Магнитные и электрические свойства катионзамещенных сульфидов $Me_x Mn_{1-x} S$ (Me = Co, Gd)

© С.С. Аплеснин^{*,**}, Л.И. Рябинкина^{*}, О.Б. Романова^{*}, В.В. Соколов^{***}, А.Ю. Пичугин^{***}, А.И. Галяс^{****}, О.Ф. Демиденко^{****}, Г.И. Маковецкий^{****}, К.И. Янушкевич^{****}

* Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, Красноярск, Россия

** Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева,

Красноярск, Россия

*** Институт неорганической химии Сибирского отделения Российской академии наук,

Новосибирск, Россия

**** Научно-практический центр по материаловедению Национальной академии наук Белоруссии,

Минск, Белоруссия

E-mail: rob@iph.krasn.ru

(Поступила в Редакцию 16 июля 2008 г.)

В интервале температур 80 < T < 1000 К изучены температурные зависимости удельной намагниченности (σ) и удельного электросопротивления (ρ) монокристаллов $Me_x Mn_{1-x}S$ (Me = Co, Gd; x = 0.05). Для исследованных образцов обнаружены спонтанный магнитный момент в области температур ниже температуры Нееля (T_N) и наличие ферромагнитных кластеров для Gd_{0.05}Mn_{0.95}S в области температур 146 < T < 680 К. При замещении марганца гадолинием наблюдается переход от *p*- к *n*-типу проводимости. Смена типа проводимости сопровождается возрастанием электросопротивления при 300 К практически на порядок и соответственно уменьшением энергии активации. Магнитные и электрические свойства исследованных кристаллов объяснены кластерной моделью с ферромагнитным обменом, зависящим от температуры, и локализованным электроном в этом кластере.

Работа выполнена при финансовой поддержке грантов РФФИ-БРФФИ № 08-02-90031 и ФФИРБ № Ф08Р-037.

PACS: 71.20.Nr, 71.27.+a, 73.43.Cd, 73.20.Fz, 73.50.Lw

1. Введение

Материалы с сильной взаимосвязью магнитных и электрических свойств привлекают внимание исследователей в связи с возможным применением в устройствах спинтроники [1,2]. К таким веществам относятся неупорядоченные системы, в которых наблюдаются переходы металл-диэлектрик (ПМД) и эффект колоссального магнитосопротивления (КМС) [3–7]. Перспективными материалами для исследования эффектов ПМД и КМС являются катионзамещенные сульфиды Me_x Mn_{1-x}S (Me =Cr, Fe, Co), синтезированные на основе моносульфида α -MnS [8–11].

 α -MnS Моносульфид антиферромагнетик $(T_N = 150 \text{ K})$ с ГЦК-решеткой типа NaCl. В его магнитной структуре реализуются ферромагнитное упорядочение магнитных моментов ионов марганца в плоскости типа (111) и антиферромагнитное упорядочение — между плоскостями [12,13]. Расчеты зонной структуры *α*-MnS, выполненные методом функционала электронной плотности [14], указывают на частичное заполнение верхних хаббардовских t_{2g}и eg-зон вследствие p-d-гибридизации ионов серы и марганца. Проводимость, обусловленная электронами, лежащими ниже уровня Ферми в t2g- и eg-зонах, имеет дырочный характер, что подтверждается измерениями термоэдс и эффекта Холла [15]. Согласно расчетам [16],

в α -MnS существует волна зарядовой плотности, которая может подвергаться пиннингованию при замещении катионов марганца другими переходными металлами, например двухвалентным катионом кобальта Co²⁺, у которого в t_{2g} -оболочке не хватает одного электрона до полного заполнения, что можно представить в виде дырки. В результате кулоновского межорбитального взаимодействия при определенной температуре возможно образование орбитально-зарядового упорядочения.

Если ввести один электрон в t_{2g} -оболочку на 5*d*-уровне, то возможны сдвиг нижней хаббардовской зоны к зоне проводимости вследствие *sd*-взаимодействия и образование ферромагнитного обмена в локальной области — ферроне (согласно терминологии Нагаева [17]). Расщепление орбиталей индуцирует искажение решетки, которое носит динамический характер и приводит к зависимости интегралов перескока от электрон-фононного взаимодействия.

Проявление этих эффектов возможно при замещении катионов марганца редкоземельным ионом гадолиния. Сравнение электронных термов пар Mn^+Gd^{3+} и $Mn^{2+}Gd^{2+}$ по энергии ионизации, которая составляет для ионов Mn^+ , Mn^{2+} E = 15.6 и 33.7 eV и для Gd^{2+} , Gd^{3+} E = 20.6 и 44 eV соответственно, указывает на преимущественное образование двухвалентных катионов гадолиния с конфигурацией термов $4f^7$, $5d^1$.

Целью работы является изучение влияния на магнитные и электрические свойства кристаллов $Me_x Mn_{1-x}S$ (Me = Co, Gd; x = 0.05) дырочного и электронного допирования при катионном замещении марганца кобальтом и гадолинием.

2. Экспериментальные данные

Для синтеза образцов $Me_x Mn_{1-x}S$ (Me = Co, Gd; x = 0.05) использованы следующие исходные вещества: коммерческие оксиды MnO₂, CoO, Gd₂O₃ чистотой не ниже 99.9%, в качестве сульфидирующих реагентов — NH₄CNS, в качестве газа-носителя — высокочистый аргон. Рассчитанная смесь оксидов в стеклоуглеродной лодочке помещалась в кварцевую трубу. После вытеснения воздуха аргоном и продуктами разложения роданида аммония из отдельного реактора включалась печь. Синтез выполнялся в два этапа: нагрев смеси до 500°C с выдержкой при этой температуре в течение 1h, после перетирания — повтороное сульфидирование в течение 3 h при 750-800°С. Для полноты сульфидирования и гомогенизации получаемого порошкового сульфида проводился отжиг в течение 30h в сульфидирующей атмосфере при 800°C с неоднократным измельчением сульфидов. Полнота сульфидирования контролировалась методом рентгенофазового анализа и весовым методом.

Для кристаллизации из расплава сульфида использован высокочастотный нагрев (с помощью устройства ВЧГ-25-440) графитового тигля диаметром 10 mm, заполненного 6–7 g порошка сульфида. Кварцевый реактор с тиглем протягивался со скоростью от 0.5 до 1 cm/h через одновитковый индуктор. Инертная атмосфера в реакторе поддерживалась аргоном. Для получения расплава сульфида экспериментально определялись необходимые параметры мощности, подаваемой на индуктор.

Изучение кристаллической структуры полученных образцов осуществлялось при комнатной температуре в монохроматическом Си K_{α} -излучении на рентгеновской установке ДРОН-3. Измерения удельного электросопротивления проведены в интервале температур 80–1000 К стандартным четырехзондовым компенсационным методом на постоянном токе в нулевом магнитном поле. Измерения термоэдс выполнены на установке для определения типа проводимости. Магнитные измерения проведены методом Фарадея в интервале температур 100–1000 К в поле 8.6 kOe на образцах, помещенных в вакуумированные кварцевые ампулы.

Согласно результатам рентгеноструктурного анализа, монокристаллические образцы $Me_x Mn_{1-x}S$ (Me = Co, Gd; x = 0.05) имеют ГЦК-решетку типа NaCl, характерную для α -MnS. Параметр решетки a = 5.225 Å для α -MnS в соответствии с ионными радиусами змещающего элемента уменьшается при допировании кобальтом до 5.216 Å для Co_{0.05}Mn_{0.95}S, при допировании гадолинием a увеличивается до 5.274 Å для Gd_{0.05}Mn_{0.95}S. Дифрак-

Рис. 1. Температурные зависимости намагниченности в поле H = 8.6 kOe для образцов $\text{Co}_{0.05}\text{Mn}_{0.95}\text{S}$ (*a*) и $\text{Gd}_{0.05}\text{Mn}_{0.95}\text{S}$ (*b*). На вставках: *a* — температурная зависимость нормированной величины намагниченности $\sigma/\sigma_{T=80 \text{ K}}$ для $\text{Co}_{0.05}\text{Mn}_{0.95}\text{S}$ (*I* — эксперимент, *2* — теория); *b* — температурная зависимость нормированной величины намагниченности $\Delta\sigma = (\sigma_{\text{Gd}} - \sigma_{\text{Mn}})(T)/(\sigma_{\text{Gd}} - \sigma_{\text{Mn}})(T = T_N)$ для $\text{Gd}_{0.05}\text{Mn}_{0.95}\text{S}$ (*I* — нормированная намагниченность при $\lambda \approx 0.5$, $\omega_f = 305 \text{ K}$, *2* — вероятность обнаружения кластера с ферромагнитным порядком и локализованным в нем электроном).

тограммы исследуемых сульфидов получены съемкой на порошке при измельчении кристаллов.

На рис. 1 представлены температурные зависимости намагниченности образцов $Me_x Mn_{1-x}S$ (Me = Co, Gd; x = 0.05). В области $T_N \sim 180$ К для $Co_{0.05}Mn_{0.95}S$ и $T_N \sim 146$ К для $Gd_{0.05}Mn_{0.95}S$ на кривых температурной зависимости намагниченности $\sigma(T)$ наблюдаются максимумы, указывающие на антиферромагнитный переход в исследуемых соединениях. Выше T_N характер температурной зависимости намагниченности для $Co_{0.05}Mn_{0.95}S$ описывается законом Кюри–Вейсса, а для $Gd_{0.05}Mn_{0.95}S$ наблюдается отклонение от этого закона.

На рис. 2 представлены измерения удельного электросопротивления сульфидов $Me_{0.05}\text{Mn}_{0.95}\text{S}$ (Me = Co, Gd) в интервале температур 80–1000 К. Температурные зависимости $\lg \rho(10^3/T)$ для этих образцов указывают на полупроводниковый тип проводимости, при этом величина удельного электросопротивления для Gd_{0.05}Mn_{0.95}S на порядок выше ($\rho_{300 \text{ K}} \sim 10^6 \,\Omega \cdot \text{cm}$), чем

Рис. 2. Температурные зависимости удельного электросопротивления образцов $Co_{0.05}Mn_{0.95}S(a)$ и $Gd_{0.05}Mn_{0.95}S(b)$.

у состава Co_{0.05}Mn_{0.95}S. В области температур Нееля (T_N) для обоих образцов на зависимостях lg $\rho(10^3/T)$ наблюдается аномалия типа диэлектрик-полупроводник. Ниже T_N энергия активации $\Delta E \sim 0.01$ eV. В области $T > T_N$ энергия активации изменяется от 0.46 eV для Co_{0.05}Mn_{0.95}S до 0.26 eV для состава Gd_{0.05}Mn_{0.95}S. Выше 600 K в образце Co_{0.05}Mn_{0.95}S реализуется область собственной проводимости. Определена ширина запрещенной зоны $\Delta E \sim 0.17$ eV. Согласно измерениям термоэдс, в исследуемых составах наблюдается смена типа проводимости от *p*-типа для Co_{0.05}Mn_{0.95}S к *n*-типу для Gd_{0.05}Mn_{0.95}S.

3. Обсуждение результатов

Чтобы определить вклад ионов кобальта и гадолиния в намагниченность, вычтем из температурной зависимости намагниченности, измеренной во внешнем магнитном поле для $Co_{0.05}Mn_{0.95}S$ и $Gd_{0.05}Mn_{0.95}S$, величину намагниченности для MnS. Становится очевидным, что в исследуемых образцах в области $T < T_N$ наблюдается образование спонтанного магнитного момента. На вставке к рис. 1, *а* изображены нормированная величина намагниченности в зависимости от температуры и аппроксимация экспериментальных данных функцией Бриллюэна $\sigma = B_S(X)$, где $X = 2S^2zJgM/k_BT$, M — приведенная намагниченность, g = 2 — спектроскопический фактор расщепления, T — температура, J — параметр обменного взаимодействия, z — число ближайших соседей, S — величина спина. Молекулярное поле с изотропным обменным взаимодействием для S = 1/2 и S = 4 не описывает даже качественно температурную зависимость намагниченности. Аппроксимация нормированной намагниченности степенной функцией $\sigma = A(1 - T/T_c)^{\beta}$ в интервале температур $0 < 1 - T/T_c < 0.2$ дает $\beta = 0.12$, что указывает на квазидвумерное поведение магнетика с изингоподобной анизотропией. Механизм возникновения столь сильной анизотропии может быть обусловлен упорядочением t_{2g}-орбиталей на ионах марганца, расположенных в ближайшем окружении иона Co²⁺. Из-за разной электроотрицательности ионов марганца и кобальта электронная плотность на двух ближайших ионах Mn²⁺ может измениться, так же как и длина ковалентной связи Co-S-Mn, вызванная гибридизацией орбиталей $d_{zx} - p_z - d_{zx}, d_{zy} - p_z - d_{zy}$.

Несколько другая ситуация возникает при замещении марганца гадолинием. В результате гибридизации $5d^1$ -состояния иона гадолиния с 4*s*-уровнем ионов марганца возможна спиновая поляризация ближайшего окружения ионов марганца вследствие кинетического обмена. В результате электрон локализован в кластере с ферромагнитным упорядочением спинов. При движении электрон взаимодействует с упругими модами колебаний решетки, при этом испытывает рассеяние, которое может вызвать изменение его спиновой поляризации, связанное с изменением волновой функции $\psi(\mathbf{k}, \sigma) \rightarrow \psi(-\mathbf{k}, \sigma')$. Во втором порядке теории возмущения вероятность рассеяния электрона $\sim q^2 n_f / (\omega_f t)$, где q — константа электронфононного взаимодействия, ω_f — частота упругой моды колебания решетки, в качестве которой может быть взята акустическая или оптическая моды колебаний, t — интеграл перескока, n_f — среднее число фононов, где $n_f = 1/(\exp(h\omega_f/k_BT) - 1)$. С помощью безразмерного параметра электрон-фононного взаимодействия $\lambda = q^2/(\omega_f t)$ плотность нерассеянных электронов в кластере с ферромагнитным упорядочением может быть представлена в следующем виде $N(T) = (1 - \lambda n_f) = 1 - \lambda / (\exp(h\omega_f / k_B T) - 1).$

На вставке к рис. 1, b приведена температурная зависимость нормированной намагниченности $\Delta \sigma = (\sigma_{\rm Gd})$ $(-\sigma_{Mn})(T)/(\sigma_{Gd}-\sigma_{Mn})(T=T_N)$, которая определяется как разность намагниченностей для Gd_{0 05}Mn_{0 95}S и MnS при температуре Т относительно этой же разности намагниченностей при температуре Нееля T_N. В пармагнитном состоянии $\sigma = \chi H$, где $\chi = g_{eff}^2 \mu_B S(S+1)/T$, нормированная намагниченность, образовантогда ная кластерами с локализованным электроном, сведется к следующему выражению: $\Delta \sigma = N(T)T_N/T$ $= (1 - \lambda / [\exp(h\omega_f / k_B T) - 1])T_N / T.$ Хорошее согласие с экспериментальными данными достигается при $\lambda \approx 0.5$, $\omega_f = 305 \,\mathrm{K}$ (вставка к рис. 1, *b*). Полученное выражение для частоты ω_f соответствует оптической моде колебаний сульфида марганца. Вероятность обнаружения кла-

Рис. 3. Схема электронной плотности состояний для образцов $Co_{0.05}Mn_{0.95}S~(a)$ и $Gd_{0.05}Mn_{0.95}S~(b)$.

стера с ферромагнитным порядком и локализованным в нем электроном уменьшается с ростом температуры и исчезает при $T \sim 680$ K, как видно из вставки к рис. 1, *b*.

Транспортные свойства качественно описываются в рамках модели электронной структуры, предложенной для объяснения магнитных свойств. На рис. 3 приведена схема электронной плотности состояний для Co_xMn_{1-x}S и Gd_xMn_{1-x}S. Для Co_xMn_{1-x}S химпотенциал расположен вблизи потолка верхней хаббардовской зоны, и величина энергии активации составляет 0.46 eV. Гибридизация 5*d*- и 4*s*-орбиталей в $Gd_x Mn_{1-x}S$ обусловливает сдвиг d-зоны вверх по энергии выше химпотенциала и связана с частичным заполнением нижней хаббардовской зоны. В результате меняется тип проводимости (от *p*- к *n*-типу), и ΔE при этом составляет 0.26 eV. Энергия активации уменьшается, а величина удельного электросопротивления при 300 К возрастает на порядок. Возможно, это связано с поляризацией спина проводимости. Так, плотность тока $j = ev(n_{\parallel}, n_{\uparrow})$, где $n_{\parallel}, n_{\uparrow}$ концентрация электронов со спинами вверх и вниз. Электроны со спинами, направленными параллельно спинам Gd, проходят через кластеры Gd, а электроны с противоположным направлением спинов рассеиваются. Таким образом, это эквивалентно уменьшению эффективной концентрации носителей на порядок.

4. Заключение

Исследовано влияние электронного и дырочного допирования на магнитные и электрические свойства твердых растворов $Me_x Mn_{1-x}S$ (Me = Co, Gd). Обнаружены спонтанный магнитный момент в магнитоупорядоченной области исследуемых образцов и отклонение от закона Кюри–Вейсса для $Gd_{0.05}Mn_{0.95}S$ в области 146 < T < 680 К. Получено хорошее согласие теории с экспериментальными данными в модели с локализованным электроном в кластере с ферромагнитным упорядочением локализованных спинов, вероятность которых уменьшается с ростом температуры в результате рассеяния электронов на оптических фононах. Увеличение сопротивления в $Gd_{0.05}Mn_{0.95}S$, имеющем меньшую энергию активации по сравнению с $Co_{0.05}Mn_{0.95}S$, может быть связано с изменением спиновой поляризации рассеянного электрона.

Список литературы

- [1] А.В. Ведяев. УФН 172, 1458 (2002).
- [2] А.С. Борухович. Физика материалов и структур сверхпроводящей и полупроводниковой спиновой электроники. УрО РАН, Екатеринбург (2004). 175 с.
- [3] Н.Ф. Мотт. Переходы металл-изолятор. Наука, М. (1979). 344 с.
- [4] Э.Л. Нагаев. УФН 166, 796 (1996).
- [5] Y. Zhaorong, T. Shun, C. Zhiwen, Y. Zhang. Phys. Rev. B 62, 13 872 (2000).
- [6] Н.И. Солин, В.В. Устинов, С.В. Наумов. ФТТ 50, 864 (2008).
- [7] В.А. Санина, Е.И. Головенчиц, В.Г. Залесский. ФТТ 50, 883 (2008).
- [8] Г.А. Петраковский, Л.И. Рябинкина, Г.М. Абрамова, А.Д. Балаев, Д.А. Балаев, А.Ф. Бовина. Письма в ЖЭТФ 72, 99 (2000).
- [9] L.I. Ryabinkina, O.B. Romanova, G.A. Petrakovskii, N.I. Kiselev, G.I. Makovetskii, K.I. Yanushkevich, A.I. Galyas, O.F. Demidenko, A.F. Bovina, E.A. Malzeva. Phys. Met. Metallog. 99, S 77 (2005).
- [10] Л.И. Рябинкина, О.Б. Романова, С.С. Аплеснин. Изв. РАН. Сер. физ. 72, 1115 (2008).
- [11] С.С. Аплеснин, Л.И. Рябинкина, О.Б. Романова, Д.А. Великанов, А.Д. Балаев, Д.А. Балаев, К.И. Янушкевич, А.И. Галяс, О.Ф. Демиденко, О.Н. Бандурина. ЖЭТФ 133, 875 (2008).
- [12] Дж. Гуденаф. Магнетизм и химическая связь. Металлургия, М. (1968). 325 с.
- [13] С.С. Аплеснин, Л.И. Рябинкина, Г.М. Абрамова, О.Б. Романова, Н.И. Киселев, А.Ф. Бовина. ФТТ 46, 2000 (2004).
- [14] R. Tappero, P. Wolfers, A. Lichanot. Chem. Phys. Lett. 33, 449 (2001).
- [15] H.H. Heikens, C.F. van Bruggen, C. Haas. J. Phys. Chem. Soc. 39, 833 (1978).
- [16] S.S. Aplesnin, L.I. Ryabinkina, G.M. Abramova, O.B. Romanova, A.M. Vorotynov, D.A. Velikanov, N.I. Kiselev, A.D. Balaev. Phys. Rev. B 71, 125 204 (2005).
- [17] Э.Л. Нагаев. Физика магнитных полупроводников. Наука, М. (1979). 432 с.