К теории зависимости от магнитного поля теплопроводности диэлектриков в изотропной модели

© Л.А. Максимов, Т.В. Хабарова

Российский научный центр "Курчатовский институт", Москва, Россия E-mail: frau_sych@mail.ru

(Поступила в Редакцию 23 июня 2008 г.)

Анализируется поляризация фононов в магнитном поле в изотропной модели. Показано, что фононы в присутствии спин-фононного взаимодействия обладают круговой поляризацией, благодаря которой возникает компонента потока тепла, перпендикулярная градиенту температуры и магнитному полю.

Работа поддержана грантом РФФИ № 07-02-00287.

PACS: 66.70.+f, 72.15.Gd, 72.20.Pa

1. Введение

Недавно [1,2] был открыт новый эффект — наблюдение в диэлектрическом соединении в магнитном поле потока тепла в направлении, перпендикулярном полю *В* и градиенту температуры ∇T — фононный Холл-эффект (ФХЭ). Такой поток обусловлен спин-фононным взаимодействием (СФВ) фононов с парамагнитными ионами Tb⁺³. Теория ФХЭ рассматривалась в работах [3,4] (критику работы [3] см. в [4]).

Однако не только СФВ приводит к зависимости теплопроводности диэлектриков от магнитного поля. Известно, что в молекулярных газах магнитное поле влияет на явление переноса благодаря зависимости сечения столкновений от вращательных моментов молекул **M**, прецессирующих в магнитном поле (эффект Зенфтлебена-Бинакера [5]).

Следует ожидать, что явление, аналогичное ФХЭ в Tb₃Ga₅O₁₂ можно обнаружить в молекулярных кристаллах, в которых имеется компонента, состоящая из молекул, обладающих вращательными степенями свободы (ВСС). Типичными представителями таких веществ являются криокристаллы [6]. К зависимости теплопроводности от магнитного поля может привести рассеяние фононов на молекулях, зависящее от ВСС. Соответствующую теорию легко построить, обобщив теорию Зенфтлебена-Бинакера на случай переноса тепла фононами. В приближении, в котором ВСС рассматриваются квазиклассически, такая теория рассмотрена в [7]. В настоящей работе подойдем к задаче с другой стороны и покажем, что в кристаллах с ВСС существует механизм, близкий к СФВ в ионных кристаллах и приводящий к ФХЭ благодаря перенормировке акустических волн из-за взаимодействия колебаний решетки с вращением молекул. Из соображений симметрии гамильтониан, описывающий такое взаимодействие, можно записать в форме, подобной СФВ,

$$H_1 = -g \sum_n (\mathbf{M}_n, [\mathbf{u}_n \times \mathbf{p}_n]). \tag{1}$$

Здесь \mathbf{M}_n — вращательный момент молекулы, принадлежащей ячейке n, $[\mathbf{u}_n \times \mathbf{p}_n]$ — суммарный орбиталь-

ный момент осциллирующих атомов в ячейке. Молекулярные кристаллы, вообще говоря, обладают сложной структурой, содержащей много частиц в элементарной ячейке. Но при низких температурах тепло переносится длинноволновыми упругими волнами, когда все частицы ячейки осциллируют с одинаковой амплитудой **u**_n и скоростью v_n. В связи с этим вместо многокомпанентного кристалла адекватным образом можно рассмотреть кристалл с одним атомом в ячейке с массой *m*, равной суммарной массе частиц в ячейке, и одним вращательным моментом. Величина *g* в случае СФВ оценивалась в многочисленных работах по спин-решеточной релаксации [4,8]. В случае взаимодействия акустических колебаний с вращательными степенями свободы коэффициент g будем рассматривать как малый феноменологический параметр, имеющий тот же порядок величины, что и для СФВ, если молекула имеет нескомпенсированный электронный момент, как в О2. Будем использовать систему единиц, в которой $k_B = 1$, $\hbar = 1$. Для краткости взаимодействие (1) в случае кристаллов с вращательными степенями свободы тоже будем называть СФВ. Почти одинаковый вид гамильтониана, описывающего взаимодействие фононов с внутренними степенями свободы в ионных и молекулярных кристаллах (в ионных кристаллах с квазидуплетной структурой нижних уровней компоненты оператора М заменяются на матрицы Паули), приводит к качественной близости теорий поперечной теплопроводности в обоих случаях. Но с физической точки зрения механизмы взаимодействия далеки друг от друга.

Обычная теплопроводность диэлектриков слабо зависит от детальных свойств акустических колебаний. Как показано в [4], $\Phi X \Im$ обусловлен возникновением эллиптической поляризации фононов в присутствии магнитного поля и СФВ. Но характер поляризации акустических ветвей существенным образом зависит от свойств симметрии динамической матрицы. В настоящей работе в отличие от общего случая, рассмотренного в [4], в котором почти при всех направлениях волнового вектора **k** все три моды колебаний являются невырожденными, будет рассмотрена модель колебаний в изотропной среде, в которой поперечные акустические моды вырождены при всех **k**. Хотя эта модель реализуется только в случае взаимодействия атомов с большим радиусом взаимодействия, в ней динамическая матрица имеет сравнительно простой вид. Мы найдем в модели изотропной среды поток тепла в направлении $[\mathbf{B} \times \nabla T]$ как для кристаллов с вращательными степенями свободы, так и для ионных кристаллов с квазидуплетной структурой. Первый результат интересен как предсказание наличия $\Phi X \Im$ в молекулярных кристаллах, а второй дает возможность исправить результаты [3].

2. Поток тепла

Во внешнем магнитном поле среднее значение вращательного момента $\langle \mathbf{M} \rangle = \langle \mathbf{M}_n \rangle$ отлично от нуля, и упругие колебания кристалла определяются перенормированным с учетом (1) гамильтонианом

$$H = \sum_{n} h_{n}, \qquad (2)$$

где

$$h_n = \frac{1}{2m} \mathbf{p}_n^2 - \frac{1}{2} \sum_{n'} m D_{nn'}^{ab} u_n^a u_{n'}^b - g \langle \mathbf{M} \rangle [\mathbf{u}_n \times \mathbf{p}_n].$$
(3)

Существенно, что эффективная константа взаимодействия $g\langle \mathbf{M} \rangle$ пропорциональна намагниченности частиц и исчезает при выключении магнитного поля.

Используя (3), можно написать квантовое уравнение непрерывности энергии и вывести формулу плотности потока тепла [3,4,9]

$$j_{H}^{\gamma} = \frac{m}{2V} \sum_{nn'} r^{\gamma} D_{nn'}^{ab} u_{n}^{a} v_{n'}^{b}.$$
 (4)

Подчеркнем, что в этом выражении величина v_n^b есть не импульс иона p_n^b , деленный на массу, а скорость этого иона

$$v_n^a = \partial_t u_n^a = \partial H / \partial p_n^a = p_n^a / m - e_{abc} g \langle M^b \rangle u_n^c.$$
 (5)

Перейдем в (4) к импульсному представлению, используя формулу

$$\sum_{r} r^{\gamma} D_{r}^{ab} \exp(ikr) = i \nabla_{k}^{\gamma} D_{k}^{ab}.$$
 (6)

Находим

$$j_{H}^{\gamma} = i \, \frac{m}{2V} \sum_{ksk's'} (\nabla_{k}^{\gamma} D_{k}^{ab}) u_{ks}^{a} v_{-ks'}^{b}$$
(7)

(*s* — номер моды). Введем разложения векторов смещения и скорости частиц на нормальные колебания

$$u_{ks}^{a} = \sqrt{\frac{1}{2m\omega_{ks}}} \left(e_{ks}^{a}a_{ks} + e_{-ks}^{a^{*}}a_{-ks}^{+}\right),$$
$$v_{ks}^{a} = (-i\omega_{ks})\sqrt{\frac{1}{2m\omega_{ks}}} \left(e_{ks}^{a}a_{ks} - e_{-ks}^{a^{*}}a_{-ks}^{+}\right).$$
(8)

Существенно, что обычный вид имеет именно разложение скорости, а не импульса $\mathbf{p}_i = mv_i - gm(\mathbf{u}_i \times \mathbf{M})$, как полагали авторы [3]. Подставим (8) в (7), усредним по состоянию, диагональному по числам фононов, отбросим аномальные средние $\langle a_{ks}a_{-ks'}\rangle$ и $\langle a^+_{-ks'}a^+_{ks}\rangle$ и придем к формуле для потока тепла в направлении $[\mathbf{B} \times \nabla T]$

$$\langle j_{H}^{y} \rangle = \frac{1}{4V} \sum_{kss'} \left(\sqrt{\frac{\omega_{ks}}{\omega_{ks'}}} + \sqrt{\frac{\omega_{ks'}}{\omega_{ks}}} \right) \\ \times (\nabla_{k}^{y} D_{k}^{\alpha\beta}) e_{ks}^{\alpha^{*}} e_{ks'}^{\beta} \langle a_{ks}^{+} a_{ks'} \rangle.$$
 (9)

В изотропном теле $\Phi X \Im$ характеризуется одним коэффициентом (как константа Холла). Без потери общности мы выбираем намагниченность по оси Z градиент температуры — по X, холловский поток — по Y. На основе этого выражения в [4] была вычислена величина $\Phi X \Im$ для акустических колебаний общего вида. В настоящей работе рассматриваем модель упругих колебаний изотропного тела, в которой динамическая матрица нулевого приближения D_k^{ab} имеет вид

$$D_k^{ab} = c_0^2 \delta^{ab} k^2 + w k_a k_b \tag{10}$$

с вырожденными поперечными ветвями $\omega_{+,-}^2 = \omega_0^2 = c_0^2 k^2$ и продольной ветвью $\omega^2 = \omega_{\parallel}^2 + \lambda$, $\lambda = wk^2$. Здесь отброшен третий независимый член вида $\delta^{ab}k_a^2$, который в кубическом кристалле снимает вырождение.

Для модели изотропного тела, учитывая ортогональность векторов поляризации $e_{ks}^{a^*} e_{ks'}^a = \delta_{ss'}$, имеем

$$\begin{split} \langle j_{H}^{y} \rangle &= \frac{1}{4V} \sum_{kss'} \left(\sqrt{\frac{\omega_{ks}}{\omega_{ks'}}} + \sqrt{\frac{\omega_{ks'}}{\omega_{ks'}}} \right) \\ &\times \left[\delta_{ss'} 2c_{0}^{2} k^{y} + w \left((k_{a} e_{ks}^{a^{*}}) e_{ks'}^{y} + e_{ks}^{y^{*}} (k_{b} e_{ks'}^{b}) \right) \right] \langle a_{ks}^{+} a_{ks'} \rangle. \end{split}$$

$$(11)$$

Обратим внимание на то, что формулы (4), (9), (11) явно не содержат константы *g*. Величина потока тепла изменяется только благодаря перенормировке спектра и поляризации фононов. Можно убедиться, что члены (11), диагональные по модам, не приводят к потоку в направлении $[\mathbf{B} \times \nabla T]$. Явление ФХЭ описывается недиагональными по модам членами (11)

$$\langle j_{H}^{y} \rangle = \frac{w}{2V} \sum_{kss'} \left(\sqrt{\frac{\omega_{ks}}{\omega_{ks'}}} + \sqrt{\frac{\omega_{ks'}}{\omega_{ks}}} \right) \\ \times \operatorname{Re} \left[e_{ks}^{y^{*}} \left(\mathbf{k} \mathbf{e}_{ks'} \right) \langle a_{ks}^{+} a_{ks'} \rangle \right].$$
(12)

В частности, коррелированное движение поперечных мод дает

$$\langle j_{\perp}^{y} \rangle = \frac{w}{V} \sum_{k} \operatorname{Re} \left\{ e_{k-}^{y^{*}} (\mathbf{k} \mathbf{e}_{k+}) \langle a_{k-}^{+} a_{k+} \rangle + e_{k+}^{y^{*}} (\mathbf{k} \mathbf{e}_{k-}) \langle a_{k+}^{+} a_{k-} \rangle \right\}.$$
(13)

3. Круговая поляризация

Выражение (13) существенным образом зависит от векторов поляризации фононов. В первую очередь необходимо установить их вид с учетом СФВ. Гамильтониан (3) приводит к дисперсионному уравнению

$$\omega_{ks}^2 e_{ks}^a = \tilde{D}_k^{ab} e_{ks}^b, \qquad (14)$$

где

$$\tilde{D}_k^{ab} = D_k^{ab} + i D_{1k}^{ab}, \ D_{1k}^{ab} = e_{abc} G^c, \ G^e = 2\omega g \langle M^c \rangle, \ (15)$$

$$\tilde{D}_k^{ab}(\mathbf{G}) = \left(\tilde{D}_k^{ba}(-\mathbf{G})\right)^*, \quad (\mathbf{e}_{ks}^* \mathbf{e}_{ks'}) = \delta_{ss'}. \tag{16}$$

Вклад СФВ в динамическую матрицу есть мнимый антисимметричный тензор. В модели (10) дисперсионное уравнение (14) принимает вид

$$We^{a} = \lambda \hat{k}^{a}(\hat{\mathbf{k}}\mathbf{e}) + i[\mathbf{e} \times \mathbf{G}]^{a}.$$
 (17)

Здесь $W = \omega^2 - \omega_0^2$, $\lambda = wk^2$, $\hat{\mathbf{k}} = \mathbf{k}/k = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$, $\mathbf{G} = (0, 0, G)$, $(\mathbf{G}\hat{\mathbf{k}}) = G\cos\theta$ и $Q = G\sin\theta$. Введем нормированные орты

2)
$$\hat{\mathbf{m}} = (\mathbf{G} - (\mathbf{G}\hat{\mathbf{k}})\hat{\mathbf{k}})/Q$$

= $(-\cos\theta\cos\varphi, -\cos\theta\sin\varphi, \sin\theta),$

3)
$$\hat{\mathbf{n}} = [\hat{\mathbf{k}} \times \hat{\mathbf{m}}] = Q^{-1}[\hat{\mathbf{k}} \times \mathbf{G}] = (\sin\varphi, -\cos\varphi, 0).$$
 (18)

Из (17) находим компоненты вектора е

$$\mathbf{e} = \xi \left[\frac{Q}{\lambda - W} \,\hat{\mathbf{k}} + \frac{\mathbf{G}\hat{\mathbf{k}}}{W} \,\hat{\mathbf{m}} - i\hat{\mathbf{n}} \right] \tag{19}$$

и уравнение на собственные значения

$$\frac{Q^2 W}{\lambda - W} + W^2 - (\mathbf{G}\hat{\mathbf{k}})^2 = 0.$$
 (20)

Дисперсионное уравнение (14) определяет векторы поляризации с точностью до фазы. Примем фазу параметра равной нулю. Модуль параметра задается нормировкой

$$\xi^{-2} = \left(\frac{Q}{\lambda - W}\right)^2 + \left(\frac{(\mathbf{G}\hat{\mathbf{k}})}{W}\right)^2 + 1.$$
(21)

Вектор поляризации (19) при инверсии $(\hat{\mathbf{k}}, \hat{\mathbf{m}}, \hat{\mathbf{n}} \rightarrow -\hat{\mathbf{k}}, \hat{\mathbf{m}}, -\hat{\mathbf{n}})$ меняет знак как полярный вектор. Комплексность вектора (19) означает, что он эллиптически поляризован.

Формулы (19)-(21) справедливы при любом G. Далее предполагаем взаимодействие фононов с внутренними степенями свободы ионов (молекул) слабым $G \ll \lambda$. В этом случае из (20) получаем одну продольную моду $W_{\parallel} = \lambda$, $\mathbf{e} = \hat{\mathbf{k}}$.

Для поперечных мод величина *W* в нулевом приближении равна нулю, а при учете *G* равна

$$W_{\eta} = \frac{1}{2} \left(-(Q^2/\lambda) + \eta \sqrt{(Q^2/\lambda)^2 + 4(\mathbf{G}\hat{\mathbf{k}})} \right), \ \eta = \pm 1$$
(22)

и характеризует их расщепление

$$\Delta = \omega_{+} - \omega_{-} = \frac{1}{\omega_{0}} \sqrt{(\mathcal{Q}^{2}/2\lambda)^{2} + (\mathbf{G}\hat{\mathbf{k}})^{2}}.$$
 (23)

Расщепление минимально на экваторе $(|\cos \theta| < G/\lambda, \delta = Q^2/(2\lambda\omega_0))$. Для остальных направлений $\hat{\mathbf{k}}$ имеем

$$W_{\eta} = \eta |\mathbf{G}\mathbf{k}|, \quad \Delta = G |\cos\theta| / \omega_0.$$
 (24)

Действительная и мнимая части каждого из \mathbf{e}_{η} в нулевом приближении взаимно перпендикулярны и равны друг другу

$$\mathbf{e}_{\eta} \simeq \frac{1}{\sqrt{2}} \left[\eta(\operatorname{sign} \cos \theta) \hat{\mathbf{m}} - i \hat{\mathbf{n}} \right].$$
 (25)

Это означает, что поперечные фононы имеют круговую поляризацию [3].

Направление вектора поляризации (25) меняется скачком при пересечении экватора. Однако если изменить нумерацию поперечных мод и вместо (24) писать $W_{\eta} = \eta \mathbf{G} \hat{\mathbf{k}}$, то проекция (19) на ось $\hat{\mathbf{m}}$ будет постоянной. Так всегда происходит при пересечении уровней. От выбора нумерации величина (13), очевидно, не зависит.

В линейном по СФВ приближении обнаруживаем отклонение от поперечности

$$\left(\mathbf{e}_{\eta}\hat{\mathbf{k}}\right) = \frac{\xi_{\eta}Q}{\lambda}\left(1 + \frac{W_{\eta}}{\lambda}\right).$$
 (26)

Кроме того, далее потребуются выражения

$$\xi_{\eta} \simeq \frac{1}{\sqrt{2}} \left(1 - \frac{Q^2}{4\lambda W_{\eta}} \right), \tag{27}$$

$$e_{\eta}^{y} = \xi_{\eta} \left[\frac{Q}{\lambda - W_{\eta}} (\sin \theta \sin \varphi) + \frac{(\mathbf{G}\hat{\mathbf{k}})}{W_{\eta}} (-\cos \theta \sin \varphi) + i \cos \varphi \right].$$
(28)

4. Недиагональная матрица плотности

В формулу (13) входит проекция вектора поляризации на направление волнового вектора ($\mathbf{e}_{\eta}\hat{\mathbf{k}}$), которая линейна по СФВ. Следовательно, недиагональную по модам матрицу плотности $\langle a_{ks}^+ a_{ks'} \rangle$ достаточно вычислить в нулевом приближении по СФВ. Как известно, неравновесная часть матрицы плотности (диагональная по модам) в тау-приближении равна

$$f_p = \langle a_p^+ a_p \rangle - N_p = -\frac{1}{\Omega_{pp}} (\mathbf{c}_p \nabla) N_p$$
$$= -\frac{1}{\Omega_{pp} T^2} N_p (1 + N_p) (\omega_p \mathbf{c}_p) \nabla T.$$
(29)

Здесь и в дальнейшем для краткости пишем p = ks, величина $1/\Omega_{pp}$ — время релаксации *p*-фонона. Кроме того, в очевидных случаях будем опускать индекс *k*.

Соответствующий поток энергии параллелен ∇T и приводит к коэффициенту теплопроводности

$$\varkappa^{xx} \simeq T^3 (c\Omega)^{-1}, \tag{30}$$

где c, Ω — средние значения c_p , Ω_{pp} .

Недиагональную часть матрицы плотности можно выразить через f_p , построив обобщенное уравнение Больцмана. Рассеяние фононов имеет много каналов: ангармонизм, резонансное рассеяние с возбуждением мультиплетной структуры молекул, рассеяние с участием вращательных степеней свободы, рассеяние на примесях. Во всех случаях ответ имеет одинаковую структуру. В работе [4] показано, что

$$\langle a_p^+ a_q \rangle = \frac{iJ_{pq}}{(\omega_p - \omega_q)},\tag{31}$$

где J_{pq} — эрмитова матрица, которая от обычного интеграла столкновений отличается главным образом тем, что вместо квадрата модуля амплитуды рассеяния (золотое правило Ферми) стоит произведение амплитуд рассеяния фононов. В тау-приближении это выражение имеет вид

$$\langle a_p^+ a_q \rangle = -i \, \frac{\Omega_{qp}(\omega_p) f_p + \Omega_{qp}(\omega_q) f_q}{2(\omega_p - \omega_q)}, \qquad (32)$$

где $\Omega_{qp}^*(\omega_p) = \Omega_{pq}(\omega_p), \langle a_p^+ a_q \rangle^* = \langle a_q^+ a_p \rangle.$

Вид эффективных частот релаксации зависит от механизма рассеяния. В [4] приведены соответствующие формулы для резонансного рассеяния и ангармонизма. В случае потенциального рассеяния на примесях

$$\Omega_{qp}(\omega_p) = 2\pi \frac{N_{im}}{N^2} \sum_g A_{qg} A_{gp} \delta(\omega_p - \omega_g).$$
(33)

Существенно, что амплитуда перехода $A_{pq} = e_p^{a^*} A_{pq}^{ab} e_q^b$ пропорциональна векторам поляризации. Это гарантирует независимость потока (13) от общих фаз мод фононов (фазы параметра ξ в (19)). Зависимость A_{qg} от поляризаций автоматически переносится на частоты релаксации $\Omega_{qp} = e_q^{a^*} \Omega_{qp}^{ab} e_p^b$, где тензор $\Omega_{qp}^{ab} = (\Omega_{pq}^{ba})^*$ от внешних векторов поляризации не зависит. В модели изотропного тела для поперечных мод в (32) в числителе расщеплением мод можно пренебречь

$$\langle a_{k+}^+ a_{k-} \rangle = -i\Omega_{-+}(\omega_0) \frac{f_{\perp}}{\Delta}.$$
 (34)

Когда одна из мод продольная, из (32) имеем

где

$$\langle a_2^+ a_\eta \rangle = -\frac{i}{2\varepsilon} \left[\Omega_{3\eta}(\omega_3) f_3 + \Omega_{\eta 3}(\omega_0) f_\perp \right],$$
(35)
$$\varepsilon = \omega_3 - \omega_0 = \sqrt{\omega_0^2 + \lambda^2} - \omega_0.$$

5. Вычисление вклада поперечных мод в x^{yx}

Применим полученные выше формулы для вычисления поперечного коэффициента теплопроводности \varkappa^{yx} . Подставим в (13) выражение (34)

$$\langle j_{\perp}^{y} \rangle = -\frac{w}{V} \sum_{k} \operatorname{Re} \left\{ -e_{k-}^{y^{*}} (\mathbf{k} \mathbf{e}_{k+}) i \Omega_{-+}^{*} (\omega_{0}) \frac{f_{\perp}}{\Delta} + e_{k+}^{y^{*}} (\mathbf{k} \mathbf{e}_{k-}) i \Omega_{-+} (\omega_{0}) \frac{f_{\perp}}{\Delta} \right\}.$$
(36)

Функция (29) f_{\perp} пропорциональна $c^x \sim \cos \varphi$, и отличный от нуля результат дает только мнимая часть (28): $e_{kn}^{y^*} = -i\xi_{\eta}\cos \varphi$. Подставим (28) и (26) в (36)

$$\langle j_{\perp}^{y} \rangle = -\frac{w}{V} \sum_{k} \frac{f_{\perp}}{\Delta} \frac{kQ}{\lambda} \xi_{-} \xi_{+} \cos \varphi$$
$$\times \operatorname{Re} \left\{ -\left(1 + \frac{W_{+}}{\lambda}\right) \Omega_{-+}^{*} + \left(1 + \frac{W_{-}}{\lambda}\right) \Omega_{-+} \right\}. \quad (37)$$

Видно, что вклад в ФХЭ вносят только члены второго порядка в (26). С учетом вида параметров λ , Δ , Q, ξ_{η} , W_{η} , G, введенных выше, получаем

$$\langle j_{\perp}^{\nu} \rangle = \frac{2g \langle \mathbf{M} \rangle w}{V} \sum_{k} f_{\perp} \frac{\omega_{0}^{2}}{w^{2}k^{3}} \sin \theta \cos \varphi \operatorname{Re}\Omega_{-+}.$$
 (38)

Теперь остается проинтегрировать это выражение, используя (29),

$$\varkappa^{yx} = \frac{2g \langle \mathbf{M} \rangle w}{V} \sum_{k} \frac{\omega_0^3}{w^2 k^3} (\sin \theta \cos \varphi)^2 \frac{\text{Re}\Omega_{-+}}{\Omega_{pp} T^2} N_p (1+N_p).$$
(39)

В результате находим, принимая $w\simeq c^2$ и $\left< \frac{\mathrm{Re}\Omega_{-+}}{\Omega_{pp}} \right>\simeq 1$, с точностью до численного коэффициента

$$\varkappa^{yx} = \frac{4g \langle \mathbf{M} \rangle}{V} \sum_{k} \frac{c^2}{T^2} N_p (1 + N_p) \simeq \frac{g \langle \mathbf{M} \rangle T}{c}.$$
 (40)

Разделим эту величину на коэффициент продольной теплопроводности $\varkappa^{xx} \simeq T^3(c\Omega)^{-1}$ и найдем угол Холла

$$\frac{\varkappa^{y_x}}{\varkappa^{x_x}} \simeq \langle \mathbf{M} \rangle \frac{g\Omega}{T^2}.$$
 (41)

6. Оценка роли продольной моды

Второй канал холловской теплопроводности обусловлен возникновением в присутствии градиента температуры коррелированного движения продольных и поперечных фононов, которое характеризуется компонентой недиагональной матрицы плотности (35),

$$\langle a_1^+ a_3 \rangle = -\frac{i}{2\varepsilon} \left[\Omega_{3\eta}(\omega_3) f_1 + \Omega_{\eta 3}(\omega_3) f_3 \right].$$
(42)

Здесь $1 = (\mathbf{k}, \perp)$, $3 = (\mathbf{k}, \parallel)$. Эта матрица плотности (и ее эрмитово сопряжение) формирует холловский поток тепла (см. (12)).

$$\langle j_{H}^{y} \rangle = \frac{w}{2V} \sum_{k} \left(\sqrt{\frac{\omega_{1}}{\omega_{3}}} + \sqrt{\frac{\omega_{3}}{\omega_{1}}} \right)$$

$$\times \operatorname{Re} \left[\left\{ e_{1}^{y^{*}}(\hat{\mathbf{k}}\mathbf{e}_{3}) + e_{3}^{y^{*}}(\hat{\mathbf{k}}\mathbf{e}_{1}) \right\} \langle a_{3}^{+}a_{1} \rangle \right].$$
(43)

Матрица (35) пропорциональна (29) и соs φ . При этом $e_{k\eta}^{y^*} = -i\xi_{\eta}\cos\varphi$, а $e_3^{y^*} = \sin\theta\sin\varphi$. Значит, вклад в интеграл вносит только первый член в фигурных скобках. В этом случае проекция ($\hat{\mathbf{k}}\mathbf{e}_3$) \simeq 1, и подынтегральное выражение в (42) не содержит малого параметра СФВ

$$\langle j_H^{\nu} \rangle = -\frac{w}{2V} \frac{1}{\sqrt{2}} \sum_k \left(\sqrt{\frac{\omega_1}{\omega_3}} + \sqrt{\frac{\omega_3}{\omega_1}} \right) \\ \times \cos \varphi \, \frac{k}{2\varepsilon} \, \left(f_1 \text{Re}\Omega_{31} + f_3 \text{Re}\Omega_{13} \right).$$
 (44)

Подставляя сюда (29) и интегрируя, получаем оценку вклада продольной моды в холловскую теплопроводность

$$\kappa^{yx} \simeq -\frac{T^2 \operatorname{Re}\Omega_{31}}{(c_{\parallel} - c_0)\Omega_{pp}} \simeq \frac{T^2}{c_0}.$$
(45)

Угол Холла в данном случае имеет порядок величины

$$\frac{\varkappa^{yx}}{\varkappa^{xx}} \simeq \langle \mathbf{M} \rangle \frac{\Omega}{T}.$$
(46)

7. Заключение

Сравним оценки холловских коэффициентов теплопроводности, обусловленных корреляцией продольной и поперечной мод $\varkappa_{\parallel}^{yx}$ (45), поперечными модами \varkappa_{\perp}^{yx} , и оценку \varkappa_{KM}^{yx} , найденную в [4] для ионного кристалла с невырожденными модами,

$$\chi_{\parallel}^{yx} \sim \frac{T^2}{c_0}, \quad \chi_{\perp}^{yx} \sim \frac{g\langle M \rangle T}{c_0}, \quad \chi_{KM}^{yx} \sim \frac{g\langle \sigma \rangle T}{\bar{c}}.$$
(47)

Видно, что оценки для поперечных мод в изотропной модели и для кубического кристалла совпадают с точностью до замены средней поляризации, обусловленной вращательным моментом на поляризацию псевдоспина. Существенно, что в обоих случаях нет зависимости от частоты столкновений, как и должно быть для компоненты потока тепла в направлении $[\mathbf{B} \times \nabla T]$. Вклад

продольной моды (45) имеет качественно иной вид. Он не зависит не только от частоты столкновений, но и от константы взаимодействия, как в обычном эффекте Холла. При сравнительно высоких температурах ($T \gg g$) канал $\varkappa_{\parallel}^{yx}$ играет ведущую роль. Если бы существовали кристаллы, в которых хотя бы приблизительно имелись акустические колебания с эллиптичностью, близкой к круговой, наблюдение ФХЭ стало бы сравнительно простой задачей.

Первая теоретическая работа [3], посвященная ФХЭ, содержала ошибку при использовании связи (5) между скоростями движения частиц и их импульсом при наличии СФВ. Тем не менее интересно сравнить оценку x^{yx} в [3] с нашими формулами (45), (40), поскольку в [3] вычисления проводились в изотропной модели, как в настоящей работе. Если не обращать внимания на численные коэффициенты, которые являются очевидным превышением точности, авторы получили результат

$$\chi_{\rm sheng}^{yx} \sim \frac{gT}{c_0},$$
(48)

совпадающий с (40) и основным результатом работы [4]. Это совпадение обусловлено не эквивалентностью наших теорий, а лишь тривиальным следствием одинаковой размерности результатов и того, что все они получены в линейном приближении по g. В связи с этим следует подчеркнуть, что основным результатом настоящей работы (и [4]) является не оценка x^{yx} , а установление того факта, что причиной ФХЭ служит совместное действие двух одинаково важных факторов: 1) эллиптической поляризации и фононов, обусловленной СФВ; 2) наведенного градиентом температуры коррелированного движения двух фононных мод с образованием недиагональной матрицы плотности.

Список литературы

- [1] C. Strohm, G.L.J.A. Rikken, P. Wyder. Phys. Rev. Lett. 95, 155 901 (2005).
- [2] А.В. Инюшкин, А.Н. Талденков. Письма в ЖЭТФ 86, 6, 436 (2007).
- [3] L. Sheng, D.N. Sheng, C.S. Ting. Phys. Rev. Lett. **96**, 155 901 (2006).
- [4] Yu. Kagan, L.A. Maksimov. Phys. Rev. Lett. 100, 145 902 (2008); Yu. Kagan, L.A. Maksimov. arXiv: 0707.2565 (2007).
- [5] L.J.F. Hermans, P.H. Fortuin, H.F.P. Кпаар, J.J.M. Beenakker. Phys. Lett. A 25, 81 (1967); Л.Л. Горелик, В.Г. Николаевский, B.B. Синицын. Письма в ЖЭТФ 4, 11, 456 (1966); Ю. Каган, Л.А. Максимов. ЖЭТФ 51, 1893 (1966).
- [6] Криокристаллы / Под ред. Б.И. Веркина, А.Ф. Прихотько. Наук. думка, Киев (1983). 526 с.
- [7] L.A. Maksimov, T.V. Khabarova. arXiv: 0308.1234 (2008).
- [8] Spin-Lattice relaxation in ionic solids / Eds A.A. Manenkov, R. Orbach. Harper & Row, N.Y. (1966). 453 p.; A.A. Abragam, B. Bleaney. Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford (1970). 583 p.; H. Capellmann, S. Lipinski. Z. Phys. B: Cond. Mat. 83, 199 (1991); A.S. Ioselevich, H. Capellmann. Phys. Rev. B 51, 11 446 (1995).
 [9] P. L. Hard, Phys. B2 122, 168 (1962).
- [9] R.J. Hardy. Phys. Rev. 132, 168 (1963).