Температурная эволюция диэлектрических и акустических параметров монокристаллов SBN, легированных хромом

© А.С. Пилипенко, А.И. Бурханов, Л.И. Ивлева*

Волгоградский государственный архитектурно-строительный университет, Волгоград, Россия * Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия

E-mail: burkhanov@inbox.ru

(Поступила в Редакцию 11 февраля 2008 г. В окончательной редакции 24 июня 2008 г.)

Исследованы температурные зависимости диэлектрических характеристик монокристиаллов $Sr_{0.61}Ba_{0.39}Nb_{2-x}O_6: Cr_x^{3+}$ при x = 0.0, 0.005, 0.01 в диапазоне низких и инфракрасных частот. Обнаружены особенности поведения диэлектрического отклика вблизи фазового перехода из сегнетоэлектрической в параэлектрическую фазу и в области низких температур. Измерения проводились вдоль направлений [001] (полярная ось) и [100]. Также определен температурный ход относительной скорости звука и затухания упругих волн и выявлены области аномального поведения данных параметров. Установленные особенности поведения и акустических свойств рассматриваются с точки зрения структурных изменений, происходящих в системе SBN при введении примеси Cr.

PACS: 77.80.Bh, 77.84.Dy

ниобата Монокристаллы бария-стронция $Sr_xBa_{1-x}Nb_2O_6$ (SBN-x) являются сегнетоэлектриками с размытым фазовым переходом (РФП) в диапазоне 0.25 < x < 0.75 ниже точки Кюри. В SBN-*x* возможно широкое изменение свойств путем вариации соотношения Sr/Ba [1], однако более эффективным методом является введение примесей [2]. При легировании понижается температура максимума диэлектрической проницаемости $\varepsilon'(T) - T_m$, сам максимум размывается и увеличивается частотный сдвиг T_m. Ввиду того что многие вопросы, касающиеся механизмов фазовых превращений в системе SBN, остаются открытыми, актуальным является изучение диэлектрического отклика в направлении, перпендикулярном полярной оси, а также поведения акустических параметров материала. Наиболее информативными являются диэлектрические исследования в диапазоне низких (НЧ) и инфранизких (ИНЧ) частот, так как SBN относится к релаксорным СЭ [3]. Кроме того, недостаточно исследовано влияние малых концентраций примеси хрома на физические свойства SBN по сравнению с x > 0.01 или, например, с влиянием примесей редкоземельных элементов.

Целью настоящей работы являлось определение степени влияния примеси Cr малой концентрации на свойства монокристалла SBN-61 посредством изучения поведения диэлектрического отклика в слабых полях в НЧ–ИНЧ-диапазоне вдоль направлений [001] и [100], а также поведения акустических параметров.

Для экспериментов были выбраны монокристаллы SBN: Cr_x^{3+} (x = 0.0, 0.005, 0.01), выращенные методом Чохральского. Электроды наносились методом вжигания серебряной пасты. Толщина образцов составляла 1.6–3.9 mm. Измерения комплексной диэлектрической проницаемости ε^* в слабых полях ($E_0 \sim 1$ V/cm) часто-

той 1-1000 Hz проводились в режиме охлаждения с использованием мостового метода. Перед измерениями образцы предварительно отжигались при температуре выше T_m . Исследование упругих свойств поляризованных в поле E = 1.6 kV/ст образцов осуществлялось резонансным методом.

На рис. 1 представлены зависимости $\varepsilon'(T)$ кристалла SBN: Сг в области температур существования РФП, измеренные в направлениях [001] (ε_c') и [100] (ε_a') при различных концентрациях Cr. C ростом концентрации примеси температуры максимумов ε_c' постепенно уменьшаются (табл. 1), а максимальные значения $\varepsilon'_{c \max}$ изменяются немонотонно (данные для частоты 1 Hz): $59 \cdot 10^3 (x=0) \rightarrow 81 \cdot 10^3 (x=0.005) \rightarrow 76 \cdot 10^3 (x=0.01).$ Согласно литературным данным, например [4], наличие примеси Cr уменьшает $\varepsilon'_{c max}$, однако исследуемые ранее концентрации были выше, чем в нашем случае. Так как, согласно [5], при легировании хромом Сг атомы примеси, вероятнее всего, замещают Nb⁵⁺, то изменение характера диэлектрического отклика является следствием появления кислородных вакансий. Различие во влиянии Cr на $\varepsilon'_{c \max}$ для случаев

Таблица 1. Значения температур максимумов $\varepsilon'(T)$ монокристаллов SBN: Cr_x³⁺ для частот 1 Hz и 1 kHz в направлениях [001] и [100]

Направление	x	$T_m(1 \mathrm{kHz}),\mathrm{K}$	$T_m(1\mathrm{Hz}),\mathrm{K}$
[001]	0	357	355
	0.005	355	352
	0.01	352	349
[100]	0	359	357
	0.005	355	352
	0.01	353	351

Рис. 1. Температурные зависимости $\varepsilon'(T)$ монокристаллов SBN: Cr_x^{3+} (x = 0, 0.005, 0.01), измеренные в направлениях [001] и [100] на частотах 1 Hz и 1 kHz.

x > 0.01 и $x \le 0.01$ указывает, по-видимому, на существование некоторой граничной концентрации, при превышении которой заметно увеличивается степень неупорядоченности материала, что вызывает уменьшение поляризуемости, а следовательно, и $\varepsilon'_{c \max}$.

Как следует из рис. 1 и табл. 1, при измерениях в направлении [100] также наблюдаются аномалии ε'_a

и фиксируется сдвиг температур T_m как с изменением концентрации примеси, так и с изменением частоты. Аномалии $\varepsilon'(T)$ для среза [100] объясняются наличием ненулевой поляризуемости материала в данном направлении [6]. Ранее анизотропные свойства системы SBN уже исследовались [6,7], однако частотная дисперсия ε'_a не была обнаружена, что, вероятно, связано с применением более высокочастотного диапазона измерений, чем в настоящей работе.

Рис. 2 отображает характер диэлектрического отклика монокристаллов SBN: Cr_x в области низких температур. В данном случае приводится лишь поведение $\varepsilon''(T)$,

Рис. 2. Температурные зависимости $\varepsilon''(T)$ монокристаллов SBN: $\operatorname{Cr}_{x}^{3+}$ (x = 0, 0.005, 0.01), измеренные вдоль направлений [001] и [100] на частотах 1 Hz и 1 kHz.

Рис. 3. Температурные зависимости затухания $\alpha(T)$ (*a*) и относительной скорости звука $v_{rel}(T)$ (*b*) монокристаллов SBN: Cr_x^{3+} . Вставки на части *a* отображают поведение затухания звука, на части *b* — поведение относительной скорости звука в температурной области вблизи фазового перехода; сплошными линиями показаны аппроксимации степенной зависимостью от температуры.

при котором проявляются некоторые особености диэлектрических свойств материала. Из рис. 2 следует, что на зависимостях $\varepsilon''(T)$ в окрестности $T \sim 150$ К наблюдается излом, температурное положение которого зависит от частоты измерительного поля, что указывает на релаксационный характер наблюдаемой низкотемпературной дисперсии. Заметим, что частотная дисперсия ε^* , определяемая по эффективной глубине дисперсии $\Delta \varepsilon' = \varepsilon'_{1\text{Hz}} - \varepsilon'_{1\text{kHz}}$, сохраняется примерно до тех же температур ($T \sim 120$ K) в обоих направлениях приложения измерительного поля. Такое поведение диэлектрического отклика указывает на то, что в области 120–150 К имеет место "замораживание" доменной структуры подобно тому, как это наблюдается в других СЭ-материалах, например ТГС, КДП [8]. Другой особенностью, обнаруженной в данной работе, является рост диэлектрических потерь в направлении [100] при дальнейшем понижении температуры (ниже $T \sim 120$ K). Данный рост, по-видимому, указывает на существование в системе SBN еще одной низкотемпературной анома-

Таблица 2. Значения T_c , полученные из аппроксимации температурных зависимостей $v_{rel}(T)$ степенным законом вида (1)

x	T_c, K	
0	354.0 ± 0.1	
0.005	351.4 ± 0.1	
0.01	349.5 ± 0.8	

лии $\varepsilon''(T)$ при $T < 80 \, \text{K}$, подобной аномалии, наблюдаемой в системе (K_{0.5}Na_{0.5})_{0.2}(Sr_{0.75}Ba_{0.25})_{0.9}Nb₂O₆ [9]. При этом с увеличением концентрации Cr рост $\varepsilon''(T)$ начинается с более высоких температур. Это может указывать на смещение температуры предполагаемого максимума $\varepsilon''(T)$ в сторону более высоких температур при легировании SBN-61 ионами хрома. Подобные аномалии могут являться следствием структурного фазового перехода [10]. В [11] в качестве одной из возможных причин появления низкотемпературных аномалий в ряде одноосных ниобатов указывается поворот кислородных октаэдров в плоскости *ab*. С другой стороны, в [11] рассматривается и еще одна причина появления данных аномалий — релаксация поляронов в структуре перовскита. Неоднозначность объяснения характера диэлектрического отклика SBN делает необходимым применение дополнительных методов исследования, что и было выполнено в настоящей работе.

Рис. 3 иллюстрирует поведение температурных зависимостей затухания $\alpha(T)$ и относительной скорости звука $v_{rel}(T)$ в монокристаллах SBN : Сг. Вставки на рис. 3, aдемонстрируют поведение $\alpha(T)$ в области ФП. Для всех составов имеет место размытый несиммеричный максимум $\alpha(T)$ при некоторой температуре T_{α} . Несимметричность кривой $\alpha(T)$ в области перехода СЭ–ПЭ-фаза обусловлена рассеянием звука на доменной структуре в СЭ-фазе (при *T* < *T_m* проявляется релаксационное затухание [12]). При этом сравнительно большее размытие максимума $\alpha(T)$ у нелегированного образца может указывать на то, что при нагревании процессы термической деполяризации изменяют характер акустического отклика быстрее, чем у образцов SBN: Cr_x^{3+} . Таким образом, высокая степень поляризуемости образцов с хромом сохраняется вплоть до температур вблизи Т_т (вставки на рис. 3, a).

Кривая спада относительной скорости звука (вставки на рис. 3, b) в диапазоне температур от T_r до T_m аппроксимируется степенной зависимостью вида

$$v_{\rm rel}(T) = A + B(T_c - T)^{1/2},$$
 (1)

где *A* и *B* — постоянные, а рассчитанные значения T_c приведены в табл. 2 (подобная зависимость была использована в [13] исходя из феноменологического подхода). В нашем случае величины T_c соответствуют температурам максимумов зависимости $\varepsilon'_c(T)$, измеренной на частоте 1 Hz, и всегда оказываются на несколько градусов (2–6 K) выше T_{α} . Такое поведение SBN: Cr_x^{3+} вблизи

ФП согласуется с данными исследования акустического отклика модельного релаксора РМN [14]. Однако по сравнению с РМN, где $(T_c - T_\alpha) > 20$ К, в SBN наблюдается значительно меньшее размытие максимума $\alpha(T)$, и разница $(T_c - T_\alpha)$ также существенно меньше. Таким образом, систему SBN-61 можно поставить ближе к СЭ, чем к релаксорам.

При рассмотрении низкотемпературного хода акустических параметров видно, что и здесь имеет место рост значений $\alpha(T)$ и $v_{rel}(T)$ при температурах T < 120 К для всех составов. Такое поведение $\alpha(T)$ и $v_{rel}(T)$ позволяет связать данные аномалии с низкотемпературным структурным ФП. Вероятно, в SBN в области температур $T \leq 80$ К возникает сдвиговая деформация, приводящая к понижению симметрии, подобно тому, как это наблюдалось для кристалла Rb₂ZnCl₄ [15]. Таким образом, сопоставление поведения акустических параметров монокристаллов SBN с характером диэлектрического отклика в низкотемпературной области позволяет сделать предположение, что выявленные аномалии указывают на существование структурного фазового перехода типа $4mm \rightarrow m$, как было предсказано в [10].

Список литературы

- [1] М. Лайнс, А. Гласс. Сегнетоэлектрические и родственные им материалы. Мир, М. (1981). 736 с.
- [2] T. Volk, Th. Woike, U. Doerfler, R. Pankrath, L. Ivleva, M. Woehlecke. Ferroelectrics 203, 457 (1997).
- [3] L.E. Cross. Ferroelectrics **151**, 305 (1994).
- [4] T.-T. Fang, F.-Yu. Chen. J. Appl. Phys. 100, 014 110 (2006).
- [5] Th. Woike, D. Berben, M. Imlau, K. Buse, R. Pankrath, E. Kratzig. J. Appl. Phys. 89, 5663 (2001).
- [6] W.H. Huang, D. Viehland, R.R. Neurgaonkar. J. Appl. Phys. 76, 1, 490 (1994).
- [7] J.R. Oliver, R.R. Neurgaonkar, L.E. Cross. J. Appl. Phys. 64, 1, 37 (1998).
- [8] Y.N. Huang, Y.N. Wang, X. Li, Y. Ding. J. Korean Phys. Soc. 32, S 733 (1998).
- [9] J.-H. Ko, D.H. Kim, S.G. Lushnikov, R.S. Katiyar, S. Kojima. Ferroelectrics 286, 61 (2003).
- [10] Y. Xu, Z. Li, W. Li, H. Wang, H. Chen. Phys. Rev. B 40, 11 902 (1989).
- [11] J.-H. Ko, S. Kojima, S.G. Lushnikov, R.S. Katiyar, T.H. Kim, J.-H. Ro. J. Appl. Phys. 92, 1536 (2002).
- [12] Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Е. Пасынков, А.И. Соколов, Н.К. Юшин. Физика сегнетоэлектрических явлений. Наука, Л. (1985). 396 с.
- [13] Е.В. Балашова, В.В. Леманов, И. Альберс, А. Клепперпипер. ФТТ 40, 1090 (1998).
- [14] Н.К. Юшин, Е.П. Смирнова, С.Н. Дороговцев, С.И. Смирнов, Г. Гулямов. ФТТ 29. 2937 (1987).
- [15] Л.А. Шувалов, С.А. Гриднев, Б.Н. Прасолов, В.Г. Санников, О.Е. Бочков. ФТТ 29, 1999 (1987).