Нелинейные ТЕ-поляризованные квазиповерхностные волны в симметричном световоде с нелинейной сердцевиной

© О.В. Коровай, П.И. Хаджи

Приднестровский государственный университет им. Т.Г. Шевченко, Тирасполь, Молдавия Институт прикладной физики АН Молдавии, Кишинев, Молдавия E-mail: fmf nokr@spsu.ru

(Поступила в Редакцию 8 декабря 2009 г. В окончательной редакции 3 марта 2010 г.)

> Предложена теория нелинейных поляризованных симметричных квазиповерхностных волн в симметричной планарной структуре с нелинейной сердцевиной и линейными обкладками. Нелинейность сердцевины обусловлена процессами экситон-фотонного взаимодействия и оптической экситон-биэкситонной конверсии. Получены и исследованы законы дисперсии распространяющихся волн.

1. Введение

Стремительное развитие современной интегральной оптики, повсеместное использование волоконнооптических линий связи, нарастающие потребности обмена большими объемами информации сохраняют актуальность исследований свойств волноводных, поверхностных и интерфейсных мод, направляемых границами раздела нелинейных световодов на базе полупроводников. В качестве нелинейной диэлектрической функции при исследовании свойств нелинейных поверхностных и волноводных мод в большинстве работ используют модельное выражение с керровской зависимостью диэлектрической функции от электрического поля распространяющейся волны [1-7]. Тем не менее существует ряд работ, в которых выражение для нелинейной диэлектрической функции получают путем учета конкретных механизмов полупроводниковых переходов под действием поля электромагнитной волны [8–14].

Ранее нами были изучены свойства ТЕ-поляризованных поверхностных [15], волноводных [16] и квазиповерхностных волн двух типов [17], распространяющихся вдоль плоских границ раздела симметричной планарной трехслойной структуры с линейной сердцевиной и нелинейными обкладками. Нелинейность обкладок обусловлена учетом процесса оптической экситон-биэкситонной конверсии. Показано, что спектральное (и интенсивностное) поведение ветвей законов дисперсии существенно более сложное, чем поведение дисперсионных ветвей для керровской нелинейности. Это обусловлено сложностью поведения диэлектрической функции нелинейной среды в зависимости от частоты и амплитуды поля распространяющейся волны. Это приводит к разбиению области существования антисимметричных нелинейных поверхностных волн на две независимые, отделенные друг от друга подобласти при определенных значениях параметров. Изменение амплитуды поля приводит к появлению новых резонансных частот, которые обусловлены перенормировкой энергетического спектра полупроводника при больших уровнях возбуждения. В [18] показано, что имеет место эффект Аутлера– Таунса, обусловленный изменением собственных частот нелинейных объемных поляритонов при увеличении уровня возбуждения [19]. Кроме того, резонансный характер диэлектрической функции приводит к разбиению области существования несимметричных квазиповерхностных волн первого типа на две независимые, отделенные друг от друга подобласти при определенных значениях параметров. Полученные законы дисперсии существенно зависят от потока переносимой энергии.

В настоящей работе представлены результаты исследования свойств ТЕ-поляризованных нелинейных квазиповерхностных волн, направляемых границами раздела симметричной трехслойной структуры с нелинейной сердцевиной.

2. Постановка задачи. Основные уравнения

Изучим свойства квазиповерхностных нелинейных волн в световоде, состоящем из нелинейной пластинки толщиной $2d(-d \le z \le +d)$, окруженной полубесконечными линейными обкладками, характеризующимися постоянной диэлектрической проницаемостью ε_0 . Нелинейная пластинка представляет собой полупроводник, в котором проходящая световая волна может возбуждать экситоны из основного состояния кристалла и превращать их в биэкситоны благодаря процессу оптической экситон-биэкситонной конверсии. Одновременный учет экситон-биэкситонной конверсии и оптической экситон-биэкситонной конверсии возможен для кристаллов типа CdS, CdSe, где энергия связи биэкситонов исчезающе мала.

Будем использовать выражение для диэлектрической функции ε нелинейной среды, зависящей от частоты ω и амплитуды *E* электромагнитного поля распространяю-

Рис. 1. Геометрия задачи и направления компонент полей.

щейся волны, полученное в [9,14],

$$\varepsilon = \varepsilon_{\infty} \left(1 - \frac{\omega_{\rm LT}}{\Delta} \frac{E_s^4}{\left(E_s^2 - E^2\right)^2} \right),\tag{1}$$

где $E_s^2 = 2\Delta^2/\sigma^2$, $\Delta = \omega - \omega_0$ — расстройка резонанса для частоты ω распространяющейся волны относительно частоты ω_0 экситонного перехода, $\omega_{\rm LT} = 4\pi\hbar g^2/\varepsilon_\infty$ — частота продольно-поперечного расщепления экситонного состояния, ε_∞ — фоновая диэлектрическая постоянная, σ — константа оптической экситон-биэкситонной конверсии, g — константа экситон-фотонного взаимодействия.

Изучим закономерности стационарного распространения квазиповерхностных волн в симметричной трехслойной структуре в геометрии рис. 1. Считаем, что электромагнитная волна распространяется вдоль оси x с волновым вектором **k**. Поле ТЕ-поляризованной волны содержит поперечные электрическую $E_y = E$ (параллельную оси y) и магнитную H_z , а также продольную компоненту магнитного поля H_x . Из уравнений Максвелла с учетом непрерывности тангенциальных компонент полей E_y и H_x вдоль границы раздела получаем следующие волновые уравнения, описывающие пространственное распределение электрического поля $E_y = E$ электромагнитной волны в стационарном режиме:

$$\frac{d^2 E}{dz^2} = \frac{\omega^2}{c^2} \left(n^2 - \varepsilon_{\infty} \left(1 - \frac{\omega_{\rm LT}}{\Delta} \frac{E_s^4}{\left(E_s^2 - E^2\right)^2} \right) \right) E, \quad |z| \le d,$$
(2)

$$\frac{d^2E}{dz^2} = \frac{\omega^2}{c^2} \left(n^2 - \varepsilon_0 \right) E, \quad |z| \ge d, \tag{3}$$

где $n = ck/\omega$ — эффективный показатель преломления среды. Поскольку мы ищем ограниченные в пространстве квазиповерхностные волны, энергия которых локализована в окрестности границ раздела |z| = d, при решении уравнения (3) необходимо удовлетворить условиям обращения в нуль амплитуды поля и ее производной на бесконечности

$$\lim_{z \to \pm \infty} E \to 0; \quad \lim_{z \to \pm \infty} dE/dz \to 0.$$
 (4)

(5)

Вводя нормированные переменные $y = \frac{E}{E_s}, \ \bar{z} = \frac{\omega}{c} x,$ $\bar{\varepsilon} = \varepsilon_{\infty} \frac{\omega_{\text{LT}}}{\Delta}$ и интегрируя (2), для областей $|\bar{z}| < D$ $= \frac{\omega}{c} d$ получаем

 $\left(\frac{dy}{d\bar{z}}\right)^2 + W(y) = C_0,$

где

$$W(y) = -y^2 \left(n^2 - \varepsilon_{\infty} + \frac{\bar{\varepsilon}}{1 - y^2} \right). \tag{6}$$

Здесь W(y) играет роль потенциальной энергии нелинейного осциллятора, движение которого описывается первым интегралом (5), а C_0 — константа интегрирования. С другой стороны, C_0 — параметр, определяющий величину поля на границе раздела сред при сохранении значений всех констант неизменными. Для оптически линейной среды выражение для W(y) имеет вид

$$W(y) = -y^2(n^2 - \varepsilon_0). \tag{7}$$

Из анализа уравнения (6) следует, что решения в виде квазиповерхностных волн могут существовать только при тех значениях амплитуды поля $E(\bar{z})$, для которых $W(E) \leq 0$. Это значительно ограничивает область значений параметров. Из (6) и (7) следует, что решения для квазиповерхностных волн возможны при $\Delta < 0$ и $n^2 > \varepsilon_{\infty} > \varepsilon_0$. Следовательно, амплитуда E квазиповерхностных волн будет изменяться в пределах

$$0 \le E^2 \le E_m^2 = \left(1 - \frac{\varepsilon_\infty \omega_{\rm LT}}{|\Delta|(n^2 - \varepsilon_\infty)}\right) E_s^2, \qquad (8)$$

где E_m является максимально возможной амплитудой поля квазиповерхностной волны, которая может существовать только в длинноволновой области от частоты экситонного перехода, причем $n^2 > \varepsilon_0$.

Определим величину поля на границе раздела нелинейной и линейной сред, требуя равенства поля и его производной в точке $|\bar{z}| = D$. Из уравнения (5) при учете (6) и (7) получим, что величина поля на границе раздела определяется выражением

$$E_0 = \sqrt{1 - rac{arepsilon_\infty \omega_{
m LT}}{|\Delta|(arepsilon_0 - arepsilon_\infty)}} E_s.$$

Для существования волны необходимо, чтобы *E*₀ < *E*_{*m*}.

Значение константы интегрирования C_0 существенно определяет типы решений уравнения (6). Рассмотрим простейший случай $C_0 = 0$. В этом случае существует только одно решение уравнения в виде симметричной квазиповерхностной волны, закон дисперсии которой имеет вид

$$\ln \frac{\sqrt{1 - y_m^2}}{\sqrt{1 - y_0^2} + \sqrt{y_m^2 - y_0^2}} + \frac{1}{y_m} \ln \frac{\sqrt{y_m^2 - y_0^2} + y_m \sqrt{1 - y_0^2}}{y_0 \sqrt{1 - y_m^2}} = qD, \quad (9)$$

где $y_0 = \sqrt{1 - \frac{\alpha}{q^2 - q_0^2}}$ — нормированное поле на границе раздела, а $y_m = \sqrt{1 - \frac{\alpha}{a^2}}$ — нормированное максимальное значение поля внутри нелинейной пластинки, $q = \sqrt{n^2 - \varepsilon_{\infty}}$, $q_0 = \sqrt{n^2 - \varepsilon_0}$, $\alpha = \frac{\varepsilon_{\infty}\omega_{\text{LT}}}{\Delta}$. Выражение (9) определяет зависимость эффективного показателя преломления среды *n* от расстройки резонанса Δ при фиксированных значениях толщины пленки *D* и параметра y_0 — амплитуды поля волны на границе раздела сред в точке $\bar{z} = D$.

В случае, когда значение константы интегрирования $C_0 > 0$, уравнение (6) имеет четные и нечетные решения в виде симметричных и антисимметричных квазиповерхностных волн различного порядка.

Рассмотрим нижайшую четную моду. Из уравнения (5) в случае $C_0 > 0$ следует, что решение в виде квазиповерхностной четной волны имеет вид

$$q\sqrt{y_{+}-y_{-}D} = (1-y_{-})[K(k) - F(\varphi_{0}, k)] + y_{-}\left[\Pi\left(\frac{\pi}{2}, -\frac{y_{+}}{y_{+}-y_{-}}, k\right) - \Pi\left(\varphi_{0}, -\frac{y_{+}}{y_{+}-y_{-}}, k\right)\right],$$
(10)

где K(k) — полный эллиптический интеграл первого рода, $F(\varphi_0, k)$ — неполный эллиптический интеграл первого рода, $\Pi(\frac{\pi}{2}, -\frac{y_+}{y_+-y_-}, k)$ — неполный эллиптический интеграл третьего рода, $k^2 = \frac{(1-y_-)y_+}{y_+-y_-}$ — модуль эллиптического интеграла [20], $\varphi_0 = \arcsin \sqrt{\frac{(y_+-y_-)y_0}{(y_0-y_-)y_+}}$, где

$$y_{\pm} = \frac{1}{2} \left(1 - \frac{\alpha + C_0}{q^2} \pm \sqrt{\left(1 - \frac{\alpha + C_0}{q^2} \right)^2 + \frac{4C_0}{q^2}} \right), \quad (11)$$

$$y_{0} = \sqrt{-\frac{1}{2} \left(\frac{q_{0}^{2} - q^{2} y_{m}^{2} + C_{0}}{\varepsilon_{0} - \varepsilon_{\infty}}\right) + \sqrt{\frac{1}{4} \left(\frac{q_{0}^{2} - q^{2} y_{m}^{2} + C_{0}}{\varepsilon_{0} - \varepsilon_{\infty}}\right)^{2} + \frac{C_{0}}{\varepsilon_{0} - \varepsilon_{\infty}}}}.$$
(12)

Анализ выражений (10)–(12) показывает, что закон дисперсии имеет сложную зависимость от значения поля на границе раздела и параметров сред.

Поскольку константа интегрирования C_0 может принимать различные значения, рассмотрим частный случай, когда $C_0 = q^2 - \alpha$. В этом случае зависящие от параметра C_0 закон дисперсии и функции y_- , y_+ , y_0 существенно упростятся и примут вид

$$(1+y_{+})[K(k) - F(\varphi_{0}, k)] - y_{+} \left[\Pi\left(\frac{\pi}{2}, -\frac{1}{2}, k\right) - \Pi\left(\varphi_{0}, -\frac{1}{2}, k\right) \right] = \sqrt{2y_{+}} qd,$$
(13)

где
$$k^2 = \frac{1+y_+}{2}, \, \varphi_0 = \arcsin \sqrt{\frac{2y_0}{y_0+y_+}},$$

$$y_{+} = \sqrt{1 - \frac{\alpha}{q^2}},\tag{14}$$

$$y_{-} = -y_{+},$$
 (15)

Физика твердого тела, 2010, том 52, вып. 11

$$y_{0} = \sqrt{\frac{1}{2} \left(1 - \frac{\alpha + C_{0}}{\varepsilon_{0} - \varepsilon_{\infty}}\right)} + \sqrt{\frac{1}{4} \left(1 - \frac{\alpha + C_{0}}{\varepsilon_{0} - \varepsilon_{\infty}}\right)^{2} + \frac{C_{0}}{\varepsilon_{0} - \varepsilon_{\infty}}}$$
(16)

Определим поток энергии, переносимый волной в случае, когда $C_0 = 0$. Поток энергии представлен интегралом по всем \bar{z} , где профиль волны неоднороден:

$$P = \frac{c^2 n}{8\pi\omega} \int_{-\infty}^{\infty} E_y^2(\bar{z}) d\bar{z}.$$
 (17)

Полный поток энергии P, переносимой волной, определяется суммарным значением нелинейного потока сердцевины $P_{\rm NL}$ и линейного потока P_L обкладок, которые определяются выражениями

$$P_L = \frac{c^2 n}{8\pi\omega} \frac{E_0^2}{4q_0},$$
 (18)

$$P_{\rm NL} = \frac{c^2 n}{16\pi\omega} \frac{E_s^2}{q} \Biggl\{ \sqrt{(1 - E_0^2)(E_m^2 - E_0^2)} + (1 - E_m^2) \ln \frac{\sqrt{1 - E_m^2}}{\sqrt{1 - E_0^2} - \sqrt{E_m^2 - E_0^2}} \Biggr\}.$$
 (19)

Исключая из закона дисперсии E_0 с помощью выражения для поля на границе раздела, получаем зависимость $P(n, \Delta)$, т.е. зависимость эффективного показателя преломления нелинейного световода *n* от потока энергии, переносимой волной для каждого из значений константы C_0 .

В случае, когда $C_0 > 0$, $C_0 = q^2 - \alpha$, полный поток энергии P, переносимый волной, также определяется суммарным значением линейного потока P_L обкладок и нелинейного потока сердцевины $P_{\rm NL}$, при этом линейный поток определен выражением (18), а нелинейный поток будет иметь вид

$$P_{\rm NL} = \frac{c^2 n}{4\pi\omega} \frac{E_s^2}{q} \sqrt{2y_+} \\ \times \left((1+y_+) \left[K(k) - F(\varphi_0, k) \right] - \left[E(k) - E(\varphi_0, k) \right] \right. \\ \left. - y_+ \left[\Pi\left(\frac{\pi}{2}, -\frac{1}{2}, k\right) - \Pi\left(\varphi_0, -\frac{1}{2}, k\right) \right] \right).$$
(20)

3. Обсуждение результатов

Рассмотрим закон дисперсии для квазиповерхностной симметричной моды и в соответствии с (9) изучим поведение дисперсионных кривых $n(\delta, y_0)$. Нелинейная симметричная волна существует только в спектральной области $\delta < 0$. Точки начала кривых $\delta(n)$ закона дисперсии соответствуют расстройке резонанса $|\delta| = |\delta_0| = \varepsilon_{\infty}/(\varepsilon_0 - \varepsilon_b)$. Кроме того, нормированная амплитуда поля E_0 на границе раздела сред

Рис. 2. Закон дисперсии (*a*) и поток энергии (*b*) для симметричной ТЕ-поляризованной квазиповерхностной волны, рассчитанные при значениях $\varepsilon_0 = 5.6$, $\varepsilon_{\infty} = 5$, D = 0.1, $C_0 = 0$.

 $y_0 = \sigma E_0 / \omega_{\rm LT}$ существенно зависит от расстройки резонанса δ и параметров световода, при этом значение поля на границе раздела существенно определяется значением константы C_0 .

Из рис. 2, *а* видно, что кривые закона дисперсии характеризуются наличием максимума показателя преломления, расположенного в области максимально допустимого значения величины поля y_0 . Видно, что закон дисперсии состоит из двух ветвей $n(\delta)$, одна из которых характеризуется возрастанием, а другая — монотонным убыванием величины эффективного показателя преломления *n* при уменьшении расстройки резонанса δ . При уменьшении значения амплитуды поля y_0 на границе раздела ветви закона дисперсии расходятся, отталкиваясь друг от друга. При этом каждому значению δ соответствуют два значения *n* и два значения y_0 . Видно, что частотный интервал существования моды узкий. Анализ поведения кривых показал, что спектральный

интервал существования моды существенно зависит от толщины нелинейной пластинки. Чем шире пластинка, тем у́же интервал значений δ и y_0 . Кроме того, при увеличении толщины пластинки кривые закона дисперсии смещаются в длинноволновую область от частоты экситонного перехода.

На рис. 2, *b* представлена зависимость нормированного потока $P(n, \delta)/P_0$, где $P_0 = 4\pi\omega/c^2n$, для квазиповерхностной нелинейной симметричной моды. Одному и тому же значению $|\delta|$ соответствуют два различных значения $P(n, \delta)$ вдоль двух ветвей проекции кривой на плоскости (P, δ) . При уменьшении $|\delta|$ вдоль одной ветви поток монотонно возрастает, достигая максимума, затем резко убывает, тогда как вдоль другой ветви монотонно убывает.

На рис. 3, *а* представлены кривые закона дисперсии для квазиповерхностной симметричной моды в случае, когда $C_0 > 0$. Каждая кривая соответствует одному зна-

Рис. 3. Закон дисперсии (*a*) и поток энергии (*b*) для симметричной ТЕ-поляризованной квазиповерхностной волны, рассчитанные при $\varepsilon_0 = 5.6$, $\varepsilon_{\infty} = 5$, D = 0.1 для различных значений C_0 . C_0 возрастает от 0.001 (*1*) до 0.025 (*5*).

Рис. 4. Закон дисперсии (*a*) и поток энергии (*b*) для симметричной ТЕ-поляризованной квазиповерхностной волны, рассчитанные при $\varepsilon_0 = 5.6$, $\varepsilon_{\infty} = 5$, D = 1, $C_0 = q^2 - \alpha$.

чению константы C_0 . Кривые закона дисперсии также состоят из двух ветвей $n(\delta)$, одна из которых монотонно возрастает, достигая максимального значения $|\delta|$, а другая убывает при изменении $|\delta|$. Величина максимума $|\delta|$ уменьшается при увеличении значения константы C_0 . Спектральный интервал каждой кривой, определяемый значением константы C_0 , чрезвычайно мал. Кроме того, видно, что для каждого из значений константы существует очень узкая область допустимых значению поля на границе раздела y_0 . При этом каждому значению поля y_0 соответствуют два значения эффективного показателя преломления *п*. Количество кривых ограничено разрешенными значениями константы C_0 . С ростом C_0 моды постепенно выталкиваются из волокна и допустимые области существования мод сужаются.

Что касается кривых нормированного потока $P(n, \delta)/P_0$, представленных на рис. 3, *b*, то их ка-

чественное поведение не отличается от поведения кривых закона дисперсии. Величина потока возрастает с ростом $|\delta|$. Одному и тому же значению $|\delta|$ соответствуют два различных значения $P(n, \delta)$.

На рис. 4, *а* представлен закон дисперсии в случае, когда $C_0 = q^2 - \alpha$. В этом случае нелинейная симметричная волна существует также только в спектральной области $\delta < 0$. Точки окончания дисперсионных кривых соответствуют расстройке резонанса $|\delta| = |\delta_0| = \varepsilon_{\infty}/(\varepsilon_0 - \varepsilon_{\infty})$. Кривые закона дисперсии касаются верхней ветви кривой, определяющей диэлектрическую функцию экситона $\varepsilon = \varepsilon_{\infty} (1 + \frac{1}{|\delta|})$. Из рис. 4, *а* видно, что в этом случае существует только одна кривая зависимости $n(\delta)$, которая характеризуется почти одинаково возрастанием и убыванием величины поля при увеличении расстройки резонанса $|\delta|$, при этом каждому значению расстройки резонанса соответствуют два значения y_0 и эффективного показателя преломления *n*.

На рис. 4, *b* представлена кривая нормированного потока $P(n, \delta)/P_0$. Видно, что в отличие от закона дисперсии $n(\delta)$ кривая потока при увеличении $|\delta|$ сначала резко убывает, достигая минимума, а затем резко возрастает, при этом каждому $|\delta|$ соответствуют два значения $P(n, \delta)$. Кроме того, в этом случае поток более интенсивный, чем в случае $C_0 > 0$. Этот тип волн существует при потоках энергии, превосходящих пороговое значение.

4. Заключение

Получены и исследованы законы дисперсии для нелинейной симметричной квазиповерхностной ТЕ-поляризованной волны при различных значениях константы, определяющей величину поля на границе раздела линейной и нелинейной сред. Показано, что значение константы существенно определяет характер поведения закона дисперсии. Существование квазиповерхностной ТЕ-поляризованной волны обусловлено взаимодействием экситонов и биэкситонов со светом. Нелинейная диэлектрическая функция существенно зависит от поля распространяющейся волны, а законы дисперсии — от потока переносимой энергии.

Список литературы

- A.D. Boardman, T. Twardowski. J. Opt. Soc. Am. B 5, 523 (1988).
- [2] K.M. Leung. J. Opt. Soc. Am. B 5, 571 (1988).
- [3] L. Torner, J.P. Torres. IEEE J. Quant. Electron. 28, 1571 (1992).
- [4] J.P. Torres, L. Torner. IEEE J. Quant. Electron. 29, 917 (1993).
- [5] С.А. Вакуленко, И.А. Молотков. Вестн. ЛГУ. Сер. 4, 11, 21 (1987).
- [6] Х.С. Арутюнян, К.А. Барсуков. Изв. АН АрмССР 20, 125 (1985); Опт. и спектр. 58, 1064 (1985).

- [7] S.J. Al-Bader, H.A. Jamid. IEEE J. Quant. Electron. 24, 2052 (1988).
- [8] H.W. Schürmann, V.S. Serov, Yu.V. Shestopalov. Phys. Rev. E 58, 1040 (1998).
- [9] P.I. Khadzhi, E.S. Kiseleva. Phys. Status Solidi B 147, 741 (1988).
- [10] П.И. Хаджи. ФТТ 29, 9, 2721 (1987).
- [11] П.И. Хаджи, Л.В. Федоров. ЖТФ **61**, *5*, 110 (1991).
- [12] Л.С. Асланян, Ю.С. Чилингарян. Письма в ЖТФ 20, 1, 1 (1994).
- [13] В.Г. Бордо. Письма в ЖТФ 14, 13, 1172 (1988).
- [14] П.И. Хаджи, К.Д. Ляхомская. Квантовая электрон. 29, 1, 43 (1999).
- [15] О.В. Коровай, П.И. Хаджи. ФТТ 45, 2, 364 (2003).
- [16] О.В. Коровай, П.И. Хаджи, С.И. Берил. ФТТ 45, 4, 720 (2003).
- [17] О.В. Коровай, П.И. Хаджи. ФТТ **50**, *6*, 1116 (2008).
- [18] П.И. Хаджи, О.В. Коровай, Д.В. Ткаченко. ФТТ 44, 5, 774 (2002).
- [19] R. Shimano, M. Kuwata-Gonokami. Phys. Rev. Lett. 72, 530 (1994).
- [20] И.С. Градштейн, И.М. Рыжик. Таблицы интегралов, сумм, рядов и произведений. Физматтиз, М. (1963).