Рентгенодифракционные исследования особенностей атомной структуры сплава Fe—Si в *а*-области фазовой диаграммы

© Н.В. Ершов, Ю.П. Черненков*, В.А. Лукшина, В.И. Федоров*

Институт физики металлов Уральского отделения Российской академии наук,

Екатеринбург, Россия

* Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук,

Гатчина, Ленинградская обл., Россия

E-mail: nershov@imp.uran.ru

(Поступила в Редакцию 30 июня 2008 г.)

Атомная структура сплавов Fe–Si с концентрацией кремния 5–8 at.% (α -область фазовой диаграммы) исследовалась методом рентгеновской дифракции. Выяснено влияние закалки после отжига при температуре разупорядочения 850°C на структурное состояние сплавов. Показано, что в закаленных образцах имеет место ближнее упорядочение: при 5–6 at.% Si локальный порядок *B*2-типа, а при 8 at.% Si дополнительно появляются кластеры *D*0₃-фазы. Установлена атомная структура *B*2-кластеров и их ближайшего окружения.

Работа выполнена при частичной поддержке РФФИ (проект № 06-02-17082).

PACS: 75.50.Bb, 61.05.cp

1. Введение

Практически важные железокремнистые сплавы с большим содержанием железа, широко используемые в качестве материалов для магнитопроводов, демонстрируют выдающиеся магнитомягкие свойства в малоизученной области фазовой диаграммы Fe–Si (до 10 at.% Si), которая обычно характеризуется отсутствием дальнего порядка (т. е. неупорядоченная или с ближним порядокм α -фаза) в ОЦК-решетке твердого раствора замещения.

Атомная структура и свойства магнитомягких сплавов на основе железа интенсивно исследовались на протяжении многих лет [1-6]. В соответствии с общепринятой фазовой диаграммой сплава железо-крмений в богатой железом ее части имеются три основные фазы α , α_1 и α_2 . Соответствующие им кристаллические структуры — это твердый раствор (α), неупорядоченный или (с присутствием ближнего порядка, структуры с дальним порядком $D0_3$ -типа (α_1) и B2-типа) α_2 [7]. В 90-е годы было предпринято несколько попыток ревизии фазовой диаграммы, которые, однако, не коснулись существенным образом первого сегмента α -FeSi, распространяющегося на область малых концентраций кремния. Так, методом дифракции нейтронов [8] было показано, что в сплавах $Fe_{1-x}Si_x$ при x = 0.061 вплоть до 700°C имеется ближнее упорядочение, при 900°С упорядочение не наблюдается; при x = 0.076 обнаруживается дальний порядок D03 (области упорядочения — малые домены размером в 2-3 параметра решетки a = 0.5708 nm). С ростом концентрации размеры упорядоченных D0₃-доменов растут.

Подобные результаты были получены методом просвечивающей электронной микроскопии [9]. Авторы показали, что дополнительные пятна, отвечающие за тот или иной тип порядка, не обнаруживаются на картине электронной дифракции, т.е. микроструктура сплава $Fe_{1-x}Si_x$ при x = 0.08 — это неупорядоченный твердый раствор. Образцы были отожжены при высоких температурах (550, 750 и 1100° C) и закалены в воду. Предшествующее $D0_3$ -упорядочению формирование обогащенных и обедненных кремнием кластеров (областей) в виде модулированной микроструктуры имеет место при больших концентрациях (x = 0.155 и более). В обогащенных областях достигается стехиометрический состав Fe₃Si и образуется $D0_3$ -решетка.

В ходе исследований влияния термомагнитной и термохимической обработок на локальную структуру монокристаллов $Fe_{1-x}Si_x$ (x = 0.05, 0.06 и 0.08), которые выполнялись методом рентгеновской дифракции — методом, одинаково чувствительным как к особенностям структуры дальнего порядка, так и к ближнему упорядочению в расположении атомов, было впервые показано [10,11], что для всех концентраций кремния характерно ближнее упорядочение *B*2-типа в ОЦК-решетке, которое в случае x = 0.08 сосуществует с кластерами $D0_3$ -фазы. Причем химический ближний порядок в *B*2-кластерах сопровождается локальным порядком смещения атомов из узлов идеальной решетки, в то время как в $D0_3$ -фазе искажения решетки не отмечены.

Целью настоящей работы является изучение особенностей локальной атомной структуры железокремнистых сплавов в области неупорядоченного твердого раствора фазовой диаграммы после разупорядочивающего воздействия, такого как закалка с двумя разными скоростями от высокой температуры, принятой ранее для этих сплавов в качестве температуры разупорядочения [8].

2. Образцы и техника эксперимента

Объектами настоящего структурного исследования служили поликристаллические, монокристаллические образцы сплава Fe-Si и монокристалл чистого железа в качестве своеобразного "эталона" в рентгенодифракционных измерениях. Монокристаллические образцы сплава с 5 и 8 аt.% кремния были вырезаны из монолитного кристалла, выращенного по методу Бриджмена, в виде тонких дисков (толщина 0.3 mm, диаметр 8–9 mm) с кубической ориентацией кристаллографических осей. Плоскость образца сориентирована параллельно кристаллографической плоскости (010) (кубическая текструра), две оси легкого намагничивания [100] и [001] лежат в плоскости диска.

Образцы с "госсовской" ориентацией (110) и содержанием кремния 6 аt.%, имеющие диаметр около 10 mm, были изготовлены из большого зерна прокатанного листа электротехнической стали толщиной 0.35 mm. В этом случае плоскость образца параллельна кристаллографической плоскости (110) (госсовская текстура), только одна легкая ось [001] лежит в плоскости диска, в то время как оси [100] и [010] расположены под углом около 45° к плоскости образцов.

Все образцы были подвергнуты рафинирующему вакуумному отжигу при температуре 1050–1300°С в течение 2–6 h, после которого содержание углерода не превышало 0.005 wt.%. Затем с целью получения разупорядоченного состояния образцы были подвергнуты закалке в воду (скорость закалки 400 или 150 K/s) от температуры разупорядочения 850°С [5,8].

Дополнительно был приготовлен монокристаллический образец железа в виде тонкой пластинки с плоскостью, близкой к кристаллографической плоскости (113). Содержание углерода в нем не превосходило 0.06 wt.%. Профили интенсивности диффузного рассеяния от монокристалла Fe сравнивали с рассеянием от образцов сплава для выделения составляющей, связанной с локальным упорядочением примесных атомов Si, а также для исключения характерных для ОЦК-решетки диффузных плоскостей и стержней, обусловленных тепловым движением атомов [12].

Рентгенодифракционные измерения проводились при комнатной температуре на четырехкружном лабораторном дифрактометре. Характеристическое излучение ($\lambda = 0.071$ nm) рентгеновской трубки с Мо-анодом выделялось с помощью монохроматора из пиролитического графита. Рассеянное излучение регистрировалось твердотельным энергодисперсионным Si(Li)-детектором [11].

3. Результаты эксперимента и их обсуждение

ОЦК-решетка сплава α -FeSi, а также как и чистого α -железа, проявляется в дифракции набором сильных узких рефлексов с четной суммой индексов h, k, l, например (200), (110), (400) и др. B2- и $D0_3$ -упорядочения выражаются в появлении сверхструктурных пиков, для которых h + k + l — нечетное число, т.е. пиков с индексами (100), (300), (111) и др. Кроме того, в результате удвоения ячейки вдоль кристаллографических осей при образовании $D0_3$ -фазы появляются сверхструктурные пики (рефлексы) с полуцелыми индексами h = n/2 k = m/2 l = p/2, когда n, m, p — целые

нечетные числа, например $(\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2})$, $(1\frac{1}{2} \ \frac{1}{2} \ \frac{1}{2})$, $(1\frac{1}{2} \ 1\frac{1}{2} \ 1\frac{1}{2})$, $(1\frac{1}{2} \ 1\frac{1}{2} \ 1\frac{1}{2} \ 1\frac{1}{2})$, $(1\frac{1}{2} \ 1\frac{1}{2} \ 1\frac{1}{2} \ 1\frac{1}{2})$, $(1\frac{1}{2} \ 1\frac{1}{2} \ 1\frac{1}{2}$

Рентгенодифракционным методом исследовались монокристаллические образцы сплава $Fe_{1-x}Si_x$ (x = 0.05, 0.06 и 0.08). Аналогично регистрировалось рассеяние от монокристалла α -Fe, интенсивности которого сравнивались с данными от сплава для того, чтобы однозначно выделить только те особенности, которые связаны с образованием химического упорядочения при замещении атомов железа кремнием в сплаве.

Основные брэгговские линии при переходе от α -железа к сплаву остаются неизменными, что свидетельствует о том, что дальний порядок сохраняется, за исключением небольших смещений линий в направлении больших углов рассеяния, которые соответствуют уменьшению параметра ОЦК-ячейки *a* при растворении кремния, что давно и надежно установлено [1]. Рефлексы от образцов сплава располагаются в позициях, которые дают следующие значения параметра *a*: при 5 at.% Si *a* = 0.2864(2) nm, при 6 at.% Si — 0.2862(2) nm и 0.2860(3) nm при 8 at.% Si.

При сканировании обратного пространства вдоль направлений (100), (100) и др. во всех образцах сплава в промежутках между очень интенсивными брэгговскими рефлексами были обнаружены слабые диффузные пики, которые проявляются даже при наименьшей концентрации кремния $c_{\rm Si} = 0.05$ и после закалки от температуры 850°С, определенной в [8] как температура разупорядочения. Например, на рис. 1 приведены профили интенсивности рассеяния, измеренные $\theta - 2\theta$ -сканированием вдоль направления [100] между узлами обратного пространства (000)-(200) и (200)-(400), для образцов сплава $Fe_{1-x}Si_x$ (x = 0.06) и чистого железа. Два образца, которые прошли закалку с разными скоростями 150 и 400 K/s соответственно, тем не менее демонстрируют очень близкие, практически неразличимые интенсивности в широких размытых пиках, локализованных в

Рис. 1. Профили интенсивности рассеяния от монокристаллов чистого α -железа и сплава железо—кремний (образцы № 5 и 6 с содержанием кремния 6 аt.%), измеренные при θ -2 θ -сканировании вдоль оси [100].

Рис. 2. Профили интенсивности рассеяния от монокристаллов α -железа и сплава железо-кремний (образцы № 5 и 7, содержащие 6 и 8 аt.% Si соответственно), зарегистрированные при $\theta - 2\theta$ -сканировании в направлении [111]. Вертикальными штриховыми линиями показаны расчетные положения сверх-структурных максимумов и пересечений с плоскостями теплового диффузного рассеяния (TDS).

узлах (100) и (300). Сверхструктурные пики диффузного рассеяния от сплав с нечетной суммой h + k + l являются признаком ближнего упорядочения атомов кремния B2-типа. При этом ширина на полувысоте максимума пика (полуширина W) может использоваться для оценки средней протяженности упорядоченной области (кластера) B2-фазы.

При сканировании в направлении [111] между прямым пучком (000) и брэгговским рефлексом (222) в интенсивности рассеяния от α -Fe регистрируются (рис. 2) два широких наплыва от пересечений с плоскостями теплового диффузного рассеяния (TDS), причиной появления которых являются фононные колебания цепочек атомов (111) [12]. Эти особенности повторяются и в интенсивностях рассеяния от сплава Fe_{1-x}Si_x при x = 0.05 (на рисунке не приводится), 0.06 и 0.08, как показано также на рис. 2. Кроме этого, в случае сплава отмечаются особенности структурного происхождения: один широкий диффузный максимум (111) при x = 0.06 и широкие диффузные пики с индексами $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (111)$ и $(1\frac{1}{2}, 1\frac{1}{2}, 1\frac{1}{2})$ при x = 0.08. Появление пиков с полуцелыми индексами h, k, l свидетельствует о том, что в сплаве с 8 at.% кремния имеются области с D0₃-упорядочением.

Эволюцию ближнего атомного упорядочения при увеличении концентрации кремния можно также проследить по профилям интенсивностей диффузного расссяния, измеренным $\theta - 2\theta$ -сканированием в направлении [100] между рефлексами (000)-(200) и (200-(400), которые приведены на рис. 3. Профили кривых мало меняются при увеличении $c_{\rm Si}$ от 0.05 к 0.06, но при переходе к $c_{\rm Si} = 0.08$ пик (100) становится более узким и интенсивным, а у широкого пика (300) справа появляется небольшая узкая особенность. Для интерпретации изменений структуры необходимо использовать приемы фазового анализа с разложением интенсивностей методом наименьших квадратов (МНК(LSQ)).

Фазовый анализ данных диффузного рассеяния рентгеновских лучей выполнялся с аппроксимацией фона, брэгговских и диффузных пиков функциями нескольких параметров. Брэгговские рефлексы хорошо подгонялись функциями Лоренца, а диффузные пики — одинаково хорошо либо функциями Гаусса, либо функциями Лоренца. Наибольшую проблему представляет аппроксимация фона, так как небольшая неоднозначность в его определении приводит к значительным изменениям параметров диффузных пиков, таких как интенсивность в максимуме (I_{max}) , положение $(2\theta_{\text{max}})$ и ширина на полувысоте W. Все приводимые здесь результаты МНК-разложения были получены с использованием линейной зависимости фона рассеяния от угла 20. Профили пиков (300) и их разложения показаны на рис. 4 для образца сплава $Fe_{1-x}Si_x$ (x = 0.05) и на рис. 5 для образцов $Fe_{1-x}Si_x$ (x = 0.06).

Из полуширины W по формуле из [13] была определена средняя протяженность кластеров той или иной фазы. Значения параметров пиков и средний размер *B*2-кластеров в образцах с концентрацией кремния 5 и 6 at.% приведены в таблице. Средняя протяженность областей, упорядоченных по типу *B*2, составляет 0.6–0.7 nm, что при величине параметра решетки 0.2862 nm соответствует длине 2–2.5 элементарных ячеек. Следует отметить, что пики от *B*2-фазы более чем на 2° сдвинуты в направлении малых углов рассеяния из расчетной позиции узла (300), равной $2\theta_{(300)} = 43.57^\circ$. Это однозначно

Рис. 3. Профили интенсивности рассеяния от монокристаллов сплава железо-кремний (образцы № 4, 6 и 7, содержащие 5, 6 и 8 аt.% Si соответственно), зарегистрированные при $\theta - 2\theta$ -сканировании в направлении [100]. Вертикальными штриховыми линиями показаны расчетные положения сверх-структурных максимумов.

Рис. 4. Профиль интенсивности рассеяния пика (300) от монокристаллического образца № 4 сплава железо-кремний (5 at.% Si), закаленного от температуры 850°С со скоростью 400 K/s. Внизу показан результат МНК (LSQ) выделения пика (300) от *В*2-фазы.

Рис. 5. То же, что на рис. 4, для монокристаллических образцов № 5 и 6 сплава железо-кремний (6 at.% Si), закаленных от температуры 850°С со скоростью 150 и 400 K/s соответственно.

свидетельствует о том, что замещение атомов железа кремнием сопровождается локальными искажениями решетки. Наблюдается не только химическое упорядочение атомов кремния в железе, но и порядок смещений ближайших атомов из узлов идеальной ОЦК-решетки.

Результаты разложения профиля пика (300) образца с 8 at.% кремния, показанного на рис. 6 также приведены в таблице, в которой разделены вклады от кластеров *B*2-и *D*0₃-фаз. При этом значения параметров для *B*2-фазы примерно такие же, как для образцов с менышим содержанием кремния. Ячейка *D*0₃-фазы хорошо совмещается с рашеткой матрицы (максимум располагается в расчетном положении для узла (300) $2\theta_{(300)} \approx 43.6^\circ$). Средний размер кластеров достигает 1.8 nm (около трех *D*0₃-ячеек с параметром 0.5724 nm).

В соответствии с данными работы [8] дальнейшее увеличение концентрации кремния в сплаве Fe—Si должно приводить к росту размеров $D0_3$ -кластеров и к установлению $D0_3$ -дальнего порядка в макроскопических объемах материала, что наблюдается разными структурными методами. Структура этой фазы и ее элементарная ячейка хорошо определяются.

Параметры пиков диффузного рассеяния (300), выделенных в результате МНК-разложения, и средний размер кластеров *B*2- и *D*0₃-фаз в образцах сплава Fe_{1-x}Si_x

x	Скорость закалки, K/s	I _{max}	$2\theta_{\rm max}$	W	Фаза	Средний размер, nm
0.05 0.06 0.06 0.08	400 400 150 400	145(16) 172(13) 150(30) 270(5) 183(6)	41.5(3) 41.2(2) 41.2(4) 41.25(5) 43.75(6)	5.8(6) 6.9(7) 6.6(5) 5.53(7) 2.35(6)	B2 B2 B2 B2 D0 ₃	$\begin{array}{c} 0.70 \pm 0.07 \\ 0.59 \pm 0.06 \\ 0.62 \pm 0.05 \\ 0.75 \pm 0.01 \\ 1.75 \pm 0.07 \end{array}$

Что же касается локального порядка B2-типа при средних размерах областей порядка 0.6-0.8 nm, то атомная структура этих областей требует детализации. В работе [14] было сделано предположение о том, что при малом содержании кремния в ОЦК-решетке железа формируются "ядра", состоящие из ячеек с упорядочением B2-типа, имеющих несколько меньший размер, чем ячейки матрицы, которые окружены "шубой" растянутых ячеек, компенсирующих смещения в "ядре". Как ячейки с B2-порядком, так и деформированные ячейки вносят вклады в интенсивность сверхструктурных рефлексов. Величины этих вкладов соизмеримы, но, очевидно, число ячеек в шубе больше, чем число B2-ячеек в ядре. Сокращение параметра решетки в ядре должно

Рис. 6. То же, что на рис. 4, для монокристаллического образца № 7 сплава железо-кремний (8 at.% Si), закаленного от температуры 850°С со скоростью 400 К/s.

Рис. 7. Распределение интенсивности диффузного рассеяния в плоскости (001), рассчитанное в модели описанного в тексте *В*2-кластера.

Рис. 8. То же, что на рис. 7 в плоскости (1 - 1 0).

приводить к смещению сверхструктурных максимумов в большие углы рассеяния, но в ядре мало ячеек. В шубе межатомные расстояния увеличены из-за растяжения ячеек (предполагается, что решетка не реагирует как целое на такие малочисленные вкрапления *B2*-областей), т.е. пик должен сдвигаться в меньшие углы, что и наблюдается, поскольку число ячеек в шубе велико.

Такая интерпретация экспериментальных результатов подтверждается модельными построениями дефектов атомной структуры и расчетами диффузного рассеяния [15], которые позволяют установить характер и оценить размеры дефектов ближнего порядка. Модельные расчеты показали, что имеющиеся экспериментальные данные (профили сверхструктурных пиков (100), (300), (111) и др.) наиболее качественно описываются следующей моделью. Пары атомов кремния (Si–Si), ориентированные вдоль осей $\langle 100 \rangle$, центрируют две соседние ячейки *B*2-типа (CsCl). Ближайшие к атомам кремния атомы железа, находящиеся в первой, второй и третьей координационных сферах, смещаются в направлении атомов кремния. Оптимальные значения относительных смещений зафиксированы как $\Delta_1 = 0.002$, $\Delta_2 = \Delta_3 = 0.004$ соответственно для атомов первой, второй и третьей сфер.

На рис. 7 и 8 приведены картины распределения интенсивности диффузного рассеяния для такой модели локальной атомной структуры в плоскостях (0 0 1) и (1-10) соответственно. Рассчитанные распределения дают диффузные пики интенсивности рассеяния около всех узлов обратного пространства (h, k, l — целые числа), в том числе и сверхструктурные (h + k + l) нечетное число), и отстутствие других заметных особенностей. При этом пики немного сдвинуты из узлов в направлении нулевого узла (000). Поэтому рассчитанное распределение хорошо соответствует данным рентгеновской дифракции. Что касается пиков, расположенных в узлах с основной (брэгговской) структурой (h + k + l — четное число), то в эксперименте при имеющихся условиях измерений (пониженное разрешение) они не могут быть отделены от очень интенсивных (на пять-шесть порядков более интенсивных, чем сверхструктурные пики диффузного рассеяния) брэгговских отражений. Таким образом, сравнение расчетных данных диффузного рассеяния с экспериментальными показывает, что выбранная модель локальной структуры дефектов решетки достаточно адекватно описывает реальную атомную структуру.

Если для этой же модели рассчитать профиль интенсивности рассеяния, соответствующий сканированию

Рис. 9. Профили сверхструктурных диффузных пиков, полученные экспериментально (a) и в результате модельных расчетов (b).

Рис. 10. Структура *В*2-кластера в сечении плоскостью (1 - 1 0).

Рис. 11. Ориентации В2-кластеров вдоль осей (100).

вдоль направления [100], то его можно напрямую сравнить с экспериментально измеренными профилями сверхструктурных пиков (100) и (300) (рис. 9). Это сравнение еще раз подтверждает достоинства выбранной модели локальной атомной структуры сплава железа с небольшим (5–6 at.%) содержанием кремния.

Если ядро дефектного кластера состоит из двух *B*2-ячеек, то кластер приобретает анизотропноую форму, вытянутую вдоль одного из легких направлений (рис. 10). В общем случае такие кластеры могут быть равновероятно ориентированы параллельно трем легким направлениям $\langle 100 \rangle$, как показано на рис. 11.

Здесь следует отметить, что локальное атомное упорядочение со структурными элементами приведенного выше типа, которые характеризуются сочетаниями пар *B*2-ячеек, зафиксировано в закаленных от высокой температуры (температуры разупорядочения) образца. Это может быть следствием того, что локальное упорядочение формируется при высоких температурах, превосходящих температуру Кюри, в условиях высокой диффузионной активности атомов сплава, а при быстром охлаждении замораживается и сохраняется в нормальных условиях. Возможно и то, что процесс упорядочения проходит очень быстро (за одну-две секунды) при охлаждении, и его результат не зависит от скорости охлаждения (150 или 400 K/s). Для того чтобы сделать выбор между этими двумя возможностями, необходимо выполнить дополнительные экспериментальные и теоретические исследования.

4. Заключение

Основные результаты рентгенодифракционного исследования особенностей атомной структуры железокремнистых сплавов в α -образцах фазовой диаграммы в состоянии, зафиксированном закалкой после отжига при температуре 850°С, сводятся к следующему.

1) В дифрактограммах монокристаллических образцов сплава $\text{Fe}_{1-x}\text{Si}_x$ при x = 0.05, 0.06 зафиксированы диффузные сверхструктурные пики (h + k + l) нечетное число), которые свидетельствуют о локальном упорядочении *B*2-типа (кластеры размером 0.6–0.7 nm).

2) При x = 0.08 в дифрактограммах дополнительно появляются диффузные более узкие пики с полуцелыми индексами $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (1\frac{1}{2}, 1\frac{1}{2}, 1\frac{1}{2})$ и др., являющиеся проявлением областей с $D0_3$ -локальным порядком со средним размером около 2 nm).

3) Структура *B*2-кластеров может быть представлена как ядро из двух пристыкованных гранями *B*2-ячеек, окруженное растянутыми ячейками α -железа; *B*2-кластеры имеют анизотропную форму — они более протяженные вдоль одной из осей легкого намагничивания (100).

Авторы благодарят Б.Н. Филиппова за помощь в выполнении экспериментальных исследований.

Список литературы

- [1] Р. Бозорт. Ферромагнетизм. ИЛ, М. (1956). 784 с.
- [2] L. Neel. J. Phys. Rad. 15, 4, 225 (1954).
- [3] S. Taniguchi, M. Yamamoto. Sci. Rep. RITU A 6, 330 (1954).
- [4] S. Taniguchi. Sci. Rep. RITU A 7, 269 (1955).
- [5] D Mainhardt, O. Krisement. Arch. Eisenhuttenwesen 36, 4, 293 (1965).
- [6] Е.Н. Власова, Б.В. Молотилов. Прецизионные сплавы 5, 71 (1979).
- [7] Binary alloy phase diagrams / Ed. T.B. Massalski. ASM International, Ohio (1990). V. 2. P. 1792.
- [8] K. Nilfrich, W. Kolker, W. Petry, O. Scharpf, E. Nembach. Acta Met. Mater. 42, 3, 743 (1994).
- [9] Y. Ustinovshikov, I. Sapegina. J. Mater. Sci. 39, 1007 (2004).
- [10] N.V. Ershov, Yu.P. Chernenkov, V.A. Lukshina, V.I. Fedorov, B.K. Sokolov. J. Magn. Magn. Mater. 300, e469 (2006).
- [11] В.А. Лукшина, Б.К. Соколов, Н.В. Ершов, Ю.П. Черненков, В.И. Федоров. ФТТ 48, 2, 297 (2006).
- [12] Ю.П. Черненков, В.И. Федоров, В.А. Лукшина, Б.К. Соколов, Н.В. Ершов. ФММ 100, *3*, 39 (2005).
- [13] B.E. Warren. X-ray diffraction. Addison-Wesley, N.Y. (1969).
- [14] Yu.P. Chernenkov, V.I. Fedorov, V.A. Lukshina, B.K. Sokolov, N.V. Ershov. J. Magn. Magn. Mater. 254, 255, 346 (2003).
- [15] Th. Proffen, R.B. Neder. J. Appl. Cryst. 30, 171 (1997).