 0.001	3.484	3.438 ± 0.005	3.480	3.429 ± 0.001	3.476
$^{171}A(^{1}\Gamma_{7})$ — ЭПР	2642 ± 5		$2638.70 \pm 0.05 [18]^*$		2650 ± 5	

Таблица 1. Уровни энергии (сm⁻¹), ${}^{171}A$ (MHz) и *g*-факторы Yb³⁺ (T_c) в кристаллах MeF₂.

* Получено из эксперимента по ДЭЯР.

довольно заметное отличие полученных значений g-факторов R_{Na^+} ($g_x = 3.300, g_y = 3.218, g_z = 3.737$) от приведенных в [11]: $g_x = 3.356, g_y = 3.271, g_z = 3.775$. Для кристалла, выращенного с добавкой NaF в спектрах люминесценции наблюдается значительное увеличение интенсивности линии 10 385 сm⁻¹, что подтверждает предположение о принадлежности данной линии R_{Na^+} , а ее наличие в спектре люминесценции кристалла CdF₂: 0.001% YbF₃, видимо, свидетельствует о присутствии неконтролируемой примеси NaF в шихте.

При более высоких концентрациях YbF₃ (0.01 и 0.1%) в области частот 10190-10250 cm⁻¹ в спектрах люминесценции и поглощения наблюдается группа линий. Интенсивность этих линий по отношению к интенсивности линии ПЦ кубической симметрии растет с концентрацией. При селективном возбуждении люминесценции на частотах данных линий наблюдается интенсивная апконверсионная люминесценция в видимой области спектра. С учетом этого указанные линии, видимо, соответствуют парным центрам или кластерам иттербия. С увеличением концентрации в области 10 360-10 400 cm⁻¹ (вставка к рис. 1) как в спектрах люминесценции, так и в спектрах поглощения появляются дополнительные линии, соответствующие другим ПЦ, образование которых, видимо, связано с различными вариантами локальной компенсации избыточного положительного заряда. Для установления структурных моделей этих ПЦ требуются более детальные исследования.

Спектры люминесценции Yb³⁺ при селективном возбуждении на частотах 10 392, 10 381 и 10 346 cm⁻¹ для CdF₂, CaF₂ и PbF₂ соответственно представлены на рис. 3. Область излучения лазерного диода схематически показана горизонтальной скобкой в нижней части каждого спектра. Методом оптической Зееманспектроскопии [5] было показано, что линия поглощения 10 381 cm⁻¹ в CaF₂ соответствует переходу ${}^{1}\Gamma_{7} \leftrightarrow {}^{2}\Gamma_{7}$ Yb³⁺ (T_{c}). По аналогии можно предположить, что линии 10 392 и 10 346 cm⁻¹ в CdF₂ и PbF₂ соответственно также принадлежат этому переходу. Для доказательства этого предположения были проведены исследования поперечного и продольного эффектов Зеемана для линий люминесценции с частотами 10392, 10381 и 10346 сm⁻¹. Угловые зависимости величин расщепления в магнитном поле данных линий люминесценции имеют изотропный характер, что доказывает их принадлежность T_c и переходу ${}^1\Gamma_7 \leftrightarrow {}^2\Gamma_7$. Величины расщеплений и интенсивности π - (E || H, где E электрический вектор световой волны, H — направление магнитного поля) и σ - (E \perp H) компонент в зеемановских спектрах позволили определить значения g-факторов для состояния ${}^2\Gamma_7$ в возбужденном муль-

Рис. 3. Спектры люминесценции Yb³⁺ в CdF₂ (c = 0.01%), CaF₂ (c = 0.01%) и PbF₂ (c = 0.03%) при селективном возбуждении лазерным диодом, области излучения которого схематически показаны горизонтальной скобкой. T = 2 К. Стрелками показаны линии люминесценции T_c , соотнесенные с электронными переходами с соответствующим обозначением.

Рис. 4. Спектры МЦПЛ $(I(\sigma_r)-I(\sigma_l))$ Yb³⁺ в CdF₂ (c = 0.01%), CaF₂ (c = 0.01%) и PbF₂ (c = 0.03%) при селективном возбуждении (условия возбуждения соответствуют рис. 3) излучением лазерного диода с линейной поляризацией (π) и с циркулярной поляризацией с правым (σ_r) и левым (σ_l) вращением. T = 2 K, H = 800 mT.

типлете ${}^{2}F_{5/2}$ (табл. 1). Из сравнения величин зеемановских расщеплений линий люминесценции в поперечной и продольной геометрии эксперимента установлено, что данные линии соответствуют магнитным дипольным переходам (в продольной геометрии эксперимента наблюдаются линии, соответствующие π -переходам в поперечном эффекте Зеемана), и знак *g*-фактора уровня ${}^{2}\Gamma_{7}$ имеет противоположную величину по отношению к знаку *g*-фактора уровня ${}^{1}\Gamma_{7}$. Следует отметить, что выводы о мультипольности переходов и знаке *g*-фактора состояния ${}^{2}\Gamma_{7}$ находятся в согласии с результатами, полученными в работах [19–21] для изоэлектронного иона Tm²⁺ в CaF₂.

Для определения более точных значений g-факторов состояния ²Г₇ были проведены измерения спектров ОД ЭПР по МЦПЛ. Спектры МЦПЛ Yb³⁺ в MeF₂ при различной поляризации излучения, возбуждающего люминесценцию, представлены на рис. 4. Для кристаллов PbF2 и CaF2 ярко выражен эффект спиновой памяти [15], который в данном случае проявляется в том, что при возбуждении люминесценции вдоль направления магнитного поля светом с циркулярной поляризацией люминесценция также имеет циркулярную поляризацию преимущественно с правым или левым вращением в зависимости от направления вращения поляризации возбуждающего света. Для CdF2 этот эффект также присутствует, хотя он не так ярко выражен, что, видимо, свидетельствует о более коротком времени спинрешеточной релаксации на состоянии ${}^{2}\Gamma_{7}$ в кристалле по сравнению с PbF₂ или CaF₂. Наличие данного эффекта позволяет, используя возбуждающее излучение с правым или левым вращением поляризации, преимущественно заселить один из двух зеемановских подуровней состояния ${}^{2}\Gamma_{7}$. Это использовалось при регистрации спектров ОД ЭПР для увеличения сигнала микроволнового резонанса.

Спектр ОДЭПР Yb³⁺ для состояния ${}^{2}\Gamma_{7}$ в CaF₂ представлен на рис. 5. Интенсивная линия соответствует четным изотопам Yb³⁺, две линии ОДЭПР с меньшей интенсивностью — 171 Yb³⁺ (I = 1/2). Спектры ОДЭПР Yb³⁺ в кристаллах PbF₂ и CdF₂ имеют отношение сигнал/шум, значительно меньшее по сравнению с CaF₂, что в основном связано с худшим качеством образцов, и в спектрах наблюдаются линии ОДЭПР только от четных изотопов Yb³⁺ (вставка на рис. 5). Значения g-факторов и констант сверхтонкого взаимодействия (СТВ) для состояний ${}^{2}\Gamma_{7}$ и ${}^{1}\Gamma_{7}$ представлены в табл. 1. Параметры СТВ основного и возбужденного состояний имеют близкие значения, что находится в согласии с результатами, например, для изоэлектронного иона Tm²⁺ в CaF₂ [19,20].

Две наиболее интенсивные линии люминесценции в области частот 9600–9800 сm⁻¹ (рис. 3) можно соотнести с переходами ${}^{2}\Gamma_{7} \rightarrow {}^{1}\Gamma_{8}$ и ${}^{2}\Gamma_{7} \rightarrow {}^{6}$. Наиболее интенсивную из данных линий в CaF₂ авторы работы [6] сопоставили с переходом ${}^{2}\Gamma_{7} \rightarrow {}^{1}\Gamma_{8}$, однако переход ${}^{2}\Gamma_{7} \rightarrow {}^{6}$ остался неопределенным. Для однозначного сопоставления линий люминесценции с переходами на уровни ${}^{1}\Gamma_{8}$ и 6 были исследованы угловые зависимости зеемановского расщепления данных линий. Для CaF₂ фрагменты спектров люминесценции при трех ориентациях кристалла относительно магнитного поля представ-

Рис. 5. Спектр ОД ЭПР по МЦПЛ T_c Yb³⁺ в CaF₂, T = 2 K, $\nu = 9.3635$ GHz. Стрелками показаны линии, соответствующие четным (I = 0) и ¹⁷¹Yb³⁺ (I = 1/2) изотопам Yb³⁺. На вставке представлены фрагменты спектров ОД ЭПР T_c Yb³⁺ в CdF₂ ($\nu = 9.533$ GHz) и PbF₂ ($\nu = 9.515$ GHz).

Рис. 6. Фрагменты поляризованных спектров люминесценции T_c Yb³⁺ в CaF₂ при селективном возбуждении на частоте 10381 сm⁻¹ в магнитном поле (поперечный эффект Зеемана) при различных ориентациях кристалла относительно направления магнитного поля. T = 2 K. H = 0 и 2.2 T.

лены на рис. 6. Величины расщеплений и интенсивности зеемановских компонент линии 9737 сm⁻¹ (рис. 6) имеют явную угловую зависимость, что полностью подтверждает предположение о том, что данная линия соответствует переходу ${}^{2}\Gamma_{7} \rightarrow {}^{1}\Gamma_{8}$, поскольку расщепление квартета ${}^{1}\Gamma_{8}$ в магнитном поле не изотропно [22]. Для линии 9603 сm⁻¹ такой зависимости не наблюдается. Это свидетельствует о том, что она не является электронно-колебательным спутником линии 9737 сm⁻¹ и, следовательно, соответствует переходу между двумя крамерсовыми дублетами (${}^{2}\Gamma_{7}$ и Γ_{6}), величина расщеплений которых в магнитном поле не зависит от ориентации кристалла относительно направления магнитного поля. Спектры аналогичного характера наблюдались также и для CdF₂ и PbF₂.

Полученные данные на основе формализма, развитого в [8], позволили более надежно и точно определить параметры КП для T_c Yb³⁺ в исследуемых кристаллах (табл. 2).

Таблица 2. Параметры (ст⁻¹) КП B_4 , B_6 и спинорбитального взаимодействия ξ Yb³⁺(T_c) в MeF₂

Кристалл	a_0	ξ	B_4	<i>B</i> ₆
CdF_2	5.362	2906	-229	32
CaF_2	5.443	2904	-230	25
PbF_2	5.901	2907	-196	24.8

Примечание. *a*₀ — постоянная кристаллической решетки (в Å) [23].

3. Заключение

Методами ЭПР, магнитооптики, ОД ЭПР проведено комплексное исследование центров T_c Yb³⁺. Впервые наблюдался спектр ОД ЭПР Yb³⁺ в состоянии ²Г₇ в возбужденном мультиплете ²F_{5/2} и определена константа СТВ для ¹⁷¹Yb³⁺ в CaF₂. Получены параметры КП T_c Yb³⁺ в CdF₂ и уточнены параметры КП данного ПЦ в CaF₂ и PbF₂.

Авторы благодарят Р.Ю. Абдулсабирова и С.Л. Кораблеву за предоставление образцов, А.М. Леушина и Б.Н. Казакова за полезные обсуждения.

Список литературы

- M.L. Falin, M.V. Eremin, H. Bill, D. Lovy. Appl. Magn. Res. 14, 427 (1998).
- [2] О.А. Аникеенок. ФТТ 45, 812 (2003).
- [3] О.А. Аникеенок. ФТТ 48, 1771 (2006).
- [4] J.M. Baker. In: Crystal with eluorine structure / Ed. W. Hayes. Clarendon, Oxford (1974). 341 p.
- [5] J. Kirton, A.M. White. Phys. Rev. 178, 543 (1969).
- [6] D. Kiro, W. Low. Magnetic resonance. Proc. of Int. Symp. on electron and nuclear magnetic resonance. Melbourne (1970).
 P. 247.
- [7] П.П. Феофилов. Опт. и спектр. 5, 216 (1958).
- [8] К.И. Герасимов, А.М. Леушин, М.Л. Фалин. ФТТ 43, 1609 (2001).
- [9] M.L. Falin, K.I. Gerasimov, V.A. Latypov, A.M. Leushin. J. Phys.: Cond. Matter 15, 2833 (2003).
- [10] M.L. Falin, K.I. Gerasimov, V.A. Latypov, A.M. Leushin. Appl. Magn. Res. 26, 617 (2004).
- [11] V.J. Abbruscato, E. Banks, B.R. McGarvey. J. Chem. Phys. 49, 903 (1968).
- [12] P.F. Weller. J. Electrochem. Soc.: Solid State Sci. 114, 609 (1967).
- [13] В.А. Латыпов, М.Л. Фалин. ПТЭ 4, 164 (2001).
- [14] M.L. Falin, K.I. Gerasimov, B.N. Kazakov, M.A. Yakshin. Appl. Magn. Res. 17, 103 (1999).
- [15] S. Geschwind. In: Electron paramagnetic resonance/ Ed. S. Geshwind. Plenum press, N.Y.–London (1972). 575 p.
- [16] J.-M. Spaeth, J.R. Niklas, R.H. Bartram. Structural analysis of point defects in solids. An introduction to multiple magnetic resonance spectroscopy. Springer-Verlag, Berlin–Heidelberg (1992). 367 p.
- [17] Л.В. Зайдель, В.К. Прокофьев, С.М. Раинский, В.А. Славный, Е.Я. Шрейдер. Таблицы спектральных линий. Наука, М. (1977). 800 с.
- [18] B. Bleaney. Proc. Roy. Soc. 73, 939 (1959).
- [19] W. Hayes, P.H.S. Smith. J. Phys. C.: Solid State Phys. 4, 840 (1971).
- [20] T. Kohmoto, Y. Fukuda, T. Hashi. Phys. Rev. B 34, 6094 (1986).
- [21] Б.П. Захарченя, В.П. Макаров, А.В. Варфоломеев, А.Я. Рыскин. Опт. и спектр. 16, 455 (1964).
- [22] J.M. Baker, W.B.J. Blake, G.M. Copland. Proc. Roy. Soc. A 309, 119 (1969).
- [23] J.M. Baker. J. Phys. C: Solid State Phys. 12, 4039 (1979).