# Локальные состояния ионов железа в мультиферроиках $Bi_{1-x}La_xFeO_3$

#### © В.С. Покатилов, В.В. Покатилов, А.С. Сигов

Московский государственный институт радиотехники, электроники и автоматики (Технический университет), Москва, Россия

E-mail: pokatilov@mirea.ru

(Поступила в Редакцию 23 апреля 2008 г.)

Исследованы перовскиты  $Bi_{1-x}La_xFeO_3$  (x = 0, 0.1, 0.2, 0.61, 0.9, 1.0) методом эффекта Мёссбауэра при 295 и 87 К. Пространственная спин-модулированная структура (ПСМС) в перовскитах BiFeO<sub>3</sub> и  $Bi_{0.9}La_{0.1}FeO_3$  приводит к специфическому распределению сверхтонких полей P(B) с двумя пиками. Замещение Bi на La в количестве x = 0.2 разрушает ПСМС. Измерены концентрационные зависимости сверхтонких полей (B), изомерных ( $\varepsilon$ ) и квадрупольных ( $\delta$ ) сдвигов. Ионы железа находятся в трехвалентном состоянии. Определены локальные магнитные моменты  $\mu$ (Fe) на ионах Fe<sup>3+</sup>.

Работа поддержана Российским фондом фундаментальных исследований (грант № 06-02-16636-а).

PACS: 76.80.+y, 75.80.+q

### 1. Введение

В настоящее время многих исследователей привлекают различные ферроэлектрические/ферромагнитные материалы (их называют мультиферроиками) как с фундаментальной, так и с практической стороны. Перовскиты, принадлежащие к этому классу веществ, представляют собой интересный объект для исследований магнитоэлектрического эффекта [1,2]. Эти материалы также рассматриваются как перспективные для создания разных приборов, например различных устройств памяти, использующих одновременно ферроэлектрические и ферромагнитные свойства. ВіFeO3 принадлежит к классу перовскитов и имеет дальнее антиферромагнитное  $(T_N = 640 \text{ K})$  и ферроэлектрическое  $(T_C = 1083 \text{ K})$ упорядочение [1]. Высокие значения  $T_N$  и  $T_C$  определяют привлекательность материала в контексте поиска новых веществ с высокими значениями электрической (P<sub>0</sub>) и магнитной (M<sub>0</sub>) поляризации при комнатной температуре. Однако эти параметры при комнатной температуре в BiFeO3 остаются низкими; так, например,  $P_0 \leq 6 \,\mu\text{C/cm}^2$  [1]. BiFeO<sub>3</sub> имеет ромбоэдрическую кристаллическую структуру (пространственная группа R3c). Методом нейтронографии в BiFeO<sub>3</sub> была обнаружена пространственная спин-модулированная структура (ПСМС) циклоидного типа с периодом модуляции  $\lambda = 620$  Å, несоизмеримым с кристаллической решеткой [3]. Низкие значения  $P_0$  и  $M_0$  в BiFeO<sub>3</sub> обусловлены тем, что пространственная спин-модулированная структура усредняет линейный магнитоэлектрический эффект и спонтанную намагниченность [4]. Как отмечается в [4], разрушение ПСМС в соединении BiFeO<sub>3</sub> должно приводить к появлению магнитоэлектрического эффекта и спонтанной намагниченности. Этот эффект наблюдается, например, при высоком магнитном поле  $H \approx 200 \,\mathrm{kOe}$  [5], изменении кристаллической решетки при замещении трехвалентных ионов Ві трех- или двухвалентными ионами редкоземельных ионов (см., например, [5]), а также в тонких пленочных материалах на основе BiFeO<sub>3</sub> [6,7]. Причем в последнем случае в тонких эпитаксиальных пленках BiFeO<sub>3</sub> с псевдотетрагональной структурой была получена электрическая поляризация с рекордно высоким значением  $P_0 \approx 50-100 \,\mu\text{C/cm}^2$ . Важными методами исследования и поиска перовскитов на основе феррита BiFeO<sub>3</sub> являются экспериментальные методы, которые позволяют обнаруживать ПСМС, ее разрушение при замещении ионов висмута или железа, изменении кристаллической структуры. Кроме нейтронографии к таким методам относятся методы сверхтонких взаимодействий (метод ядерного магнитного резонанса (ЯМР), эффекта Mёссбауэра и др.).

В перовските BiFeO<sub>3</sub> магнитные моменты ионов трехвалентного железа, которые упорядочены антиферромагнитно по G-типу, вращаются в плоскости, перпендикулярной гексагональной базисной плоскости, причем вектор распространения модулированной волны совпадает с осью с [3]. Существование ПСМС в BiFeO<sub>3</sub> было подтверждено методом ЯМР [8]. Спектр ЯМР для ПСМС специфический, он состоит из симметричной (или несимметричной) линии из двух максимумов (при значениях сверхтонких полей (СТП)  $B_{\parallel}$  и  $B_{\perp}$  или резонансных частот  $v_{\parallel}$  и  $v_{\perp}$ ), разделенных плато. Для спектра ЯМР поля  $B_{\parallel}$  и  $B_{\perp}$  — это СТП на ядрах <sup>57</sup> Fe для направлений спинов в плоскости циклоиды, параллельно и перпендикулярно вектору распространения волны [8]. Исследования BiFeO<sub>3</sub> методом Мёссбауэра были выполнены в ряде работ [9–12], в которых существование ПСМС и ее влияние на параметры сверхтонких взаимодействий не рассматривались.

В настоящей работе исследовались локальные валентные и магнитные состояния ионов железа в перовскитах  $Bi_{1-x}La_xFeO_3$  (x = 0, 0.1, 0.2, 0.61, 0.9, 1.0) методом эффекта Мёссбауэра. В [3,13,14] были выполнены нейтронографические исследования кристаллической и магнитной структуры соединений BiFeO<sub>3</sub>,  $Bi_{0.93}La_{0.07}FeO_3$  и  $Bi_{0.7}La_{0.3}FeO_3$ . Методом ЯМР изучалась система перовскитов  $Bi_{1-x}La_xFeO_3$  (x = 0-1) в [15]. ПСМС была

обнаружена и в соединении  $Bi_{0.9}La_{0.1}FeO_3$ . Было также установлено, что замещение Bi на La при x = 0.2 разрушает ПСМС. Спектр ЯМР этого соединения имел форму, характерную для коллинеарной спиновой структуры.

Два пика в спектре ЯМР в ВiFeO<sub>3</sub> и Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> должны также соответствовать распределению сверхтонких полей с двумя пиками при  $B_{\parallel}$  и  $B_{\perp}$  или двум секстетам в спектре эффекта Мёссбауэра на ядрах <sup>57</sup>Fe. Так как разрешающая способность в методе ЯМР выше, чем в методе эффекта Мёссбауэра, а разница между пиками в BiFeO<sub>3</sub> и Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> в спектре ЯМР  $\leq$  7 kOe, методом эффекта Мёссбауэра без учета данных ЯМР трудно получить корректную информацию о параметрах сверхтонких взаимодействий в перовскитах BiFeO<sub>3</sub> и Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub>, а также в других перовскитах системы на основе BiFeO<sub>3</sub>.

Цель работы — изучение области существования ПСМС, локальных валентных и магнитных состояний ионов Fe в системе  $\text{Bi}_{1-x}\text{La}_x\text{FeO}_3$  (x = 0-1) методом Мёссбауэра на ядрах <sup>57</sup>Fe.

### Экспериментальные образцы и метод исследования

Образцы перовскитов системы  $Bi_{1-x}La_xFeO_3$  (x = 0, 0.1, 0.2, 0.61, 0.9 и 1.0) приготавливались на воздухе методом обычной твердотельной керамической технологии [1]. Соответствующие количества сухих порошков Bi2O3, LaCO3 и Fe2O3 с чистотой не хуже 99.5% в необходимых количествах смешивались, перетирались и прессовались в таблетки. При синтезе окись Fe<sub>2</sub>O<sub>3</sub> обогащалась стабильным изотопом <sup>57</sup>Fe (количество <sup>57</sup>Fe<sub>2</sub>O<sub>3</sub> составляло 10%). Образцы синтезировались в области температур 800-960°C с промежуточными размельчением и прессованием порошка в таблетки. Время промежуточных отжигов составляло 3-6 h. Окончательный отжиг проводился при 800°С в течение 3 h, затем следовало быстрое охлаждение образцов на воздухе. Кристаллическая структура образцов исследовалась методом рентгенографии. Образцы были однофазными. Отсутствие других кристаллических фаз в исследуемых образцах было подтверждено также мёссбауэровскими измерениями. Структура образцов составов x = 0 и 0.1 была ромбоэдрической с параметрами: a = 3.969 Å и  $\alpha = 89.48^{\circ}$  (x = 0), a = 3.956 Å и  $\alpha = 89.51^{\circ}$  (x = 0.1). Структура образцов при x = 0.2 - 1.0 была ромбической с параметрами решетки: a = 5.596 Å, b = 5.619 Å и c = 7.902 Å при x = 0.2; a = 5.547 Å, b = 5.575 Å и c = 7.864 Å при x = 0.61; a = 5.544 Å, b = 5.562 Å и c = 7.853 Å при x = 0.9; a = 5.549 Å, b = 5.564 Å и c = 7.859 Å при x = 1.0. Эти данные согласуются с результатами работы [15].

Измерения эффекта Мёссбауэра на ядрах <sup>57</sup>Fe при комнатной температуре и 87 K были выполнены в

геометрии поглощения с использованием источника <sup>57</sup>Co(Rh) и спектрометра MS1104em (НИИ физики, Ростов-на-Дону). Обработка спектров проводилась по программам DISTRI-М (для восстановления функции распределения сверхтонких полей) и SPECTR (для модельной расшифровки мёссбауэровских спектров) [16].

## 3. Экспериментальные данные и их обсуждение

На рис. 1–3 приводятся мёссбауэровские спектры при 295 и 87 К для соединений системы  $Bi_{1-x}La_xFeO_3$  и результаты их модельной расшифровки по программе SPECTR (рис. 1) и DISTRI-M (рис. 2 и 3). Экспе-



**Рис. 1.** Мёссбауэровские спектры (экспериментальные точки *I*) при комнатной температуре и результаты их модельной расшифровки по программе SPECTR (линии 2, проходящие через экспериментальные точки) для соединений BiFeO<sub>3</sub> (*a*), Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> (*b*), Bi<sub>0.39</sub>La<sub>0.61</sub>FeO<sub>3</sub> (*c*), Bi<sub>0.1</sub>La<sub>0.9</sub>FeO<sub>3</sub> (*d*) и LaFeO<sub>3</sub> (*e*). Внизу показаны разности между экспериментальными и модельными спектрами.



**Рис. 2.** Мёссбауэровские спектры (экспериментальные точки 1 на частях a, c, e, g) при комнатной температуре и результат восстановления распределений сверхтонких полей P(B) по программе DISTRI (b, d, f, h) для соединений BiFe<sub>3</sub>O (a, b), Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> (c, d), Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> (e, f), Bi<sub>0.39</sub>La<sub>0.61</sub>FeO<sub>3</sub> (g, h). Модельные мёссбауэровские спектры показаны на частях a, c, e, g линиями 2. Под мёссбауэровскими спектрами приводятся разности между экспериментальными и модельными спектрами.

риментальные мёссбауэровские спектры узкие, но, согласно данным ЯМР, в соединениях, содержащих x = 0и 0.1, спектры ЯМР содержат распределения СТП с двумя максимумами при  $B_{\perp}$  и  $B_{\parallel}$  ( $B_{\perp} < B_{\parallel}$ ). Для определения параметров сверхтонких взаимодействий (сверхтонких полей *B*, изомерных  $\delta$  и квадрупольных  $\varepsilon$  сдвигов) по программе SPECTR значения СТП  $B_{\perp}$  и  $B_{\parallel}$  на ядрах <sup>57</sup>Fe для составов x = 0 и 0.1 при 295 и 87 K были взяты из данных ЯМР [17]. При модельной расшифровке мёссбауэровских спектров для составов x = 0 и 0.1 значения СТП  $B_{\perp}$  и  $B_{\parallel}$  фиксировались, а изомерных и квадрупольных сдвигов варьировались. Для других составов



**Рис. 3.** Мёссбауэровские спектры (экспериментальные точки *I* на частях *a*, *c*, *e*, *g*) при 87К и результат восстановления распределений сверхтонких полей P(B) по программе DISTRI (*b*, *d*, *f*, *h*) для соединений BiFe<sub>3</sub>O (*a*, *b*), Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> (*c*, *d*), Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> (*e*, *f*), Bi<sub>0.39</sub>La<sub>0.61</sub>FeO<sub>3</sub> (*g*, *h*). Модельные мёссбауэровские спектры показаны на частях *a*, *c*, *e*, *g* линиями 2. Под мёссбауэровскими спектрами приводятся разности между экспериментальными и модельными спектрами.

все сверхтонкие параметры варьировались. Значения сверхтонких параметров, полученные в рамках этих двух программ, в пределах ошибок совпадают. Для составов x = 0 и 0.1 значения изомерных сдвигов ( $\delta_{\parallel}$  и  $\delta_{\perp}$ ) для ионов железа, магнитные моменты которых параллельны и перпендикулярны направлению распространения циклоиды соответственно, при комнатной температуре лежат в пределах 0.383–0.401 mm/s. Таким образом,

ионы железа находятся в трехвалентном состоянии Fe<sup>3+</sup>. Значения квадрупольных сдвигов ( $\varepsilon_{\parallel}$  и  $\varepsilon_{\perp}$ ) для этих же ионов железа в рассматриваемых перовскитах значительно различаются, что указывает на распределение  $\varepsilon$  по циклоиде; например, при 293 K для x = 0  $\varepsilon_{\perp} = -0.107 \pm 0.002$  mm/s и  $\varepsilon_{\parallel} = 0.218 \pm 0.002$  mm/s, а для x = 0.1  $\varepsilon_{\perp} = -0.104$  mm/s и  $\varepsilon_{\parallel} = 0.220$  mm/s.



**Рис. 4.** Концентрационные зависимости сверхтонких полей *B*, изомерных  $\delta$  и квадрупольных  $\varepsilon$  сдвигов в перовскитах Bi<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub> при 295 (*1*, *2*) и 87 К (*3*, *4*). Экспериментальные точки (*1*, *3*) и (*2*, *4*) отвечают состояниям ионов железа, магнитные моменты которых перпендикулярны и параллельны соответственно оси циклоиды. Погрешности экспериментальных измерений *B*,  $\delta$  и  $\varepsilon$  находятся в пределах размеров экспериментальных точек.

Распределение квадрупольных сдвигов  $\varepsilon$ , разница в значениях и знаках  $\varepsilon$  обусловлены вариациями угла между главными осями тензора градиента электрического поля и направлением спина. Отношение  $\varepsilon_{\perp}/\varepsilon_{\parallel}$  близко к величине –2; это подтверждает, что угол между градиентом электрического поля и легкой осью намагничивания составляет 0 и 90° для двух положений спинов в максимумах спектра. Эти данные говорят в пользу существования ПСМС в Bi<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub> при x = 0 и 0.1. Для других составов модельная расшифровка мёссбауэровских спектров проведена с помощью программы SPECTR в предположении наличия одного зеемановского секстета. В результате модельной расшифровки спектров были получены значения B,  $\delta$  и  $\varepsilon$  при комнатной температуре и 87 K, и эти данные представлены на рис. 4.

На рис. 2, *a-d* и 3, *a-d* приведены мёссбауэровские спектры и восстановленные функции распределения СТП P(B) для BiFeO<sub>3</sub> и Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> при 295 и 87 К. Как видно из рис. 2, *b*, *d* распределения P(B) практически совпадают по форме со спектрами ЯМР и диапазону СТП (резонансных частот для ЯМР), полученных для рассматриваемых составов при 77 и 300 К [8,15]. Так как разрешение в мёссбауэровской спектроскопии

несколько ниже, чем в методе ЯМР, пики в максимумах распределений P(B) на рис. 2, b, d и 3, b, d слегка уширены (максимумы распределений P(B) не имеют форму острых пиков, как в спектрах ЯМР) из-за усреднения распределения полей В в области максимумов, но значения  $B_{\parallel}$  и  $B_{\perp}$  в пределах ошибки, разность между этими полями  $\Delta = B_{\parallel} - B_{\perp}$  и ширина распределения  $\Delta P(B)$ совпадают с СТП  $B_{\parallel}$  и  $B_{\perp}$ ,  $\Delta = B_{\parallel} - B_{\perp}$  и  $\Delta P(B)$  в спектрах ЯМР [8,15]. Заметим, что в перовскитах BiFeO<sub>3</sub> и Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> распределение квадрупольных сдвигов  $P(\varepsilon)$  по циклоиде с разными по величине и знаку значениями  $\varepsilon$  в максимумах  $P(\varepsilon)$  также обусловливает разрешение максимумов в распределении P(B), восстановленных из экспериментальных мёссбауэровских спектров. При 77 К разность  $\Delta B$  между максимумами СТП в спектре ЯМР для BiFeO<sub>3</sub> и Bi<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> составляет  $\Delta B = 5.5 - 6.5$  kOe [8,15], причем в этой же области лежат значения  $\Delta B$  распределений P(B), восстановленных из мёссбауэровских спектров (при 87 К).

Рассмотрим экспериментальные мёссбауэровские и ЯМР-данные для перовскита Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub>. Спектр ЯМР уже не содержит острых пиков и плато, которые наблюдались в BiFeO3 и Bi0.9La0.1FeO3, и имеет форму спектра для однородной спиновой структуры, т.е. при замещении ионов висмута ионами лантана при x = 0.2 ПСМС разрушилась [15]. Ширина распределений резонансных частот спектра ЯМР для соединения Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> при 77 К составляет  $\Delta v = 0.85 \text{ MHz}$  или 6.2 kOe [15]. На рис. 2, b и 3, b приведены распределения СТП P(B), восстановленные из мёссбауэровских спектров, для Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub>. Форма и диапазон полей в распределении P(B) совпадают с формой и диапазоном спектра ЯМР для Ві<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub>. Таким образом, мёссбауэровские исследования перовскита Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub> также подтверждают отсутствие ПСМС в этом соединении. Среднее значение СТП при комнатной температуре в указанном соединении равно  $B_{av}^s = 497.5 \pm 1.5 \, \text{kOe}$  из результатов модельной расшифровки экспериментальных спектров и  $B_{av}^d = 500.2 \pm 1.2 \,\mathrm{kOe}$  из восстановленных распределений P(B), а при 87 К эти СТП соответственно равны  $B_{av}^s = 543.6 \pm 2.2$  kOe и  $B_{av}^d = 545.7 \pm 1.1$  kOe. Изомерные сдвиги  $\delta$  в перовските Bi<sub>0.8</sub>La<sub>0.2</sub>FeO<sub>3</sub>, полученные с помощью указанных способов обработки мёссбауэровских спектров, в пределах ошибки равны  $\delta_{\rm av} = 0.387 \pm 0.009 \, {\rm mm/s}$  при комнатной температуре и  $\delta = 0.497 \pm 0.007$  mm/s при 87 К. Квадрупольные сдвиги в этом перовските в пределах ошибки были равны:  $\varepsilon_{\rm av} = 0.021 \pm 0.002 \, {\rm mm/s}$  при комнатной температуре и  $0.024 \pm 0.003$  mm/s при 87 К.

В [15] не удалось обнаружить спектр ЯМР на ядрах <sup>57</sup>Fe в перовските  $Bi_{0.39}La_{0.61}FeO_3$ . Авторы работы предположили, что этот эффект обусловлен размытием спектра ЯМР из-за большой неоднородности локальных СТП в области промежуточных ромбических фаз при x = 0.61. Однако из рис. 1, *с* видно, что линии секстета мёссбауэровского спектра на ядрах <sup>57</sup>Fe в

этом соединении узкие. Распределения СТП P(B)для Bi<sub>0,39</sub>La<sub>0,61</sub>FeO<sub>3</sub> приведены на рис. 2, *h* и 3, *h*. Распределение P(B) имеет слегка асимметричную форму. СТП в максимуме распределения P(B) равно  $B_m = 512.7 \pm 0.9 \,\text{kOe}$  при комнатной температуре и  $557.2 \pm 1.1$  kOe при 87 K. Ширина распределения СТП  $\Delta P(B)$  при указанных температурах соответственно равна  $5.1 \pm 0.3$  и  $5.9 \pm 0.3$  kOe. В приближении линейной корреляции между сверхтонкими параметрами были получены также распределения изомерных  $P(\delta)$ и квадрупольных  $P(\varepsilon)$  сдвигов для этого соединения. Максимумы распределения  $P(\delta)$  и  $P(\varepsilon)$  лежат при  $\delta_m = 0.392 \pm 0.022 \text{ mm/s}$  и  $\varepsilon_m = -0.040 \pm 0.024 \text{ mm/s}$ при комнатной температуре и  $\delta_m = 0.492 \pm 0.018$  mm/s,  $\varepsilon_m = -0.033 \pm 0.018$  mm/s при 87 К. Ширины распределения изомерных  $\Delta P(\delta)$  и квадрупольных сдвигов  $\Delta P(\varepsilon)$ равны  $\Delta P(\delta) = 0.054 \pm 0.022 \, \text{mm/s}$ И  $\Delta P(\varepsilon) =$  $= 0.082 \pm 0.022$  mm/s при комнатной температуре.

На рис. 1, *d*, *e* представлены мёссбауэровские экспериментальные спектры и результаты их модельной расшифровки (по программе SPECTR) при комнатной температуре в перовскитах  $\text{Bi}_{0.1}\text{La}_{0.9}\text{FeO}_3$ и LaFeO<sub>3</sub>. Мёссбауэровские линии узкие и симметричные. При комнатной температуре параметры сверхтонких взаимодействий, полученные из модельной расшифровки, равны  $B_m = 519.0 \text{ kOe}$ ,  $\delta_m = 0.379 \text{ mm/s}$  и  $\varepsilon_m = -0.028 \text{ mm/s}$ ,  $\Delta P(\varepsilon) = 0.112 \text{ mm/s}$ . Для соединения LaFeO<sub>3</sub> распределения сверхтонких параметров имели симметричную форму, а параметры сверхтонких взаимодействий приведены на рис. 4 и согласуются с данными работы [17].

На рис. 4 представлены концентрационные зависимости СТП *B*, изомерных  $\delta$  и квадрупольных  $\varepsilon$  сдвигов в системе перовскитов Bi<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub> при 295 и 87 К. Для x = 0 и 0.1 СТП и квадрупольные сдвиги расщеплены на два значения для двух состояний ионов железа, магнитные моменты которых перпендикулярны и параллельны направлению распространения ПСМС. Мёссбауэровские спектры для составов x = 0.2-1.0 описываются одним секстетом и узкими распределениями сверхтонких параметров, одним состоянием ионов Fe. Значения изомерных сдвигов  $\delta$  при комнатной температуре (относительно чистого железа) показывают, что ионы железа находятся в трехвалентном состоянии Fe<sup>3+</sup> в октаэдрическом кислородном окружении.

Природа СТП на ядрах <sup>57</sup>Fe в магнитоупорядоченных оксидах анализировалась во многих работах (см., например, [18–20]). СТП в оксидных магнитоупорядоченных веществах представляют в виде суммы трех вкладов

$$B = B_c + B_l + B_d, \tag{1}$$

где  $B_c$ ,  $B_l$  и  $B_d$  соответствуют СТП Ферми-контактного, орбитального и дипольного взаимодействий соответственно. Поле  $B_c$  обусловлено поляризацией *s*-электронов внутренних замкнутых оболочек за счет обменного взаимодействия этих электронов с 3*d*-электронами ионов железа. Подробно этот вклад в СТП *B* рассмотрен в [18–20].

Вклад орбитального СТП равен нулю для ионов в *s*-состояниях, т. е. и для ионов Fe<sup>3+</sup>. Для этих электронов полный орбитальный момент равен нулю. Сверхтонкие поля от различных электронов за счет орбитального движения компенсируют друг друга (см., например, [18-20]). Дипольный вклад также мал и обычно приводит к некоторому уширению резонансной линии ЯМР или спектра Мёссбауэра.

Итак, СТП на ядре железа в оксидных магнетиках определяется только поляризацией электронов заполненных оболочек за счет поляризации их спинов локальным магнитным моментом  $\mu$ (Fe) данного иона железа. СТП на ядрах ионов Fe в магнитоупорядоченных оксидах, в том числе и в рассматриваемых перовскитах, может быть представлено в виде

$$B(\mathrm{Fe}) = P_c \mu(\mathrm{Fe}), \qquad (2)$$

где  $P_c$  — константа сверхтонкой связи, обусловленной поляризацией S-электронов внутренних заполненных оболочек,  $\mu(\text{Fe})$  — магнитный момент иона железа, на ядре которого измерено СТП. Как было показано в [17,19],  $P_c$  в железе не зависит от электронной конфигурации, и оценка  $P_c$  давала значение  $P_c \approx -110-130$  кОе на один неспаренный 3*d*-электрон.

Магнитный момент ионов железа Fe  $\mu$ (Fe) в соединении BiFeO3 измерен методом нейтронографии в работе [3], причем  $\mu$ (Fe) = 4.00  $\mu_{\rm B}$  при комнатной температуре и 4.35 µ<sub>В</sub> при 77 К. В [13,14] также были измерены магнитные моменты ионов железа в BiFeO<sub>3</sub>, Ві0.93 La0.07 FeO3 и Ві0.7 La0.3 FeO3 при комнатной температуре; значения  $\mu$ (Fe) оказались равными  $\mu$ (Fe) = 3.70  $\mu_{\rm B}$ в BiFeO<sub>3</sub>, 3.79 µ<sub>В</sub> в Bi<sub>0.93</sub>La<sub>0.07</sub>FeO<sub>3</sub>. Среднее СТП на ядрах <sup>57</sup>Fe в перовските BiFeO<sub>3</sub> равно  $B_{\rm av} = -493.8$  kOe при комнатной температуре. Как следует из рис. 4, СТП увеличивается при росте x, и, следовательно, должны увеличиваться локальные магнитные моменты на ионах Fe. Определим константу сверхтонкой связи P<sub>c</sub>, используя формулу (2) и данные работ [3,13,14]. Константа Р<sub>с</sub> как отношение локального магнитного поля на ядрах <sup>57</sup>Fe к магнитному моменту  $\mu$ (Fe) = 3.70  $\mu$ <sub>B</sub> равна  $P_c = -133.5 \,\text{kOe}/\mu_B$ . Если взять  $\mu(\text{Fe}) = 4.0 \,\mu_B$ , то  $P_c = -124.1 \, \text{kOe}/\mu_{\text{B}}$ . Магнитный момент ионов Fe<sup>3+</sup> в перовските LaFeO3 был измерен методом нейтронографии в [21] при 4.2 K; он равен  $\mu$ (Fe) = 4.6  $\pm$  0.2  $\mu$ <sub>B</sub>. Значение  $T_N = 740 \,\mathrm{K}$  для перовскита LaFeO<sub>3</sub> [1] достаточно высокое, и величины СТП при 4.2 и 87 К будут почти равными. СТП в LaFeO<sub>3</sub> имеет величину B = 562.0 kOe при 87 К. В этом случае константа сверхтонкой связи  $P_c$  оценивается равной  $-122.2 \,\mathrm{kOe}/\mu_{\rm B}$ , что могло бы соответствовать магнитному моменту иона железа в BiFeO<sub>3</sub>  $\mu$ (Fe) = 4.04  $\mu$ <sub>B</sub> при комнатной температуре, т.е. значению, измеренному в [3]. Как видно, константа Р<sub>c</sub>, полученная из эксперимента, хорошо согласуется с оценками *P<sub>c</sub>* в [18-20].

Константа сверхтонкой связи  $P_c$  не зависит от температуры [18–20]. Используя константу сверхтонкой





**Рис. 5.** Концентрационная зависимость магнитных моментов ионов Fe<sup>3+</sup> в соединениях Bi<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub> при комнатной температуре (1) и 87 K (2).

связи  $P_c = -133.5 \,\mathrm{kOe}/\mu_{\rm B}$  и экспериментальные значения СТП на ядрах <sup>57</sup>Fe, измеренные в настоящей работе (рис. 4), определим локальные магнитные моменты  $\mu$ (Fe) на ионах железа Fe<sup>3+</sup> во всей области рассматриваемых перовскитов. На рис. 5 приводятся концентрационные зависимости  $\mu$ (Fe) при комнатной температуре и 87 K. Из этих зависимостей видно, что при замещении трехвалентных ионов висмута Bi<sup>3+</sup> трехвалентными ионами лантана La<sup>3+</sup>  $\mu$ (Fe) растут от 3.70 ± 0.04  $\mu_{\rm B}$  в BiFeO<sub>3</sub> до 3.91 ± 0.04  $\mu_{\rm B}$  в LaFeO<sub>3</sub> при комнатной температуре.

Эффективный ионный радиус R трехвалентного висмута  $Bi^{3+}$  почти равен эффективному ионному радиусу трехвалентного лантана La<sup>3+</sup> при одинаковом анионном окружении [22]; так, например, при координационном числе N = 6  $R(\text{Bi}^{3+}) = 1.03 \text{ Å}$  и  $R(\text{La}^{3+}) = 1.032 \text{ Å}$ . Замещение трехвалентных ионов висмута Bi<sup>3+</sup> трехвалентными ионами лантана La<sup>3+</sup>, имеющими почти равные эффективные ионные радиусы, не приводит к изменению объема элементарной ячейки [15], существенным изменениям от состава изомерных и квадрупольных сдвигов (рис. 4) в области существования ПСМС (x = 0-1) и в области x = 0.2-1.0. Однако СТП B на ядрах <sup>57</sup>Fe и локальные магнитные моменты трехвалентных ионов железа  $\mu(Fe)$  существенно растут при замещении ионов Bi<sup>3+</sup> ионами La<sup>3+</sup>. Вероятно, это обусловлено тем, что при замещении ионов Bi<sup>3+</sup>, имеющими внешнюю электронную оболочку из  $6s^26p^3$ -электронов, ионами La<sup>3+</sup> с внешней электронной оболочкой из  $5d^{1}6s^{2}$ -электронов в перовскиты  $Bi_{1-x}La_{x}FeO_{3}$  добавляется один *d*-электрон.

#### 4. Заключение

Перовскиты  $Bi_{1-x}La_xFeO_3$  (x = 0, 0.1, 0.2, 0.61, 0.9, 1.0) исследованы методом эффекта Мёссбауэра при 295 и 87 К. Распределения СТП P(B) для BiFeO<sub>3</sub> и

Ві<sub>0.9</sub>La<sub>0.1</sub>FeO<sub>3</sub> имеют специфическую форму с двумя пиками, обусловленную пространственной спин-модулированной структурой. Замещение Ві на La в количестве x = 0.2 разрушает ПСМС. Оценена константа сверхтонкой связи между СТП и магнитным моментом ионов железа  $P_c = -133.5 \text{ kOe}/\mu_B$  в перовскитах Bi<sub>1-x</sub>La<sub>x</sub>FeO<sub>3</sub>. Ионы железа находятся в трехвалентном состоянии. Определены локальные магнитные моменты  $\mu$ (Fe) на ионах Fe<sup>3+</sup> и их концентрационная зависимость. При комнатной температуре магнитный момент ионов железа изменяется от  $\mu$ (Fe) =  $3.70 \pm 0.04 \mu_B$  в BiFeO<sub>3</sub> до  $3.91 \pm 0.04 \mu_B$  в LaFeO<sub>3</sub>.

### Список литературы

- [1] Ю.Н. Веневцев, В.В. Гагулин, В.Н. Любимов. Сегнетомагнетики. Наука, М. (1982). С. 161.
- [2] A.M. Kadomtseva, Yu.F. Popov, G.P. Vorob'ev, A.K. Zvezdin. Physica B 211, 327 (1995).
- [3] P. Fisher, M. Polomska, I. Sosnowska, M. Szimanski. J. Phys. C: Solid State Phys. 13, 1931 (1980).
- [4] А.К. Звездин, А.П. Пятаков. УФН 174, 465 (2004).
- [5] Ю.Ф. Попов, А.М. Кадовцева, С.С. Кротов, Д.В. Белов, Г.П. Воробьев, П.Н. Махов, А.К. Звездин. ФНТ 27, 649 (2001).
- [6] J. Wang, J.B. Neaton, H. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wutting, R. Ramesh. Science 299, 1719 (2003).
- [7] H. Uchida, R. Ueno, H. Nakaki, H. Funakubo, S. Koda. Jpn. J. Appl. Phys. 44, L 561 (2005).
- [8] A.V. Zalessky, A.A. Frolov, T.A. Khimich, A.A. Bush, V.S. Pokatilov, A.K. Zvezdin. Europhys. Lett. 50, 547 (2000).
- [9] V.G. Bhide, M.S. Multani. Solid State Commun. 3, 271 (1965).
- [10] К.П. Митрофанов, А.С. Висков, М.В. Плотникова, Ю.Н. Веневцев, В.С. Шпинель. Бюл. АН СССР 29, 1865 (1965).
- [11] A. Biran, P.A. Montano, U. Simony. J. Phys. Chem. Solids 32, 327 (1971).
- [12] C. Blaaum, F. van der Woude. J. Phys. C: Solid State Phys. 6, 1422 (1973).
- [13] I. Sosnowska, R. Przenioslo, P. Fisher, V.A. Murashov. J. Magn. Magn. Mater. 160, 384 (1996).
- [14] I. Sosnowska, M. Loewenhaupt, W.I.F. David, R.M. Ibberson. Mater. Sci. Forum 133–136, 683 (1993).
- [15] А.В. Залесский, А.А. Фролов, Т.А. Химич, А.А. Буш. ФТТ 45, 134 (2003).
- [16] В.С. Русаков. Мёссбауэровская спектроскопия локально-неоднородных систем. Алматы (2000). 430 с.
- [17] T. Gibb. J. Mater. Chem. 4, 1445 (1994).
- [18] R.E. Watson, A.J. Freeman. Phys. Rev. 123, 20277 (1961).
- [19] M.B. Stearns. Phys. Rev. B 4, 4081 (1971).
- [20] Г.А. Смоленский, В.В. Леманов, Г.М. Недлин, М.П. Петров, Р.В. Писарев. Физика магнитных диэлектриков. Наука, Л. (1974). С. 454.
- [21] T. Arima, Y. Tokura, J.B. Torrance. Phys. Rev. B 48, 17096 (1993).
- [22] R.D. Shannon. Acta Cryst. A 32, 751 (1976).