Ab initio расчеты фононных спектров в кристаллах перовскитов ATiO₃ (A =Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb)

© А.И. Лебедев

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

E-mail: swan@scon155.phys.msu.su

(Поступила в Редакцию в окончательном виде 25 мая 2008 г.)

Из первых принципов методом функционала плотности рассчитаны фононные спектры титанатов кальция, стронция, бария, радия, кадмия, цинка, магния, германия, олова и свинца со структурой перовскита. Анализ неустойчивых мод в фононном спектре позволил определить возможные типы искажений решетки и рассчитать энергии соответствующих фаз. На основании анализа фононных спектров, матриц силовых постоянных и собственных векторов ТО-фононов сделан вывод о природе сегнетоэлектрических явлений в рассматриваемых кристаллах. Показано, что основными факторами, определяющими возможность появления нецентральных атомов в позиции *A*, являются геометрический размер и электронная конфигурация этих атомов.

PACS: 61.50.Ah, 63.20.Dj, 77.84.Dy

1. Введение

Кристаллы семейства перовскита — хорошо известный класс материалов, в которых при понижении температуры возникают различные структурные искажения. Когда эти искажения носят сегнетоэлектрический характер, ряд физических характеристик кристаллов (диэлектрическая проницаемость, пьезоэлектрические модули и др.) становятся аномально высокими, что и предопределяет широкое использование этих материалов в современной электронике.

Задача дальнейшей оптимизации свойств сегнетоэлектриков требует глубокого понимания микроскопических механизмов, ответственных за возникновение сегнетоэлектричества и формирование этих свойств. Большую помощь в решении этой задачи могут оказать *ab initio* методы расчета физических свойств кристаллов, которые уже внесли существенный вклад в понимание сегнетоэлектрических явлений в кристаллах перовскитов [1–11].

Один из ключевых моментов при обсуждении свойств сегнетоэлектриков — это вопрос о том, являются ли эти свойства результатом коллективного движения атомов решетки (фазовый переход типа смещения) или же они определяются индивидуальными особенностями некоторых составляющих кристалл атомов (переход типа порядок-беспорядок). Этот вопрос, в частности, встает при обсуждении природы фазовых переходов, возникающих в виртуальных сегнетоэлектриках при их легировании некоторыми примесями [12].

Проведенные ранее исследования титанатов со структурой перовскита в основном ограничивались изучением свойств четырех систем (CaTiO₃ [3,4,13,14], SrTiO₃ [3,4,6], BaTiO₃ [1–4,8,9] и PbTiO₃ [2–4,7,9]) и твердых растворов на их основе. При этом в разных работах использовались различные схемы расчетов и методы построения атомных потенциалов, что затрудняет сравнение полученных данных.

Целью настоящей работы является расчет из первых принципов фононных спектров десяти кристаллов с общей формулой ATiO₃ со структурой перовскита и определение структуры возникающих в них стабильных фаз. После проверки применимости подхода на примере расчета свойств четырех указанных выше систем метод будет использован для предсказания свойств малоизученных или гипотетических кристаллов со структурой перовскита — RaTiO₃, CdTiO₃, MgTiO₃, ZnTiO₃, SnTiO₃ и GeTiO₃. Сопоставление результатов, полученных в рамках единого подхода для большого набора родственных материалов, позволит установить закономерности структурных искажений в кристаллах ATiO₃, связав их с геометрическими размерами и электронной структурой атома А. Анализ элементов матрицы одноузельных силовых постоянных и собственных векторов ТО-фононов позволит сделать заключение относительно природы сегнетоэлектрических явлений в исследуемых кристаллах и найти условия, в которых эти явления могут быть связаны с нецентральными атомами.

2. Техника расчетов

Расчеты проводились методом функционала плотности с использованием псевдопотенциалов и разложения волновых функций по плоским волнам, реализованным в программе ABINIT [15]. Обменно-корреляционное взаимодействие описывалось в приближении локальной плотности (LDA) по схеме [16]. В качестве псевдопотенциалов использовались оптимизированные сепарабельные нелокальные псевдопотенциалы [17], построенные с помощью программы OPIUM, в которые для улучшения "переносимости" добавлялся локальный по-

Таблица 1. Электронные конфигурации атомов и параметры, использованные при построении псевдопотенциалов: r_s, r_p, r_d радиусы ядра псевдопотенциала для s-, p- и d-проекций, qs, qp, qd — граничные волновые векторы, используемые при оптимизации псевдопотенциала, r_{min}, r_{max} и V_{loc} — область действия и глубина корректирующего локального потенциала. Значения параметров указаны в атомных единицах, а энергия — в Ry

Атом	Конфигурация	r _s	r_p	r _d	q_s	q_P	q_d	$r_{\rm min}$	r _{max}	$V_{ m loc}$
Ca	$3s^23p^63d^04s^0$	1.46	1.68	1.82	7.07	7.07	7.27	0.01	1.40	1.6
Sr	$4s^24p^64d^05s^0$	1.68	1.74	1.68	7.07	7.07	7.07	0.01	1.52	1.5
Ba	$5s^25p^65d^06s^0$	1.85	1.78	1.83	7.07	7.07	7.07	0.01	1.68	1.95
Ra	$6s^26p^67s^06d^07p^0$	1.84	1.73	1.98	7.8	7.8	7.8	0.01	1.68	-1.3
Mg	$2s^2 2p^6 3s^0 3p^0$	1.50	1.88	_	6.7	8.1	-	0.01	1.0	-0.84
Zn	$3d^{10}4s^04p^0$	1.82	1.82	2.00	7.07	7.07	7.47	0.01	1.60	2.5
Cd	$4d^{10}5s^05p^0$	2.04	2.18	2.10	7.07	7.07	7.07	0	1.88	-1.6
Ge	$3d^{10}4s^{1.5}4p^{0.5}$	1.68	1.68	1.96	7.07	6.0	7.77	0.01	1.58	0.48
Sn	$4d^{10}5s^25p^0$	2.14	2.08	2.18	7.07	7.07	7.07	0.01	1.90	0.64
Pb	$5d^{10}6s^26p^0$	1.80	1.72	1.98	6.05	5.52	7.17	0.1	1.43	1.6
Ti	$3s^2 3p^6 3d^0 4s^0$	1.48	1.72	1.84	7.07	7.07	7.07	0.01	1.41	2.65
0	$2s^2 2p^2 3d^0$	1.40	1.55	1.40	7.07	7.57	7.07	—	—	—

тенциал в соответствии с работой [18]. Расчеты для элементов с атомными номерами Z < 46 проводились без учета релятивистских эффектов, а для остальных элементов — в скалярно-релятивистском приближении. В табл. 1 представлены параметры, использованные при построении псевдопотенциала. В качестве локального потенциала обычно выбирался s-потенциал; исключение составлял атом кислорода, который был построен на локальном *d*-потенциале. Тонкая подстройка параметров псевдопотенциалов проводилась на основании сравнения расчетных и экспериментальных значений параметров решетки для ряда оксидов и сульфидов элементов.

Параметры решетки и равновесные положения атомов в элементарной ячейке находились из условия минимизации сил Геллмана-Фейнмана, действующих на атомы ($< 10^{-5}$ Ha/Bohr), при самосогласованном расчете полной энергии кристалла с точностью < 10⁻¹⁰ Ha.¹ При проведении вычислений особое внимание уделялось проверке сходимости результатов по отношению к выбору максимальной энергии плоских волн и плотности сетки волновых векторов, используемой при интегрировании по зоне Бриллюэна. Сходимость всех обсуждаемых далее величин достигалась при максимальной энергии плоских волн 30 На и при использовании сетки $8 \times 8 \times 8$, построенной по схеме [19].

Расчеты эффективных зарядов Z*, высокочастотной диэлектрической проницаемости ε_{∞} , модулей упругости С_{іі}, модуля объемной упругости В, матриц силовых постоянных Φ_{ii} и фононного спектра проводились в рамках теории возмущения [20-23]. Точные значения энергий фононов находились в пяти точках зоны Бриллюэна (Γ, X, M, R и точке Λ , расположенной на полпути между точками Γ и R), а затем по схеме интерполяции, описанной в [20,24], фононный спектр рассчитывался во всей зоне Бриллюэна.

3. Тестирование схемы вычислений

Применимость описанной схемы вычислений проверялась путем сравнения расчетных значений параметров решетки, спонтанной поляризации и фононных спектров с имеющимися экспериментальными данными и результатами расчетов других авторов для хорошо изученных кристаллов CaTiO₃, SrTiO₃, BaTiO₃ и PbTiO₃.

Значения параметров решетки, отвечающих минимуму полной энергии кристалла, приведены в табл. 2. С учетом того, что использование приближения LDA обычно приводит к небольшому систематическому занижению параметров решетки, полученные данные хорошо согласуются с экспериментом [25]. Анализ относительных энергий низкосимметричных фаз (в пересчете на одну формульную единицу, табл. 3) показывает, что в титанате бария энергетически наиболее выгодной оказывается ромбоэдрическая фаза, в титанате свинца — тетрагональная фаза, а расчетные отношения c/a для тетрагональных BaTiO₃ и PbTiO₃ близки к экспериментальным (табл. 2). В СаТіО₃ энергетически наиболее выгодной оказывается орторомбическая фаза Pbnm, в SrTiO₃ — тетрагональная фаза 14/тст. Величины спонтанной поляризации, рассчитанные методом фазы Берри [26], составляют 0.26 С/m² в тетрагональном ВаТіО₃, 0.31 С/m² в ромбоэдрическом ВаТіО₃ и 0.89 С/m² в РbTiO₃; все эти величины близки к значениям, полученным в эксперименте (0.26, 0.33, $0.75 \,\mathrm{C/m^2}$ [25]).

Расчетные энергии оптических фононов также хорошо согласуются с имеющимися экспериментальными данными и результатами расчетов других авторов (табл. 4

¹ В настоящей работе всюду кроме табл. 1 и табл. 3 для измерения энергии используется атомная система единиц Хартри (1 Ha = 27.2113845 eV).

Соединение	Пространственная группа	Источник	Параметры решетки
CaTiO ₃	Pbnm	Наст. раб. Эксперимент [25]	a = 5.3108, b = 5.4459, c = 7.5718 Å a = 5.3670, b = 5.4439, c = 7.6438 Å
SrTiO ₃	Pm3m	Наст. раб. Эксперимент [25]	a = 3.8898 Å a = 3.905 Å
	I4/mcm	Наст. раб. Эксперимент [25]	a = b = 5.4680, c = 7.8338 Å a = b = 5.510, c = 7.798 Å (20 K)
BaTiO ₃	Pm3m	Наст. раб. Эксперимент [25]	a = 3.9721 Å a = 3.996 Å (393 K)
	P4mm	Наст. раб. Эксперимент [25]	a = 3.9650, c = 4.0070 Å, $c/a = 1.0106a = 3.9920, c = 4.0361$ Å (293 K)
	Amm2	Наст. раб. Эксперимент [25]	a = 3.9620, b = 5.6384, c = 5.6484 Å a = 3.990, b = 5.669, c = 5.682 Å (263 K)
	R3m	Наст. раб. Эксперимент [25]	$a = 3.9817$ Å, $\alpha = 89.933^{\circ}$ $a = 4.001$ Å, $\alpha = 89.85^{\circ}$ (105 K)
PbTiO ₃	P4mm	Наст. раб. Эксперимент [25]	a = 3.8858, c = 4.1151 Å, $c/a = 1.0590a = 3.904, c = 4.152$ Å

Таблица 2. Сравнение расчетных и экспериментальных параметров кристаллической решетки некоторых фаз соединений *A*TiO₃. Там, где для экспериментальных данных температура не указана — данные при 300 К

и 5). Мнимые значения частот в табл. 4 и 5 указывают на неустойчивые моды, квадрат частоты которых отрицателен.

Хорошее согласие результатов настоящих расчетов с экспериментальными данными и результатами расчета других авторов для CaTiO₃, SrTiO₃, BaTiO₃ и PbTiO₃ позволяет использовать предложенную схему вычислений для прогнозирования свойств малоизученных и гипотетических² титанатов со структурой перовскита и обсуждения факторов, определяющих появление сегнетоэлектричества в этих кристаллах. Результаты расчетов различных характеристик этих кристаллов, выполенных для теоретического (т.е. отвечающего минимуму полной энергии) параметра решетки, представлены в табл. 3-7. В табл. 3 приведены энергии некоторых низкосимметричных фаз исследуемых кристаллов, отсчитанные относительно энергии исходной кубической фазы. В табл. 4 представлены значения частот оптических колебаний (шести ИК-активных мод симметрии Г₁₅ и одной ИК-неактивной моды симметрии Г₂₅) в кубической фазе тех же кристаллов, а в табл. 5 — наименьшие энергии фононов в высокосимметричных точках зоны Бриллюэна. В табл. 6 приведены значения эффективных зарядов и высокочастотной диэлектрической проницаемости в кубической фазе соединений АТіО3. Наконец, в табл. 7 приведены значения модулей упругости для некоторых исследуемых кристаллов.

Результаты расчета спектров колебаний решетки вдоль ряда выделенных направлений для кубической фазы всех десяти исследованных титанатов представлены на рис. 1. Мнимые значения энергий фононов, с которыми связана структурная неустойчивость кристаллов, обозначены на рисунке отрицательными числами.

4. Результаты

Из рис. 1 следует, что в фононных спектрах всех исследованных титанатов присутствуют неустойчивые оптические моды разной симметрии. Обсудим сначала фононные спектры хорошо изученных кристаллов.

Особенностью дисперсионных кривых SrTiO₃ является то, что из трех неустойчивых фононов в точках Γ, R и *М* наименее устойчивым оказывается фонон в точке *R* (мода R_{25}),³ а энергия фонона на участке R-M слабо зависит от волнового вектора. Как было показано в работе [6], этим неустойчивым фононам с волновыми векторами, расположенными вблизи ребер кубической зоны Бриллюэна, в реальном пространстве соответствует разворот связанных общими вершинами кислородных октаэдров с размером областей коррелированного движения в три-пять периодов решетки. Таким образом, и мода R_{25} , и мода M_3 (отвечающая неустойчивому фонону в точке M) описывают структурные искажения, связанные в разворотом октаэдров. Мода Г₁₅, с которой связана неустойчивость фононного спектра в точке Г, отвечает сегнетоэлектрическому искажению структуры кристалла.

² Наши расчеты показали, что в SnTiO₃, GeTiO₃, CdTiO₃, ZnTiO₃ и MgTiO₃ при T = 0 энергия фазы ильменита ниже энергии наиболее устойчивой из искаженных фаз на основе перовскита, однако только в двух последних кристаллах разность энергий этих фаз оказывается высокой (0.3–0.33 eV).

³ В обозначении мод мы будем следовать работе [29].

Рис. 1. Фононные спектры соединений ATiO₃ в кубической фазе. Для неустойчивых мод около кривых указана их симметрия.

Соединение	Неустойчивая мода	Пространственная группа	Энергия, meV	Неустойчивая мода	Пространственная группа	Энергия, meV
MgTiO ₃	$egin{array}{c} X_5' \ X_5' \ \Gamma_{15} \ \Gamma_{15} \end{array}$	Cmcm Pmma R3m P4mm	$-304 \\ -500 \\ -695 \\ -1028$	$M_3 \ R_{25} \ R_{25} \ R_{25} \ R_{25} + M_3$	P4/mbm I4/mcm R3c Pbnm	-1107 -1111 -1727 - 1992
CaTiO ₃	$egin{array}{c} X_5' \ X_5' \ M_5' \ M_5' \ \Gamma_{15} \end{array}$	Cmcm Pmma Pmma Cmmm R3m	$-0.6 \\ -0.9 \\ -5.0 \\ -6.7 \\ -73.7$	Γ_{15} M_3 R_{25} R_{25} $R_{25} + M_3$	P4mm P4/mbm I4/mcm R3c Pbnm	-123 -321 -365 -385 - 497
SrTiO ₃	Γ_{15} Γ_{15} M_3	P4mm R3m P4/mbm	-0.71 -0.75 -9.45	$R_{25} \\ R_{25} + M_3 \\ R_{25}$	R3c Pbnm I4/mcm	-27.5 -28.9 - 30.9
BaTiO ₃	M' ₃ X ₅ X ₅	P4/nmm Pmma Cmcm	$-0.31 \\ -1.22 \\ -1.45$	Γ_{15} Γ_{15} Γ_{15}	P4mm Amm2 R3m	-5.6 -7.4 - 8 .1
RaTiO ₃	M'3 X5 X5	P4/nmm Pmma Cmcm	-11.1 -14.2 -16.9	Γ_{15} Γ_{15} Γ_{15}	P4mm Amm2 R3m	-21.8 -28.5 - 29.7
CdTiO ₃	$egin{array}{c} X_3 \ \Gamma_{25} \ X_5 \ \Gamma_{15} \ X_5 \ \Gamma_{15} \ \Gamma_{15} \end{array}$	P4 ₂ /mmc P4m2 Pmma R3m Cmcm P4mm	-45 -134 -160 -245 -282 -340	$ \begin{array}{c} \Gamma_{15}, \Gamma_{25} \\ \Gamma_{25} \\ R_{25} \\ M_3 \\ R_{25} \\ R_{25} + M_3 \end{array} $	Amm2 R32 I4/mcm P4/mbm R3c Pbnm	-412 -486 -912 -920 -1197 - 1283
ZnTiO ₃	$ \begin{array}{c} \Gamma_{25} \\ X_5 \\ X_5 \\ \Gamma_{15} \\ \Gamma_{15} \\ \Gamma_{15}, \Gamma_{25} \end{array} $	PĀm2 Pmma Cmcm R3m P4mm Amm2	-341 -447 -867 -868 -1104 -1254	$R_{25} \\ M_{3} \\ \Gamma_{25} \\ R_{25} \\ R_{25} + M_{3}$	I4/mcm P4/mbm R32 R3c Pbnm	-1443 -1449 -1486 -2271 - 2312
GeTiO ₃	X5 X5 M3 R25	Pmma Cmcm P4/mbm I4/mcm	-328 -428 -444 -455	$\begin{matrix} R_{25} \\ R_{25} + M_3 \\ \Gamma_{15} \\ \Gamma_{15} \end{matrix}$	R3c Pbnm P4mm R3m	-589 -810 -854 - 1053
SnTiO ₃	X5 X5 M3 R25	Pmma Cmcm P4/mbm I4/mcm	-21 -23 -57 -67	$\begin{array}{c} R_{25} \\ R_{25} + M_3 \\ \Gamma_{15} \\ \Gamma_{15} \end{array}$	R ³ c Pbnm R3m P4mm	-74 -84 -240 - 291
PbTiO ₃	M ₃ R ₂₅ R ₂₅	P4/mbm I4/mcm R3c	-10.1 -19.6 -21.6	$R_{25}+M_3$ Γ_{15} Γ_{15}	Pbnm R3m P4mm	-22.2 -66.3 - 84.4

Таблица 3. Относительные энергии некоторых низкосимметричных фаз соединений *A*TiO₃. Жирным шрифтом выделены энергии наиболее устойчивых фаз

Мода R_{25} трехкратно вырождена, и искажения решетки, описываемые трехкомпонентными параметрами порядка $(\eta, 0, 0)$, $(\eta, \eta, 0)$ и (η, η, η) , приводят к низкосимметричным фазам с пространственными группами I4/mcm, Imma и $R\bar{3}c$ соответственно. Мода M_3 не вырождена, и ее кондесация вызывает понижение симметрии кристалла до P4/mbm. Трехкратно вырожденной

моде Γ_{15} отвечают хорошо известные пространственные группы *Р4mm*, *Amm*2 и *R3m*. Как следует из сравнения энергий указанных фаз⁴ (табл. 3), наименьшую энергию

⁴ Мы не приводим в таблице энергии фаз, описываемых параметром порядка (η , η , 0), поскольку они могут реализоваться только в редком случае обращения в нуль коэффициента при втором инварианте четвертой степени, построенном из компонентов параметра порядка.

	r	1	1	1			1	1
Соединение	Источник	TO1	TO2	TO3	LO1	LO2	LO3	Γ_{25}
MgTiO ₃	Наст. раб.	260 <i>i</i>	151	649	106 <i>i</i>	372	905	191 <i>i</i>
CaTiO ₃	То же	165 <i>i</i>	176	607	122	407	857	93
	Расчеты [3]	153 <i>i</i>	188	610	133	427	866	_
	Расчеты [13]	140 <i>i</i>	200	625	136	428	864	130
SrTiO ₃	Наст. раб.	68 <i>i</i>	162	549	152	428	792	202
	Расчеты [3]	41 <i>i</i>	165	546	158	454	829	_
	Расчеты [6]	100 <i>i</i>	151	522	146	439	751	219
	Эксперимент [27]	_	175	544	172	475	796	_
BaTiO ₃	Наст. раб.	151 <i>i</i>	175	471	172	439	683	269
	Расчеты [3]	178 <i>i</i>	177	468	173	453	738	_
	Расчеты [8]	195 <i>i</i>	166	455	162	434	657	266
	Эксперимент [28] ^а	_	181	487	180	468	717	306
RaTiO ₃	Наст. раб.	212 <i>i</i>	172	444	166	434	638	287
ZnTiO ₃	Наст. раб.	240 <i>i</i>	76	645	105 <i>i</i>	316	815	353 <i>i</i>
CdTiO ₃	То же	187 <i>i</i>	97	616	34	353	820	231 <i>i</i>
GeTiO ₃	Наст. раб.	247 <i>i</i>	122	583	68 <i>i</i>	356	762	49 <i>i</i>
SnTiO ₃	То же	185 <i>i</i>	126	505	80	375	689	183
PbTiO ₃	» »	150 <i>i</i>	116	499	96	394	693	202
	Расчеты [3]	144 <i>i</i>	121	497	104	410	673	_
	Расчеты [7]	182 <i>i</i>	63	447	47	418	610	—

Таблица 4. Частоты оптических фононов в точке Γ в кубической фазе соединений *A*TiO₃ (в cm⁻¹)

^а Данные для тетрагональной фазы.

в SrTiO₃ имеет фаза *I*4/*mcm*, в которую кристалл переходит при понижении температуры. Неустойчивость сегнетоэлектрической моды слишком мала, чтобы в кристалле могло возникнуть сегнетоэлектричество.

В СаТіО₃ к перечисленным выше неустойчивостям добавляются еще три слабые неустойчивости антисегнетоэлектрического типа, связанные с модами X_5 , X'_5 и M'_5 , а участок R-M фононного спектра становится практически бездисперсионным (ср. энергии мод в табл. 5).

Таблица 5. Значения наименьших частот фононов в высокосимметричных точках зоны Бриллюэна в кубической фазе соединений $ATiO_3$ (в сm⁻¹)

Соединение	Источник	Г	X	М	R	Λ
MgTiO ₃ CaTiO ₃ SrTiO ₃ BaTiO ₃ RaTiO ₃	Наст. раб. То же Расчеты [13] Наст. раб. То же Расчеты [8] Наст. раб.	260 <i>i</i> 165 <i>i</i> 140 <i>i</i> 68 <i>i</i> 151 <i>i</i> 219 <i>i</i> 212 <i>i</i>	190 <i>i</i> 32 <i>i</i> 20 98 96 <i>i</i> 189 <i>i</i> 182 <i>i</i>	314 <i>i</i> 215 <i>i</i> 207 <i>i</i> 86 <i>i</i> 59 <i>i</i> 167 <i>i</i> 158 <i>i</i>	315 <i>i</i> 226 <i>i</i> 219 <i>i</i> 119 <i>i</i> 134 128 110	246 <i>i</i> 122 <i>i</i> - 100 105 - 87
ZnTiO ₃ CdTiO ₃	Наст. раб. То же	353 <i>i^a</i> 231 <i>i^a</i>	319 <i>i</i> 184 <i>i</i>	437 <i>i</i> 333 <i>i</i>	424 <i>i</i> 328 <i>i</i>	337 <i>i</i> 265 <i>i</i>
GeTiO ₃ SnTiO ₃ PbTiO ₃	Наст. раб. То же » » Расчеты [7]	247 <i>i</i> 185 <i>i</i> 150 <i>i</i> 182 <i>i</i>	148 <i>i</i> 56 <i>i</i> 30 31 <i>i</i>	254 <i>i</i> 144 <i>i</i> 96 <i>i</i> 35 <i>i</i>	251 <i>i</i> 148 <i>i</i> 113 <i>i</i> 145 <i>i</i>	201 <i>i</i> 97 <i>i</i> 15 <i>i</i> 58 <i>i</i>

^{*a*} Мода симметрии Γ_{25} .

Таблица 6. Эффективные заряды и высокочастотная диэлектрическая проницаемость в кубической фазе соединений ATiO₃

Соединение	Z_A^*	$Z_{ m Ti}^*$	$Z^*_{0\perp}$	$Z^*_{0\parallel}$	\mathcal{E}_{∞}
MgTiO ₃ CaTiO ₃ SrTiO ₃ BaTiO ₃ RaTiO ₃	2.537 2.579 2.561 2.738 2.764	7.773 7.692 7.725 7.761 7.789	$\begin{array}{r} -2.026 \\ -2.085 \\ -2.099 \\ -2.186 \\ -2.181 \end{array}$	$\begin{array}{r} -6.258 \\ -6.101 \\ -6.088 \\ -6.128 \\ -6.192 \end{array}$	7.01 6.84 6.87 7.28 7.42
ZnTiO ₃ CdTiO ₃	3.233 3.040	8.257 8.052	$-2.427 \\ -2.300$	$-6.637 \\ -6.493$	11.64 9.35
GeTiO ₃ SnTiO ₃ PbTiO ₃	4.460 4.255 3.931	7.572 7.529 7.623	-2.860 -2.745 -2.635	-6.314 -6.294 -6.283	10.49 10.18 9.34

В последнем случае, как показали теоретические расчеты [14], одновременная конденсация двух неустойчивых мод R_{25} и M_3 приводит к низкотемпературной фазе симметрии *Pbnm*, которая имеет самую низкую энергию среди энергий возможных искаженных фаз (табл. 3).⁵ Переход из высокотемпературной фазы *Pm3m* в фазу *Pbnm* может происходить через одну из трех промежуточных фаз *P4/mbm*, *I4/mcm* или $R\bar{3}c$, энергии которых на 0.11–0.17 eV выше энергии фазы *Pbnm*. Сегнетоэлектрические фазы *P4mm* и *R3m* в титанате

⁵ Расчеты показывают, что в SrTiO₃, несмотря на присутствие в фононном спектре неустойчивых мод R_{25} и M_3 , энергия фазы *Pbnm* на 2 meV выше, чем энергия фазы *I4/mcm*.

Соединение	Источник	C_{11}	C ₁₂	C_{44}	В
CaTiO ₃	Наст. раб.	388	100	91	196
	Расчеты [4]	407	96	101	200
SrTiO ₃	Наст. раб.	373	103	108	193
	Расчеты [4]	388	104	117	199
	Эксперимент [25]	316-348	101-103	119-124	174-183
BaTiO ₃	Наст. раб.	338	110	123	186
	Расчеты [4]	329	117	130	188
RaTiO ₃	Наст. раб.	319	112	126	181
PbTiO ₃	То же	336	127	95	197
	Расчеты [4]	334	145	100	208
	Расчеты [7]	320	141	357?	201

Таблица 7. Модули упругости в кубической фазе соединений ATiO₃ (в GPa)

кальция имеют намного более высокую энергию и поэтому никогда не возникают. Что касается слабо неустойчивых мод X'_5 , X_5 и M'_5 , то эти моды двукратно вырождены, и искажения решетки, описываемые параметрами порядка $(\eta, 0)$ и (η, η) , приводят к фазам с пространственными группами *Ртта*, *Стст* и *Сттт*. Выигрыш энергии при искажении в эти фазы, однако, не превышает 7 meV.

Фононный спектр ВаТіО₃ существенно отличается от рассмотренных выше спектров отсутствием неустойчивости в точке R и появлением сильно неустойчивых мод X_5 в точке X и M'_3 в точке M, отвечающих антисегнетоэлектрическому искажению структуры в фазы Ртта, Стст и Р4/птт. Поскольку среди этих мод наименее устойчивой оказывается сегнетоэлектрическая мода Г₁₅, именно она определяет искажения кристалла (энергии трех антисегнетоэлектрических фаз оказываются выше энергии полярной фазы Р4тт). Следует заметить, что более слабая нестабильность фононов в обсуждаемом спектре по сравнению с данными работы [9] связана с тем, что наши расчеты выполнены для теоретического параметра решетки, в то время как в [9] они проведены для экспериментального параметра решетки. Чтобы проиллюстрировать влияние изменения параметра решетки на фононный спектр, на рис. 1 пунктирной линией показан фрагмент фононного спектра титаната бария, рассчитанный для того же параметра решетки, как и в [9].

Слабая зависимость энергии неустойчивого ТОфонона от волнового вектора на участке $\Gamma - X - M - \Gamma$ для колебаний с поляризацией вдоль осей четвертого порядка кубической решетки была впервые обнаружена в работе [5]; она указывает на определяющую роль колебаний в линейных цепочках ... -O-Ti-O-..., ориентированных вдоль этих осей, и слабое взаимодействие между параллельными цепочками.

Сравнение фононных спектров BaTiO₃ и RaTiO₃ обнаруживает их удивительное сходство. В кристалле титаната радия самой неустойчивой модой также оказывается мода Γ_{15} , энергия которой на участке $\Gamma - X - M - \Gamma$ слабо зависит от волнового вектора, а неустойчивость фононов выражена даже сильнее, чем в BaTiO₃. С учетом результатов расчета энергий искаженных фаз (табл. 3) это позволяет предположить, что RaTiO₃ также является сегнетоэлектриком, причем при понижении температуры в нем, как и в титанате бария, будут последовательно происходить три фазовых перехода. Температуры этих переходов, по-видимому, будут выше, чем в титанате бария. Величины спонтанной поляризации в RaTiO₃, рассчитанные методом фазы Берри, также немного выше, чем в BaTiO₃: они составляют 0.36 C/m² в тетрагональной фазе и 0.41 C/m² в ромбоэдрической фазе. Расчетные модули упругости кубического RaTiO₃ приведены в табл. 7.

Рассмотрим теперь фононный спектр CdTiO₃. Он характеризуется наличием целого ряда неустойчивых мод в точках X, M и R ($X_3, X_5, X'_5, M_3, M'_5, M'_2, R_{25}, R_{15}$) и двумя неустойчивыми модами в точке Г. Неожиданной особенностью этого фононного спектра является то, что неустойчивость в точке Г определяется не сегнетоэлектрической модой Г₁₅, а модой Г₂₅, связанной с деформацией кислородного октаэдра (см. энергии мод в табл. 4). Такая деформация может приводить к образованию фаз с пространственными группами P4m2, Amm2 и R32 в зависимости от числа отличных от нуля компонентов параметра порядка.⁶ Энергия наиболее устойчивой из этих фаз (R32, табл. 3) ниже энергии полярных фаз. Качественное сходство фононных спектров титанатов кальция и кадмия и собственных векторов их неустойчивых мод в точках R и M позволяет рассматривать CdTiO₃ как аналог CaTiO₃, характеризуемый только еще большей неустойчивостью. Отсюда следует, что при комнатной температуре структура неполярной фазы, как и в CaTiO₃, будет Pbnm. К этому же выводу пришли и авторы работы [30]. Энергия этой фазы по нашим данным оказалась на 1.28 eV ниже энергии кубической фазы (табл. 3), что несколько больше величин, полученных в работах [30] (0.8 eV) и [10] (0.91 eV).

⁶ Понижение симметрии решетки до полярной группы Amm2 следует из трансформационных свойств параметра порядка $(\eta, \eta, 0)$. Величина спонтанной поляризации в этой фазе равна 0.018 C/m².

Хотя сегнетоэлектрическая неустойчивость, связанная с модой Г₁₅, не играет особой роли в кубической фазе CdTiO₃, известно, что эта неустойчивость проявляется в фазе Pbnm и приводит к сегнетоэлектрическому фазовому переходу при 80 К. Проведенные в [30] расчеты свойств орторомбического CdTiO₃ из первых принципов не нашли устойчивого сегнетоэлектрического искажения структуры. В отличие от данных работы [30] наши расчеты фононного спектра в точке Г орторомбического CdTiO₃ обнаружили две неустойчивые моды симметрии B_{1u} и B_{2u} , которые приводят к появлению полярных фаз с пространственными группами Pb21m и Pbn21 соответственно. Именно на такие искажения решетки указывают рентгеновские исследования титаната кадмия при низких температурах [31,32]. Вопрос о свойствах этих фаз будет рассмотрен в отдельной работе.

Фононный спектр ZnTiO₃ качественно похож на спектр титаната кадмия (по сравнению с последним в нем появляется еще одна слабая неустойчивая мода с симметрией M'_3), но отличается от него еще меньшей устойчивостью. В нем также мода Γ_{25} менее устойчива по сравнению с модой Γ_{15} (табл. 4). Однако поскольку самыми неустойчивыми в фононном спектре являются моды R_{25} и M_3 , наиболее энергетически выгодной здесь также оказывается фаза *Pbnm* (табл. 3). Расчеты фононного спектра в точке Γ орторомбического титаната цинка обнаруживают две неустойчивые моды симметрии B_{1u} и B_{2u} , которые приводят к тем же полярным фазам, как и в титанате кадмия.

Фононный спектр MgTiO₃ занимает промежуточное место между спектрами титаната цинка и титаната кальция. Хотя неустойчивость фононного спектра в точке Γ также связана с модами Γ_{15} и Γ_{25} , энергия сегнетоэлектрической моды Γ_{15} в титанате магния ниже (табл. 4). Тем не менее, поскольку самую низкую энергию имеют фононы в точках R и M, энергетически наиболее выгодной оказывается фаза Pbnm (табл. 3). Расчеты фононного спектра орторомбического титаната магния в точке Γ обнаруживают одну неустойчивую моду симметрии B_{1u} , с которой может быть связан сегнетоэлектрический фазовый переход $Pbnm \rightarrow Pbn2_1$.

Рассмотрим, наконец, фононные спектры PbTiO₃, SnTiO₃ и GeTiO₃. Сегнетоэлектрическая неустойчивость этих трех кристаллов определяется модой Γ_{15} , с которой конкурирует структурная неустойчивость, связанная с модами R_{25} и M_3 . Сравнение энергий различных искаженных фаз (табл. 3) показывает, что даже в GeTiO₃ с близкими частотами неустойчивых фононов в точках Γ , R и M сегнетоэлектрическая неустойчивость оказывается преобладающей. Расчетное значение спонтанной поляризации в тетрагональном SnTiO₃ составляет 1.28 C/m², а в ромбоэдрическом GeTiO₃ — 1.37 C/m². Найденная нами величина спонтанной поляризации в SnTiO₃ заметно превышает оценочное значение 0.73 C/m², полученное в работе [33]. Величина спонтанной поляризации в GeTiO₃, по-видимому, является наиболее высокой среди всех изученных до сих пор кристаллов со структурой перовскита.

В этих результатах обращает на себя внимание то, что в PbTiO₃ и SnTiO₃ энергетически наиболее выгодной оказывается тетрагональная фаза *P4mm*, а в GeTiO₃ ромбоэдрическая фаза *R3m*. При этом в тетрагональной фазе GeTiO₃ деформация решетки (c/a = 1.1821) намного выше, чем и титанате свинца (c/a = 1.0590). Этот результат ставит под сомнение вывод работы [2] о том, что стабилизация тетрагональной фазы происходит за счет сильной деформации решетки (большого отношения c/a).

5. Обсуждение

Из рис. 1 следует, что фононные спектры всех изученных кристаллов $A TiO_3$ со структурой перовскита характеризуются наличием нескольких неустойчивых мод, среди которых всегда присутствует сегнетоэлектрическая мода Γ_{15} . В тех случаях, когда энергия конкурирующих с ней мод R_{25} и M_3 оказывается ниже, в кристаллах возникают искажения типа поворота октаэдров и симметрия решетки понижается до I4/mcm или *Pbnm*. Склонность к таким структурным фазовым переходам возрастает с уменьшением размера атома *A*.

Анализ характеристик моды Γ_{15} позволяет сделать вывод о природе сегнетоэлектрической неустойчивости в исследованных кристаллах. Выше мы уже отмечали, что закон дисперсии этой моды в BaTiO₃ и RaTiO₃ указывает на сильную корреляцию в движении атомов вдоль цепочек ... -O-Ti-O-... Анализ собственных векторов, отвечающих фонону Γ_{15} (табл. 8), показывает, что в этих кристаллах вклад атомов A в движение действительно очень мал, а основной вклад вносит противофазное смещение атомов Ti и O_{||}. По мере уменьшения размера атомов A их роль в движении возрастает и становится преобладающей, вклад атомов Ti уменьшается, а основной вклад в "противодвижение" начинают вносить уже не атомы O_{||}, а атомы O_⊥. Таким

Таблица 8. Собственные векторы динамической матрицы, отвечающие неустойчивому TO1-фонону в точке Γ в кубической фазе соединений *A*TiO₃

Соединение	x_A	x _{Ti}	$x_{0\perp}$	$x_{O\parallel}$
MgTiO ₃ CaTiO ₃ SrTiO ₃ BaTiO ₃ RaTiO ₃	+0.6828 +0.5693 +0.3434 +0.0299 +0.0051	+0.1831 +0.2391 +0.3852 +0.6734 +0.6750	$\begin{array}{r} -0.4800 \\ -0.5225 \\ -0.5372 \\ -0.3561 \\ -0.2841 \end{array}$	$\begin{array}{r} -0.1985 \\ -0.2696 \\ -0.3956 \\ -0.5404 \\ -0.6188 \end{array}$
ZnTiO ₃ CdTiO ₃	$+0.5167 \\ +0.4012$	$+0.1889 \\ +0.2358$	$-0.5655 \\ -0.5919$	$-0.2403 \\ -0.2875$
GeTiO ₃ SnTiO ₃ PbTiO ₃	+0.5367 +0.4177 +0.2973	+0.1382 +0.2123 +0.2865	-0.5573 -0.5670 -0.5675	-0.2677 -0.3709 -0.4305

Таблица 9. Значения диагональных элементов матрицы одноузельных силовых постоянных $\Phi_{xx}(0, 0)$ для атомов *A* и Ti в кубической фазе соединений *A*TiO₃ (в Ha/Bohr²)

Соединение	Атом А	Атом Ті
MgTiO ₃ CaTiO ₃ SrTiO ₃ BaTiO ₃ RaTiO ₃	$\begin{array}{r} -0.0109 \\ +0.0163 \\ +0.0445 \\ +0.0755 \\ +0.0856 \end{array}$	$\begin{array}{r} +0.1431 \\ +0.1370 \\ +0.1196 \\ +0.0873 \\ +0.0750 \end{array}$
ZnTiO ₃ CdTiO ₃	$-0.0229 \\ -0.0008$	+0.1072 +0.1113
GeTiO3 SnTiO3 PbTiO3	-0.0150 +0.0132 +0.0269	$+0.0949 \\ +0.0786 \\ +0.0803$

образом, в кристаллах с атомами *A* небольшого размера колебания в сегнетоэлектрической моде определяются противофазным движением атомов *A* и кубооктаэдра, построенного из атомов кислорода.

В табл. 9 приведены значения диагональных элементов матрицы "одноузельных" силовых постоянных $\Phi_{xx}(0, 0)$ для атомов A и Ti. Эти матрицы определяются через возвращающую силу, действующую на смещенный из узла атом при фиксированном узловом положении всех остальных атомов. Для нахождения одноузельных силовых постоянных из силовых постоянных, рассчитываемых программой ABINIT для смещения подрешетки кристалла как единого целого, используется усреднение силовых постоянных, вычисленных на регулярной сетке волновых векторов [20,22,24]. Положительные значения одноузельных силовых постоянных указывают на устойчивость узлового положения атома, а отрицательные на образование нецентрального атома. Как следует из табл. 9, нецентральность атомов A в перовскитах $ATiO_3$ должна наблюдаться для Mg, Zn, Cd и Ge. Достаточно близко к границе устойчивости относительно перехода в нецентральное положение находятся атомы Sn, Ca и Pb.

Напомним, что все расчеты в настоящей работе выполнены для теоретического (т.е. отвечающего минимуму полной энергии кристалла) параметра решетки. Поскольку систематическое занижение параметра решетки в приближении LDA может ослаблять сегнетоэлектрическую неустойчивость, многие авторы проводят расчеты при экспериментальном параметре решетки. Для оценки влияния этой систематической ошибки было проведено моделирование, которое показало, что в PbTiO₃ увеличение параметра решетки на 1% (на величину характерной ошибки приближения LDA) приводит к уменьшению $\Phi_{xx}(0,0)$ для атома A на 0.006 Ha/Bohr² и уменьшению $\Phi_{xx}(0,0)$ для атома Ті на 0.016 Ha/Bohr². Поэтому атомы, находящиеся вблизи границы устойчивости относительно перехода в нецентральное положение, могут в действительности оказаться нецентральными. Это, повидимому, происходит в титанате свинца, о чем свидетельствуют исследования протяженной тонкой структуры в спектрах рентгеновского поглощения (EXAFS) [34].

Очевидно, что основным параметром, определяющим склонность атома А к проявлению нецентральности в кристаллах ATiO₃, является его размер. Однако если построить зависимость диагонального элемента матрицы $\Phi_{xx}(0, 0)$ для атома A от его ионного радиуса (рис. 2), то оказывается, что для атомов Zn и Cd, а также атомов Ge, Sn и Pb эти зависимости отличаются от зависимости для атомов основной серии Mg-Ca-Sr-Ba-Ra. Повидимому, это является следствием различной электронной конфигурации заполненных оболочек атомов: у Zn и Cd она имеет конфигурацию d^{10} , у Ge, Sn и Pb — $d^{10}s^2$, у атомов основной серии — s^2p^6 . Различие свойств этих групп атомов ярко проявляется и в величинах эффективных зарядов для атомов А (табл. 6): в то время как для основной серии характерно небольшое отклонение Z_A^{*} от номинального заряда катиона (что указывает на преимущественно ионный тип связи А-О), для двух других групп наблюдается сильное увеличение Z_A^* , что свидетельствует о возрастании доли ковалентной связи [3].

Полученные результаты позволяют предположить возможность появления нецентральных примесных атомов в твердых растворах титанатов со структурой перовскита. Поскольку среднее межатомное расстояние в таких кристаллах определяется матрицей, в соответствии с установленными выше закономерностями можно ожидать проявления нецентральности у атомов, которые имеют отрицательные или малые положительные значения $\Phi_{xx}(0, 0)$. Таким образом, возможно, что сегнетоэлектрический фазовый переход, индуцированный примесными атомами Ca, Cd и Pb в SrTiO₃ [12], связан именно с нецентральностью этих атомов. Данные EXAFS исключают нецентральность атома Ва в SrTiO₃ [35], но указывают на ее появление в случае легирования SrTiO₃ и BaTiO₃ примесью свинца [36].

Рис. 2. Зависимость величины $\Phi_{xx}(0,0)$ для атома A от его ионного радиуса.

Результаты настоящей работы несколько отличаются от результатов расчетов Квятковского [11], у которого многоямный адиабатический потенциал возникал только для атомов Mg и Zn, а атомы Cd оставались в узловом положении. Расхождение наших результатов, по-видимому, связано с тем, что расчеты [11] проведены для сравнительно небольших кластеров, в которых существование протяженных корреляций в движении атомов (корреляционная длина которых может достигать 20 Å [5,8]) не может быть корректно учтено.

6. Заключение

Использование построенных в работе псевдопотенциалов для расчета фононных спектров кристаллов $A TiO_3$ со структурой перовскита в рамках метода функционала плотности позволило воспроизвести все известные результаты по структурной неустойчивости этих кристаллов и предсказать свойства новых, ранее не изученных систем. Анализ фононных спектров, матриц силовых постоянных и собственных векторов неустойчивых TO-фононов дал возможность выявить закономерности в изменении вкладов цепочечной неустойчивости и нецентральных атомов в возникновение сегнетоэлектричества в этих кристаллах. Основными факторами, определяющими возможность перехода атомов A в нецентральное положение, являются геометрический размер и конфигурация внешней электронной оболочки этих атомов.

Список литературы

- [1] R.E. Cohen, H. Krakauer. Phys. Rev. B 42, 6416 (1990).
- [2] R.E. Cohen. Nature **358**, 136 (1992).
- [3] W. Zhong, R.D. King-Smith, D. Vanderbilt. Phys. Rev. Lett. 72, 3618 (1994).
- [4] R.D. King-Smith, D. Vanderbilt. Phys. Rev. B 49, 5828 (1994).
- [5] R. Yu, H. Krakauer. Phys. Rev. Lett. 74, 4067 (1995).
- [6] C. LaSota, C.-Z. Wang, R. Yu, H. Krakauer. Ferroelectrics 194, 109 (1997).
- [7] U.V. Waghmare, K.M. Rabe. Phys. Rev. B 55, 6161 (1997).
- [8] Ph. Ghosez, X. Gonze, J.-P. Michenaud. Ferroelectrics 206– 207, 205 (1998).
- [9] Ph. Ghosez, E. Cockayne, U.V. Waghmare, K.M. Rabe. Phys. Rev. B 60, 836 (1999).
- [10] S.V. Halilov, M. Fornari, D.J. Singh. Appl. Phys. Lett. 81, 3443 (2002).
- [11] О.Е. Квятковский. ФТТ 44, 1087 (2002).
- [12] V.V. Lemanov. In: Defects and surface-induced effects in advanced perovskites / Eds G. Borstel, A. Krumins, D. Millers, Kluwer Academic Publishers (2000). P. 329.
- [13] E. Cockayne, B.P. Burton. Phys. Rev. B 62, 3735 (2000).
- [14] K. Parlinski, Y. Kawazoe, Y. Waseda. J. Chem. Phys. 114, 2395 (2001).
- [15] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. Comput. Mater. Sci. 25, 478 (2002).
- [16] J.P. Perdew, A. Zunger. Phys. Rev. B 23, 5048 (1981).

- [17] A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Phys. Rev. B 41, 1227 (1990).
- [18] N.J. Ramer, A.M. Rappe. Phys. Rev. B 59, 12471 (1999).
- [19] H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 5188 (1976).
- [20] P. Giannozzi, S. Gironcoli, P. Pavone, S. Baroni. Phys. Rev. B 43, 7231 (1991).
- [21] X. Gonze. Phys. Rev. B 55, 10337 (1997).
- [22] X. Gonze, C. Lee. Phys. Rev. B 55, 10355 (1997).
- [23] D.R. Hamann, X. Wu, K.M. Rabe, D. Vanderbilt. Phys. Rev. B 71, 035 117 (2005).
- [24] X. Gonze, J.-C. Charlier, D.C. Allan, M.P. Teter. Phys. Rev. B 50, 13 035 (1994).
- [25] Landolt-Börnstein. Numerical data and functional relationships in science and technology. New Series. Group III. V. 6. Springer-Verlag (1971).
- [26] R.D. King-Smith, D. Vanderbilt. Phys. Rev. B 47, 1651 (1993).
- [27] J.L. Servoin, Y. Luspin, F. Gervais. Phys. Rev. B 22, 5501 (1980).
- [28] T. Nakamura. Ferroelectrics 137, 65 (1992).
- [29] R.A. Cowley. Phys. Rev. 134, A981 (1964).
- [30] G. Fabricius, A. López Garcia. Phys. Rev. B 66, 233106 (2002).
- [31] Y.J. Shan, H. Mori, R. Wang, W. Luan, H. Imoto, M. Itoh, T. Nakamura. Ferroelectrics 259, 85 (2001).
- [32] Y.J. Shan, H. Mori, K. Tezuka, H. Imoto, M. Itoh. Ferroelectrics 284, 107 (2003).
- [33] Y. Konishi, M. Ohsawa, Y. Yonezawa, Y. Tanimura, T. Chikyow, T. Wakisaka, H. Koinuma, A. Miyamoto, M. Kubo, K. Sasata. Mat. Res. Soc. Sump. 748, U3.13 (2003).
- [34] N. Sicron, B. Ravel, Y. Yacoby, E.A. Stern, F. Dogan, J.J. Rehr. Phys. Rev. B 50, 13168 (1994).
- [35] V. Shuvaeva, Y. Azuma, K. Yagi, H. Terauchi, R. Vedrinski, V. Komarov, H. Kasatani. Phys. Rev. B 62, 2969 (2000).
- [36] A.A. Veligzhanin, A.I. Lebedev, V.V. Mischenko, I.A. Sluchinskaya, A.A. Chernyshov. 5th Int. Seminar on ferroelastic physics. Abstract book. Voronezh (2006). P. 52.