Влияние инфракрасной засветки на модулированную магнитную структуру слабого ферромагнетика FeBO₃ : Mg

© Б.Ю. Соколов

Национальный университет Узбекистана им. Улугбека, Ташкент, Узбекистан

E-mail: optic@nuuz.uzsci.net

(Поступила в Редакцию 17 марта 2010 г.)

Выполнены экспериментальные исследования влияния неполяризованного белого света на период и условия существования модулированной магнитной структуры монокристалла FeBO₃ : Mg, возникающей в этом легкоплоскостном слабом ферромагнетике в области низких температур в процессе технического намагничивания. Обнаружено, что степень светового воздействия на магнитное состояние кристалла зависит как от длительности облучения, так и от ориентации вектора ферромагнетизма во время засветки. Установлено, что максимальное воздействие на параметры реализующейся в FeBO₃ : Mg модулированной магнитной структуры оказывает свет с длинами волн $0.8 < \lambda < 0.9 \,\mu$ m. Интерпретация полученных результатов выполнена в рамках теории "магнитной ряби" на основе модели фоточувствительных анизотропных магнитных центров, связанных с присутствием в составе кристалла примесных ионов Mg.

1. Введение

Известно, что световое воздействие, как правило, приводит лишь к незначительному изменению величин основных магнитных характеристик (восприимчивости, намагниченности, коэрцитивной силы и т.п.) магнитоупорядоченных сред. Однако существует небольшое число магнетиков, у которых под действием света появляются новые, отсутствующие без дополнительной засветки свойства [1]. К этому типу магнетиков относится борат железа (FeBO₃), в котором помимо фотоиндуцированного изменения магнитной восприимчивости [2] при облучении неполяризованным белым светом возникает дополнительная одноосная магнитная анизотропия, направление оси которой задается ориентацией вектора антиферромагнетизма в момент засветки кристалла [3], а также пространственно-временная магнитная сверхструктура [4] (эти эффекты обнаружены в кристаллах FeBO₃, содержащих примесь ионов Ni). Из предложенной в [4] теории фотоиндуцированной модулированной магнитной структуры (MMC) FeBO₃ : Ni следует, что к ее возбуждению приводит магнитоакустическое взаимодействие между комплексами, образованными ионами Fe и Ni, и кристаллической матрицей, которое в отсутствие засветки незначительно, но усиливается при поглощении света кристаллом. Эта теория в принципе допускает возникновение ММС в допированном примесью кристалле FeBO3 и без участия света.

Относительно недавно в [5,6] было обнаружено, что при введении в состав FeBO₃ диамагнитных ионов Mg в этом кристалле в области низких температур наблюдается ориентационный фазовый переход из однородного магнитного состояния в пространственно модулированное. Однако несмотря на отмеченную выше фоточувствительность бората железа, выполненные в [5] исследования показали, что внешняя засветка практически не влияет на условия возникновения и параметры модуляции магнитного порядка FeBO₃ : Mg. Это обстоятельноство представляется неожиданным, поскольку, согласно теории MMC, развитой в [4], под действием света происходит изменение величин основных взаимодействий (обменного и магнитоанизотропного), определяющих магнитную структуру кристалла. С целью выяснения причин, по которым влияние света на MMC FeBO₃ : Mg в [5] не наблюдалось, были проведены фотомагнитные эксперименты, результаты которых представлены далее.

2. Образцы и методика эксперимента

В экспериментах использовался тот же образец монокристалла FeBO₃ : Mg (содержание Mg ~ 0.1 wt.%), на котором были проведены исследования ММС в [5,6]. Образец имел форму плоскопараллельной пластинки с поперечными размерами $\sim 3 \,\mathrm{mm}$ толщиной $\approx 60 \,\mu\mathrm{m}$, развитые плоскости которой совпадали с плоскостью легкого намагничивания (с плоскостью (111)). Исследовались доменная структура (ДС) и процесс технического намагничивания FeBO3 : Mg. Все исследования проводились магнитооптическим методом в окне прозрачности кристалла (в области длин волн $\lambda \sim 0.5 \, \mu m$) в температурном интервале $80 \le T \le 290 \, \text{K}$ в магнитном поле H < 50 Ое при ориентации вектора **Н** параллельно плоскости (111) при небольших углах падения света на плоскость образца. Зондирующий кристалл световой луч "монохроматизировался" полосовым стеклянным фильтром 3C-1 и имел интенсивность $\sim 10^{-5} \, W/cm^2$. ДС образца визуально наблюдалась при помощи поляризационного микроскопа "на просвет" при методике, описанной в [7].

Процесс технического намагничивания в легкой плоскости FeBO₃ : Мg изучался на основе петель гистерезиса эффекта Фарадея, которые наблюдались при перемагничивании образца в квазистатическом режиме резверт-

ки магнитного поля. Поскольку в FeBO₃ : Мд вектор ферромагнетизма т лежит в плоскости (111), эффект Фарадея возможен лишь при отклонении светового луча от нормали к плоскости образца (от оси С3). В этом случае угол фарадеевского вращения ϕ определяется проекцией вектора средней намагниченности кристалла М (по определению М || m) на направление распространяющегося света. Поэтому при исследованиях полевой зависимости угла φ (очевидно, что $\varphi(H) \sim M(H))$ образец устанавливался так, чтобы ось С3 составляла с направлением светового луча угол $\sim 10^\circ$, а вектор H лежал в плоскости образца в плоскости падения. Величина угла ϕ измерялась с использованием известной поляриметрической методики, основанной на модуляции азимута плоскости поляризации зондирующего образец света [8].

В фотомагнитных экспериментах образец охлаждался до T = 80 К и дополнительно облучался сфокусированным на его поверхность потоком неполяризованного белого света интенсивностью $\sim 5 \cdot 10^{-2}$ W/cm² (источником света служила галогеновая лампа накаливания КГМ12-100); после выдержки образца в течение некоторого времени под световым потоком дополнительная засветка выключалась п проводились визуальные наблюдения ДС и измерения эффекта Фарадея.

3. Экспериментальные результаты

Для реализации MMC в FeBO3 : Мg были воспроизведены условия ее существования, установленные в [5]: образец охлаждался до $T < T_c \approx 135 \, {\rm K}$ и намагничивался в плоскости (111) при ориентации Н в направлении, перпендикулярном направлению доменных границ. На рис. 1, а, b приведены изображения "незасвеченного" образца, полученные при $T = 80 \,\mathrm{K}, H = 0$ и 7 Ое соответственно (там же показана ориентация осей лабораторной системы координат). Как видно из рис. 1, а, в размагниченном состоянии образец имеет обычную 180° ДС с ориентацией доменных границ вблизи направления одной из осей С2 (оси С2 — оси легкого намагничивания, соответственно оси трудного намагничивания биссектрисы угла между двумя соседними осями С₂) (подробнее см. [5,6]). При намагничивании образца в направлении перпендикулярном этой оси С₂ (при **H** || X), сначала при $H \approx 5$ Ое изображения доменов пропадают (кристалл монодоменизируется), а затем с ростом Н на его изображении появляется квазипериодическая система различающихся контрастом полос с размытыми границами (рис. 1, b), что связывалось в [5,6] с переходом FeBO₃: Мд из однородного магнитного состояния в пространственно модулированное (аналогичные системы полос возникают на изображении образца при его намагничивании вдоль любой трудной оси).

Как показали эксперименты, дополнительная засветка образца неполяризованным белым светом не приводила

Рис. 1. Изображения FeBO₃ : Mg, наблюдаемые в поляризованном свете при T = 80 К и напряженности магнитного поля H = 0 (a) и 7 Oe (H || Y) (b, c). a, b — "незасвеченный" образец, c — образец сначала намагничен в поле H = 0.5 Oe до монодоменного состояния, после чего подвергался засветке в течение 10 min. На вставке — оси лабораторной системы координат (сплошные стрелки) и оси C_2 (штриховые стрелки).

(так же как и в [5]) к наблюдаемому изменению ДС или вида системы полос, существующей на изображении образца при **H** \perp *C*₂ \parallel *Y*. Перемагничивание "засвеченного" образца вдоль оси Х также не выявило какоголибо воздействия света на форму петли гистерезиса. Однако при исследованиях полевой зависимости эффекта Фарадея при Н || У было установлено, что длительная засветка образца, находящегося в размагниченном состоянии, приводит к увеличению ширины петли магнитного гистерезиса (росту коэрцитивной силы H_C) (рис. 2). Причем заметное изменение (превышающее ошибку эксперимента ~ 0.02 Ое) ширины петли гистерезиса эффекта Фарадея наблюдалось при длительности засветки $\tau > 2 \min$, а рост величины H_C происходил до $\tau \approx 10 \,\mathrm{min}$, после чего увеличение времени предварительной засветки образца практически не влияло на вид

Рис. 2. Петли гистерезиса эффектра Фарадея, полученные при перемагничивании FeBO₃ : Mg (H || Y, T = 80 K). Время развертки магнитного поля $\sim 30 \text{ s. } 1 - ,$,незасвеченный" образец, 2 -образец предварительно засвечен неполяризованным белым светом при H = 0 в течение 10 min.

кривой $\varphi(H)$.¹ Если же "засвеченный" образец сначала был намагничен до насыщения при **H** || *X*, а затем перемагничивался при **H** || *Y*, то кривая $\varphi(H)$ в пределах экспериментальной ошибки совпадала с аналогичной кривой, полученной до засветки образца.

Кроме этого, было установлено, что предварительная засветка образца (при $T = 80 \,\mathrm{K}, H = 0$) изменяла период и условия существования ММС, реализирующейся в кристалле при его намагничивании вдоль трудных осей, ориентированных под углом 30° к оси Y. В "незасвеченном" образце в этой геометрии намагничивания система полос возникает при $H = H_1 \approx 5.5$ Oe, существует в некотором зависящем от Т интервале намагничивающего поля ΔH (интервал ΔH уменьшается при $T \rightarrow T_c$) и исчезает при достижении полем критического значения H_2 ($H_2 \approx 17$ Oe при T = 80 K). Период системы полос D (среднее расстояние между соседними светлыми или темными полосами) изменяется при изменении Н и Т путем скачкообразного изменения числа наблюдаемых полос, что на графиках зависимостей D(H) (рис. 3) и D(T) (рис. 4) показано в виде ступенек (подробнее см. [5,6]).² В предварительно "засвеченном" (при $\tau = 10 \min$) образце в этих же условиях эксперимента система полос возникала в поле $H_1 \approx 6.5 \,\mathrm{Oe}$ и существовала до $H_2 \approx 21$ Oe, а ее период увеличивался по сравнению со значением D, наблюдаемым на "незасвеченном" образце, при этом скачкообразный характер зависимостей D(H) и D(T) сохранялся (рис. 3,4). Изменение же параметров системы полос, возникающей при **H** $\parallel X$, происходило только тогда, когда длительной засветке подвергался образец, предварительно намагниченный (в поле H = 5 Oe, **H** $\parallel X$) до монодоменного состояния: в этом случае также наблюдалось увеличение (примерно на 10%) периода D (рис. 1, c) и интервала ΔH полей существования MMC. При этом оказалось, что в обоих случаях выдержка образца под белым светом не изменяла (в пределах экспериментальной ошибки ± 2 K) температуру исчезновения полос T_c .

Рис. 3. Полевая зависимость пространственного периода модулированной магнитной структуры FeBO₃ : Mg, полученная при T = 80 K (вектор **H** лежит в плоскости (111) и ориентирован под углом 30° к оси *Y*). I - ...,незасвеченный" образец, 2 - ... образец предварительно засвечен неполяризованным белым светом при H = 0 в течение 10 min. Стрелки указывают направление развертки магнитного поля.

Рис. 4. Температурная зависимость пространственного периода модулированной магнитной структуры FeBO₃ : Mg, полученная при H = 6.5 Oe (вектор **H** лежит в плоскости (111) и ориентирован под углом 30° к оси *Y*). Обозначения те же, что на рис. 3.

¹ В системе охлаждения образца не предусмотрена возможность длительной стабилизации температуры, отличной от T = 80, поэтому зависимость $\tau(T)$ не исследовалась.

² Приведенные на рис. 3,4 значения D определялись делением расстояния (измеряемого при помощи окуляра-микрометра) между центрами крайних светлых (темных) полос на (n-1), где n — полное число светлых полос, наблюдаемых на изображении образца при заданных H и T.

Коэрцитивная сила исследованного кристалла, измеренная при различном спектральном составе облучающего света (T = 80 K, $\mathbf{H} \parallel Y$, время предварительной засветки $\tau = 10 \min$)

Светофильтр	Область прозрачности, µm	H_C , Oe
C3C-23	< 0.82	1.61
КС-19	> 0.72	1.77
ИКС-1	> 0.80	1.75
ИКС-5	> 0.85	1.75
ИКС-6	> 0.90	1.63
ИКС-3	> 0.95	1.61
ИКС-7	> 1.00	1.62

Период реализующейся Η при заданных $(80 \le T \le 135 \,\mathrm{K})$ MMC $(H_1 \le H \le H_2)$ И Т "засвеченного" (при $\tau = 10 \min$) кристалла (так же как и значение H_C) в дальнейшем не изменялся под действием света. После выключения дополнительной засветки величины D и H_C медленно релаксировали (при $T = 80 \,\mathrm{K}$ в течение $\sim 60 \,\mathrm{min})$ к значениям, характерным для "незасвеченного" кристалла (релаксация происходит в результате двух-трех скачкообразных изменений величин D и H_C, приближающих их к равновесным при данных Н и Т значениям).³ После нагрева "засвеченного" образца до $T > T_c$ и его последующего охлаждения (при отсутствии дополнительной засветки) до $T = 80 \,\mathrm{K}$ кривые D(H, T) и $\varphi(H)$ в пределах точности эксперимента совпадали с соответствующими кривыми, полученными после первого охлаждения образца.

Для установления спектральной области дополнительной засветки, наиболее эффективно влияющей на магнитное состояние FeBO3 : Mg, были проведены эксперименты, в которых варьировался спектральный состав падающего на образец света: поочередным введением в канал дополнительный засветки светофильтров, имеющих четкую границу пропускания, отсекались различные части спектра белого света. В результате выяснилось, что наиболее заметное влияние на ММС и петли магнитного гистерезиса исследованного кристалла оказывает инфракрасное излучение с $\lambda \sim 0.8 - 0.9 \,\mu$ m. В качестве иллюстрации этого заключения в таблице приведены величины полей H_C , полученные из зависимостей $\varphi(H)$ образца, предварительно выдержанного при $T = 80 \, {\rm K}$ в течение $\tau = 10 \min$ под световым потоком с различным спектральным составом (каждое значение H_C получено после отогрева "засвеченного" образца до $T > T_c$ и его последующей засветки при T = 80 K, H = 0). Откуда видно, что свет с длинами волн $0.8 > \lambda > 0.9 \,\mu$ m практически не влияет на значение H_C (для "незасвеченного" образца $H_C = 1.61$ Oe, рис. 2).

Существенно, что засветка FeBO₃ : Мд при $T > T_c$ не изменяла параметры MMC; кроме этого, во всех выполненных экспериментах не было обнаружено какойлибо зависимости фотоиндуцированных эффектов от поляризации падающего на кристалл светового потока.

4. Модель фоточувствительности FeBO₃ : Mg

По известным данным именно в области $\lambda \approx 0.85 \, \mu m$ находится максимум фоточувствительности магнитной восприимчивости [2] и оптической анизотропии [3] бората железа. Из чего можно сделать вывод, что эффекты, наблюдаемые в [2,3], и изменение параметров ММС и коэрцитивной силы кристалла FeBO3 : Мg под действием света связаны с одними и теми же оптическими переходами; следовательно, физические механизмы, приводящие к фотоиндуцированному изменению перечисленных свойств бората железа, могут иметь общую природу. Поэтому при обсуждении полученных экспериментальных результатов будем исходить из модели фотоиндуцированного изменения магнитных свойств кристалла, предложенной в [3,4]. Как уже отмечалось, согласно этой модели, в кристалле существуют фоточувствительные анизотропные магнитные центры, связанные с присутствием в его составе примесей. Без дополнительной засветки эти центры разупорядочены (направления их магнитных моментов имеют хаотичное распределение в легкой плоскости), но кооперативно упорядочиваются под действием света. Упорядочение центров приводит, в частности, к возникновению дополнительной одноосной магнитной анизотропии в плоскости (111) кристалла, направление оси которой зависит от ориентации вектора **m** в момент засветки [3].

Известно, что оптическое поглощение бората железа в области $\lambda \sim 0.85 \,\mu\text{m}$ связано с переходами между расщепленными кристаллическим полем состояниями матричного иона Fe³⁺ (с переходами ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G))$ [9]. Поэтому фоточувствительные центры должны содержать ионы Fe³⁺. В FeBO₃ : Мд такими фоточувствительными центрами могут служить комплексы, включающие диамагнитный ион Mg и ближайшие окружающие его ионы Fe (Mg–Fe-центры).

Выполненный в [10] расчет зонной структуры FeBO₃ показал, что этот слабый ферромагнетик — ионный кристалл, структура которого образована подрешетками катионов Fe³⁺ и анионов (BO₃)³⁻. Поскольку магний входит (замещая ионы F³⁺) в FeBO₃ в двухвалентном состоянии [2], условие электронейтральности кристалла требует компенсации избыточного анионного заряда, которая может быть достигнута возникновением вблизи примесного иона Mg²⁺, "покализованного" иона F⁴⁺. Другими словами (в терминах [11]), это означает,

³ Типичное время проведения магнитооптических экспериментов составляло ~ 1–5 min, поэтому в течение времени измерений можно пренебречь отмеченной выше временной эволюцией фотоиндуцированных эффектов и считать, что показанные на рис. 2–4 изменения значений D и H_C соответствуют фотоиндуцированным изменениям этих величин, возникающим непосредственно во время засветки кристалла.

что допирование FeBO3 акцепторными ионами Mg²⁺ приводит к возникновению вблизи примеси дырочного полярона. Для модельного описания интересующих нас эффектов можно предположить, что ион Fe⁴⁺ расположен в первой координационной сфере иона Mg²⁺, т.е. каждый ион Mg²⁺ имеет в ближайшем окружении (в силу гексагональной симметрии FeBO3 : Mg в плоскости (111)) шесть ионов Fe, любой из которых с равной вероятностью может находиться в четырехвалентном состоянии. Очевидно, что расстояние от Mg²⁺ до иона Fe⁴⁺ отличается от того, на котором расположены ближайшие к Mg²⁺ ионы Fe³⁺, что приводит к пространственной асимметрии комплекса, задающей направление оси локальной анизотропии Mg-Fe-центра (направление наиболее предпочтительной ориентации его магнитного момента \mathbf{M}_c). Следовательно, существует шесть кристаллографически эквивалентных направлений, вдоль которых могут ориентироваться векторы М_с.

Локальные искажения кристаллической решетки, вызванные различием ионных радиусов Mg и Fe, приводят (из-за увеличения магнитоупругой энергии) к сильной магнитной анизотропии в некоторой области кристалла вблизи примесного иона Mg. Поэтому при достаточно сильной локальной анизотропии направление векторов \mathbf{M}_c может не совпадать с направлением средней намагниченности всего кристалла. Вследствие незначительной концентрации примеси естественно считать, что система Mg—Fe-центров является парамагнитной (векторы \mathbf{M}_c не взаимодействуют между собой) и находится в эффективном обменном поле кристаллической матрицы H_{ex} .

В области высоких температур возможно движение полярона (путем термически активированных скачков) внутри так называемой щели подвижности по эквивалентным позициям [11], т.е. согласно нашей модели, избыточный положительный заряд будет передвигаться по катионам первой координационной сферы иона Mg, в результате чего направление осей анизотропии Mg-Fe-центров будет непрерывно изменяться. При достаточно низкой температуре положение полярона "заморожено" и в кристалле возникает поле механических напряжений, в котором оси анизотропии Mg-Fe-центров статически распределены по трем кристаллографически эквивалентным направлениям в плоскости (111). При этом в кристалле наводится дополнительная магнитная анизотропия, характеризующаяся константой $K_A \sim \Lambda \sigma(x, y)$ (где Λ — константа магнитострикции, $\sigma(x, y) = f(\sigma_{xx}, \sigma_{yy}, \sigma_{xy})$ эффективное напряжение в точке на плоскости (111) с координатами x, y) и азимутом оси $\Theta_A(x, y)$ [12]. Очевидно, что поле возникающих в FeBO3 : Mg напряжений имеет однородную и неоднородную в плоскости (111) составляющие: однородная составляющая поля напряжений вызывает рост гексагональной магнитокристаллической анизотропии [13], а неоднородная составляющая является причиной трансформации в процессе намагничивания магнитной структуры FeBO₃ : Мg из однородной в модулированную [6,14].

Можно предположить, что при поглощении света переход части матричных ионов Fe³⁺ в возбужденное состояние изменяет величину поля H_{ex}, действующего на ионы Fe^{4+} , что приводит к смещению ионов Fe^{4+} на некоторое расстояние по сравнению с их положением в кристаллической решетке до светового воздействия. Изменение положения ионов Fe⁴⁺ вызовет изменение локальных решеточных искажений вблизи примеси, причем следует ожидать, что фотоиндуцированные искажения Mg-Fe-центров будут "подстраиваться" (в силу обменной связи векторов М_с и m) под магнитострикционную деформацию матрицы, обеспечивая минимум магнитоупругой энергии кристалла. В результате этой "подстройки" кристаллическая решетка будет испытывать коррелированные искажения, приводящие к возникновению дополнительной одноосной анизотропии в плоскости (111), направление оси которой будет зависеть от ориентации подрешеточных магнитных моментов кристаллической матрицы во время засветки.⁴ Поскольку источником энергии для смещений ионов Fe⁴⁺ являются случайные локальные флуктуации амплитуды тепловых колебаний решетки, процесс "подстройки" фотоиндуцированных искажений Mg-Fe-центров характеризуется некоторой скоростью, поэтому величина механических напряжений кристаллической матрицы достигает насыщения только при достаточной длительности светового воздействия. Очевидно, что смещение ионов Fe⁴⁺, возникающее при воздействии на кристалл света, метастабильно, и при выключении света ионы Fe⁴⁺ в течение некоторого времени вернутся в исходное положение, т.е. фотоиндуцированное изменение магнитных параметров кристалла должно "рассасываться" после выключения дополнительной засветки. Именно такое поведение фотомагнитных эффектов в FeBO3 : Мg наблюдается в выполненных экспериментах.

Из визуальных наблюдений установлено (подробнее см. [5,6]), что ДС FeBO₃ : Мд практически не изменяется при его охлаждении от $T \sim 200$ К до T = 80 К. Это означает, что в температурной области $T < T_c$ положение доменных границ в плоскости (111) не зависит от дополнительных механических напряжений, возникающих в кристалле при "замерзании" направлений векторов \mathbf{M}_c . Поэтому засветка не оказывала заметного влияния на реализующуюся в исследованном образце доменную конфигурацию.

⁴ В FeBO₃ : Ni ионы Ni и Fe изовалентны и имеют близкие размеры, поэтому локальные искажения, возникающие в кристаллической решетке FeBO₃ : Ni, связывались в [4] с эффектом Яна-Теллера на магнитном ионе Ni³⁺. Следовательно, напряжения кристаллической решетки и связь дефектов с магнитной системой матрицы в этом кристалле отличаются от реализующихся в FeBO₃ : Mg, что, вероятно, и определяет наблюдаемые различия в поведении магнитной структуры FeBO₃ : Ni и FeBO₃ : Mg при световом воздействии.

Обсуждение экспериментальных результатов

Известно, что в магнитном поле, ориентированном вдоль доменных границ 180° ДС, техническое намагничивание кристалла полностью определяется процессом смещения доменных границ. Очевидно, что при такой ориентации **H** магнитострикционная деформация кристаллической решетки FeBO₃ : Мg и поле H_{ex} в процессе намагничивания не изменяются, т. е. фотоиндуцированное искажение Mg—Fe-центров сохраняется (в течение времени развертки магнитного поля); как следствие, дополнительная магнитная анизотропия оказывает влияние на вид кривой $\varphi(H)$ при **H** || *Y* (рис. 2).

При намагничивании FeBO₃ : Мд вдоль оси X ситуация иная: после завершения процесса смещения доменных границ с ростом H намагниченность выходит на насыщение за счет разворота вектора **m** в сторону **H**. При этом изменяются (по сравнению с ориентацией **H** $\parallel Y$) магнитострикция кристалла и направление поля H_{ex} , в результате чего ориентация векторов **M**_c будет отличаться от реализующейся при длительной засветке кристалла (очевидно, что в насыщающем поле все векторы **M**_c направлены вдоль оси X), т.е. фото-индуцированная магнитная анизотропия кристалла при его перемагничивании вдоль оси X пропадает. В результате этого полученные в экспериментах кривые $\varphi(H)$ "засвеченного" и "незасвеченного" образцов при **H** $\parallel X$ не различаются.

Поскольку границы между доменами в легкой плоскости FeBO₃ : Мд неелевского типа [15], при ориентации **H** || *Y* его начальная магнитная восприимчивость $\chi = M_s^2/K$, а коэрцитивная сила $H_C \sim K/M_s$, где M_s спонтанная намагниченность, *K* — константа анизотропии вдоль оси $C_2 \parallel Y$ [16]. Согласно [2], магнитная восприимчивость FeBO₃ : Мд уменьшается под действием света; следовательно, коэрцитивная сила должна расти, что и наблюдается экспериментально (рис. 2). Из чего можно заключить, что световое воздействие увеличивает магнитную анизотропию кристалла в плоскости (111).

Следует отметить, что данное выше объяснение изменения магнитных характеристик кристалла под действием света принципиально отличается от приведенного в [2]. Из модели, использующейся в [2] для интерпретации результатов исследований фотоиндуцированного изменения магнитной восприимчивости, следует, что в FeBO3 при световом воздействии происходит изменение свойств центров пиннинга доменных границ, обусловленных присутствием в кристалле иновалентных иону Fe³⁺ примесей. Поскольку ширина неелевских доменных границ в FeBO₃ $\sim 20 \,\mu m$ [15], точечные дефекты кристаллической решетки не могут непосредственно влиять на процесс смещения доменных границ в плоскости (111), поэтому предложенная в [2] модель фоточувствительности кристалла представляется неадекватной реальной физической ситуации.

В [6] показано, что поведение MMC FeBO₃: Mg при изменении внешних условий удовлетворительно описывается хорошо известной теорией "магнитной ряби" [17], согласно которой период модуляции магнитного порядка (с учетом гексагональной симметрии кристалла в плоскости (111)) определяется следующим выражением:

$$D = 2\pi (2A)^{1/2} \left[MH \cos 3(\alpha - \beta) + 2K \cos 6\beta \right]^{1/2}, \quad (1)$$

где A — константа обменного взаимодействия, K — константа анизотропии вдоль оси C_2 , α и β — углы между осью C_2 и векторами **H** и **M** соответственно.

Принимая во внимание условия существования ММС FeBO₃ : Mg ($\alpha = 30^{\circ}, \beta = 30^{\circ}$), (1) можно преобразовать к виду

$$D = 2\pi \left[\frac{2A}{(MH - 2K)} \right]^{1/2}.$$
 (2)

Из структуры формул (1), (2) видно, что период ММС не зависит от локальной неоднородной анизотропии кристалла, т.е. фотоиндуцированное изменение величины D может быть связано только с изменением константы K за счет вызванных светом коррелированных изменений деформации кристаллической решетки, которые, как следует из модели Mg—Fe-центров, зависят от ориентации вектора **m** в момент засветки. Это объясняет установленную в эксперименте зависимость степени светового воздействия на параметры ММС FeBO₃ : Mg от условий, при которых засвечивался кристалл.

Учитывая результаты измерений Н_C, предположим, что в условиях наших экспериментов рост магнитной анизотропии происходит вдоль направления, в котором был ориентирован вектор **m** при засветке образца.⁵ Так, если образец подвергался засветке при H = 0, то увеличивается константа K вдоль оси $C_2 \parallel Y$, поэтому при ориентации Н под углом 30° к оси У в соответствии с (2) должно наблюдаться увеличение периода ММС по сравнению с величиной D, характерной для "незасвеченного" кристалла, что соответствует экспериментальным результатам (рис. 3,4). С этим же можно связать увеличение периода ММС "засвеченного" кристалла, предварительно намагниченного (при H = 0.5 Oe, **H** || X) до монодоменного состояния: в этом случае во время засветки вектор т ориентировался вблизи оси C_2 , составляющей угол 60° с осью Y, т.е. вдоль этой оси увеличилась анизотропия кристалла (увеличилась константа K, фигурирующая в (2)). Если же намагничивать "засвеченный" при H = 0 образец в направлении оси X, то поскольку засветка не изменила величину K вдоль ближайшей к направлению **H** оси C_2 , периоды систем полос, возникающих при Н || Х на изображениях "засвеченного" и "незасвеченного" кристалла, не различаются (по той же причине, по которой в этой

⁵ Как показано в [3], в FeBO₃: Ni ось наводимой светом дополнительной магнитной анизотропии перпендикулярна направлению вектора **m** в момент засветки.

геометрии намагничивания засветка не влияет на вид кривой $\varphi(H)$).

Также засветка не должна оказывать влияние на параметры уже существующей ММС кристалла. Действительно, в MMC FeBO3 : Мд локальный вектор m осциллирует около вектора **H** ($\mathbf{H} \perp C_2$) при смещении в легкой плоскости вдоль направления намагничивания [5,6]. Следовательно, облучение FeBO₃ : Mg, находящегося в модулированном магнитном состоянии, должно приводить (в силу отмеченной выше связи фотостимулированного роста анизотропии и ориентации m) к возникновению незначительной (по сравнению с гексагональной) локальной одноосной анизотропии, азимут оси которой будет периодически отклоняться от направления Н с периодом модуляции направления вектора т в ММС кристалла, т.е. дополнительная засветка стабилизирует изначальную модуляцию магнитного порядка кристалла, не изменяя ее периода (что соответствует результатам наблюдений).

Очевидно, что при намагничивании FeBO₃ : Мg вдоль трудной оси фотоиндуцированный рост константы Kприведет к тому, что для отклонения вектора **m** в сторону **H** на заданный угол требуется поле большей напряженности, с чем и связано наблюдаемое в эксперименте увеличение значений H_1 и H_2 в "засвеченном" кристалле.

Согласно принятой модели Mg–Fe-центров, свет индуцирует лишь незначительные смещения ионов Fe⁴⁺ относительно их положения в кристалле до момента засветки, поэтому температура "замерзания" положения ионов Fe⁴⁺ (локальных неоднородных искажений кристаллической решетки), а следовательно, и температура перехода кристалла в модулированное магнитное состояние T_c не должны (как это и было установлено экспериментально) существенно зависеть от дополнительной засветки.

Таким образом, предложенная модель Mg–Fe-центров позволяет непротиворечиво описать (на качественном уровне) всю совокупность экспериментальных результатов, полученных при исследованиях влияния света на MMC FeBO₃ : Mg. Выявленные закономерности фотоиндуцированных эффектов в этом слабом ферромагнетике показали возможность управления его локальными магнитными и магнитооптическими свойствами совместным действием внешней засветки и поля H, что может представлять интерес с точки зрения практического использования обнаруженных эффектов, в частности, в системах фотомагнитной записи информации.

Список литературы

- [1] В.Ф. Коваленко, Э.Л. Нагаев. УФН 148, 1, 561 (1986).
- [2] D.E. Laklison, J. Chadwick, J.L. Page. J. Phys. D: Appl. Phys. 5, 810 (1972).
- [3] Ю.М. Федоров, А.А. Лексиков, А.Е. Аксенов. ЖЭТФ 89, 6 (12), 2009 (1985).

- [4] Ю.М. Федоров, А.Ф. Садреев, А.А. Лексиков. ЖЭТФ 93, 6 (12), 2217 (1987).
- [5] Б.Ю. Соколов. ЖЭТФ **126**, *2* (8), 472 (2004).
- [6] Б.Ю. Соколов. ФТТ **47**, *10*, 1818 (2005).
- [7] С.Р. Бойдедаев, Д.Р. Джураев, Б.Ю. Соколов, М.З. Шарипов. Опт. и спектр. 104, 4, 670 (2008).
- [8] М.М. Червинский, С.Ф. Глаголев, В.Б. Архангельский. Методы и средства измерений магнитных характеристик и пленок. Энергоатомиздат, Л. (1990). 208 с.
- [9] Yu.M. Fedorov, A.A. Leksikov, A.E. Aksyonov, I.S. Edelman. Phys. Status Solidi C 106, K 127 (1981).
- [10] С.Г. Овчинников, В.Н. Заблуда. ЖЭТФ 125, 1, 150 (2004).
- [11] Э.Л. Нагаев. Физика магнитных полупроводников. Наука. М. (1979). 431 с.
- [12] Б.А. Беляев, А.В. Изотопов. ФТТ 49, 9, 1651 (2007).
- [13] С.Р. Бойдедаев, Б.Ю. Соколов. ФТТ 50, 12, 2198 (2008).
- [14] С.Р. Бойдедаев, Б.Ю. Соколов. ФТТ 51, 6, 1115 (2009).
- [15] G.B. Scott. J. Phys. D: Appl. Phys. 7h, 1574 (1974).
- [16] С. Тикадзуми. Физика ферромагнетизма. Мир, М. (1987). 420 с.
- [17] В.И. Петров, Г.В. Спивак, О.П. Павлюченко. УФН 106, 2, 229 (1972).