Центры NO₃²⁻ в синтетическом гидроксилапатите

© И.П. Ворона¹, С.С. Ищенко¹, Н.П. Баран¹, В.В. Рудько¹, И.В. Затовский², Н.А. Городилова², В.Ю. Поварчук³

¹ Институт физики полупроводников им. В.Е. Лашкарёва НАН Украины, Киев, Украина ² Национальный университет им. Т. Шевченко, Киев, Украина ³ Институт физики НАН Украины, Киев, Украина E-mail: ip_vorona@yahoo.com

(Поступила в Редакцию 9 марта 2010 г.)

Методом ЭПР исследованы стурктура и свойства парамагнитных комплексов NO_3^2 , образованных γ -лучами и УФ-светом, в синтетическом гидроксилапатите (ГАП). Впервые наблюдалось образование центров NO_3^{2-} под воздействием УФ-света. Обнаружено, что в синтетическом ГАП комплексы NO_3^{2-} образуют два типа парамагнитных центров. Предложены их модели, определены радиоспектроскопические параметры, исследовано влияние термического отжига. При увеличении СВЧ-мощности наблюдалась инверсия спектров ЭПР.

1. Введение

В последнее время отмечается значительный рост исследовательского интереса к синтезу и свойствам различных фосфатов кальция и особенно гидроксилапатита (ГАП) $Ca_{10}(PO_4)_6(OH)_2$. Это объясняется тем, что ГАП формирует минеральную основу биологических тканей, таких как кость и зубная эмаль [1]. Поэтому, например, костные имплантанты и их покрытия на основе ГАП обладают не только уникальной биологической совместимостью с человеческим организмом, но и образуют устойчивые химические связи с костной тканью и постепенно трансформируются в кость.

Состав синтетического ГАП зачастую обнаруживает отклонение от стехиометрии. Кроме того, кристаллическая решетка ГАП весьма податлива к катионным и анионным замещениям [1]. Все это обусловливает значительные нарушения кристаллической решетки. В то же время хорошо известно, что механические и физические свойства ГАП существенным образом зависят от типа и количества примесей, которые входят в решетку апатита. Поэтому актуальной становится задача качественного и количественного контроля примесной подсистемы ГАП, а также ее изменений при внешних воздействиях на материал. Наиболее изученной анионной примесью как в синтетическом, так и биологическом ГАП является углерод. Его влияние на структуру и свойства биологических и синтетических материалов широко исследовалось методами рентгеноструктурного анализа [2], инфракрасной спектроскопии [3], ядерного магнитного резонанса [4], электронного парамагнитного резонанса (ЭПР) [5-8] и двойного электронно-ядерного резонанса [8,9]. Другие примеси в ГАП изучены менее детально.

Как правило, синтетический ГАП получают из водного раствора нескольких солей, в состав которых может входить нитратный анион NO_3^- . Считается, что в процессе синтеза он входит в структуру ГАП, замещая гидрок-

сильную группу [2]. При захвате свободного электрона он образует парамагнитный комплекс NO₃²⁻, который в ряде работ был зарегистрирован методом ЭПР в порошках синтетического ГАП, облученного ионизирующим излучением (см., например, [2,10]). Идентификация парамагнитных центров в указанных работах опиралась на характерную структуру спектров, обусловленную сверхтонким взаимодействием (СТВ) неспаренного электрона со спином S = 1/2 с магнитным ядром со спином I = 1. Тем не менее существует значительный разброс в определении параметров этих центров, а комплексы NO₃²⁻, образованные низкоэнергетическим излучением, не изучены вообще. Целью настоящей работы является определение радиоспектроскопических параметров и исследований свойств комплексов NO₃²⁻ в у- и УФ-облученном синтетическом ГАП.

2. Материалы и методы

Порошки синтетического гидроксилапатита были синтезированы в результате смешивания в водном растворе солей $(NH_4)_2HPO_4$, $Ca(NO_3)_2$ и Na_2CO_3 . Молярное соотношение (Ca^{2+}/PO_4^{3-}) исходных реагентов составляло 10/6, а осаждение проводилось при значениях pH = 7.5 - 7.7. Данные порошковой рентгенографии (дифрактометр Shimadzu XRD-600) показали, что набор рефлексов для полученных ГАП аналогичен характерному набору апатитов, а примеси каких-либо других фаз отсутствуют.

Образцы были облучены γ -лучами от источника ⁶⁰Со с мощностью 2.58 \cdot 10⁻² C \cdot kg⁻¹ \cdot s⁻¹ (100 R/s) при комнатной температуре. По оценкам поглощенная доза составляла около 10 kGy. Для облучения ультрафиолетом использовалась ртутная лампа высокого давления типа ДРТ. Время облучения составляло 4 h.

Изохронный отжиг проводился в муфельной печи в температурном диапазоне 20-250°С. Время отжига составляло 60 min при каждой выбранной температуре. Температура контролировалась термопарой, что обеспечивало точность ее измерения не хуже чем $\pm 1^{\circ}$ С.

ЭПР-исследования проводились на спектрометре *X*-диапазона (~ 9.5 GHz) при комнатной температуре. Использовалась модуляция магнитного поля с частотой 100 kHz и амплитудой 0.05 mT. Погрешность измерения индукции магнитного поля не превышала 0.01 mT. Спектры ЭПР исследуемых образцов завписывались вместе со спектром эталонного образца MgO:Cr³⁺ (g = 1.9800).

3. Экспериментальные результаты и обсуждение

В исходном необлученном порошке ГАП сигналы ЭПР отсутствовали. Под воздействием γ -облучения в образце проявлялся сложный многокомпонентный сигнал ЭПР (рис. 1), характерный для парамагнитного комплекса NO_3^{2-} и обусловленный взаимодействием неспаренного электрона (S = 1/2) с ядром азота (I = 1). Для определения параметров этого центра был проведен анализ с использованием спин-гамильтониана, содержащего электронное зеемановское и сверхтонкое взаимодействия,

$$H = \beta \hat{\mathbf{S}} g B + h \hat{\mathbf{S}} A \hat{\mathbf{I}},$$

где β — магнетон Бора, h — постоянная Планка, $\hat{\mathbf{S}}$ и $\hat{\mathbf{I}}$ — электронный и ядерный спиновые операторы, g и A — тензоры радиоспектроскопического расщепления и СТВ соответственно. Диагонализация спин-гамильтониана проводилась методом теории возмущений с учетом членов второго порядка. Моделирование спектров порошков осуществлялось с

Рис. 1. ЭПР-спектры γ - и УФ-облученного синтетического ГАП. RS — сигнгал от MgO: Cr³⁺, который использовался в качестве эталонного образца. Вертикальные пунктирные линии проведены для лучшего восприятия отличий в форме спектров.

помощью программы Symphonia, входящей в пакет WinEPR компании Bruker. Проведенный анализ показал, что рассматриваемый спектр ЭПР описывается параметрами $g_{\parallel} = 2.0017 \pm 0.0003$, $g_{\perp} = 2.0057 \pm 0.0003$ и $A_{\parallel} = 6.70 \pm 0.05$ mT, $A_{\perp} = 3.27 \pm 0.02$ mT. В пределах экспериментальных погрешностей полученные значения *g*-тензора совпадают с данными работы [10] для комплекса NO₃²⁻ в ГАП. В то же время компоненты тензора CTB несколько отличаются от данных этой работы и являются более близкими к параметрам комплекса NO₃²⁻ в нестехиометрическом ГАП [2]. Отметим, что в спектре ЭПР проявлялись также следы радикала CO₂⁻ [11], который образовался при облучении и связан с наличием в образце неконтролируемой примеси углерода.

Впервые было обнаружено, что комплексы NO₃²⁻ в ГАП образуются также под воздействием УФ-света (рис. 1). Причем детальный анализ спектра ЭПР с разложением его на компоненты с помощью программы Separator из пакета Visual EPR показал, что при УФ-облучении в ГАП образуются два типа центров NO₃²⁻. Первый тип центров (обозначим его $NO_3^{2-}(I)$) характеризуется параметрами $g_{\parallel} = 2.0017 \pm 0.0003, \ g_{\perp} = 2.0057 \pm 0.0003$ и $A_{\parallel} =$ $= 6.70 \pm 0.05 \,\mathrm{mT}, A_{\perp} = 3.51 \pm 0.02 \,\mathrm{mT}.$ Спектр ЭПР центров второго типа ($NO_3^{2-}(II)$) характеризуется параметрами $g_{\parallel}=2.0017\pm0.0003,~g_{\perp}=2.0057\pm0.0003$ и $A_{\parallel}=6.70\pm0.05\,\mathrm{mT},\,A_{\perp}=3.27\pm0.02\,\mathrm{mT}$. Из чего следует, что $NO_3^{2-}(II)$ идентичны центрам, образованным под воздействием у-облучения в тех же образцах, в то же время центры NO₃²⁻(I) регистировались только в УФ-облученных образцах.

На рис. 2 представлено модельное описание экспериментального спектра УФ-облученны образцов. Для лучшей демонстрации показаны низкополевая и высокополевая части спектра, центральная часть опущена. Отметим, что оба центра характеризуются одинаковыми значениями g-тензора, в то время как тензоры СТВ двух типов центров несколько различны: компонента A_{\perp} у комплекса $\mathrm{NO}_3^{2-}(\mathrm{I})$ больше, чем у комплекса $NO_3^{2-}(II)$. Относительно компонент A_{\parallel} сказать что-то определенное сложно ввиду того, что хорошо описать эту часть спектра не удалось. Это связано со слабой интенсивностью сигнала ЭПР в этой области и с невозможностью в рамках моделирования однозначно установить причину уширения линии в районе A_{\parallel} . Такое уширение может быть вызвано как различием (или разбросом) значений А_{||} для центров I и II, так и угловой зависимостью ширины спин-пакета. Нами при моделировании спектра использовалась единая ширина спин-пакета, хотя в деталях она не описывала ширину и форму сигнала в области А. Сравнение экспериментального и модельного спектров ЭПР для УФ-облученного ГАП приведено на рис. 2.

Дополнительную информацию о структуре радиационно-индуцированных спектров ЭПР можно получить из исследования термической стабильности центров.

Рис. 2. Экспериментальный (сплошная линия) и модельный (пунктир) спектры ЭПР УФ-облученного ГАП. Внизу показаны компоненты, которые использовались при моделировании.

На рис. 3 приведены спектры ЭПР УФ-облученных образцов, отожженных при разных температурах. Для каждого из этих экспериментальных спектров ЭПР проводилось моделирование с разложением на компоненты аналогично проведенному на рис. 2. Было обнаружено, что с увеличением температуры отжига наблюда-

Рис. 3. Изменение формы ЭПР-сигнала УФ-облученного ГАП при отжиге.

ется увеличение величины сверхтонокого взаимодействия (A_{\perp}) для центра $\mathrm{NO}_3^{2-}(\mathrm{II})$ (рис. 4, *a*) и сужение соответствующей линии, в то время как параметры центра $\mathrm{NO}_3^{2-}(\mathrm{I})$ остаются постоянными. Поведение сигнала ЭПР, обусловленного центрами NO_3^{2-} , в γ -облученных образцах было аналогичным в пределах экспериментальных ошибок поведению комплексов $\mathrm{NO}_3^{2-}(\mathrm{II})$ в УФ-облученных образцах, что подтверждает гипотезу об идентичности этих центров в УФ- и γ -облученных образцах. На рис. 4, *b* продемонстирована зависимость концентраций центров $\mathrm{NO}_3^{2-}(\mathrm{II})$ и $\mathrm{NO}_3^{2-}(\mathrm{II})$, рассчитанных как двойной интеграл соответствующих модельных спектров, от температуры отжига образца. Она носила монотонный характер для обоих типов центров.

Изучение зависимости сигнала ЭПР NO_3^{2-} от мощности СВЧ привело к неожиданному результату. При $P_{VHF} = 20 \text{ mW}$ наблюдалась инверсия спектра ЭПР (рис. 5). Скорее всего, она связана с выполнением при такой мощности СВЧ условий адиабатически быстрого прохождения через резонанс [11]. Результаты детального исследования этого эффекта будут опубликованы нами позже.

Разброс величин сверхтонкого взаимодействия центров NO_3^{2-} в разных образцах ГАП в работе [2] связывают с разной степенью стехиометрии последних. Полученные в настоящей работе результаты показывают, что центры NO_3^{2-} с разными параметрами могут одновременно существовать в одном образце, что противоречит упомянутой выше гипотезе. Кроме того, было обнаружено влияние температурного отжига ГАП на параметры СТВ одного из центров, а именно NO_3^{2-} (II). Поскольку температуры отжига (20–300°С) недостаточны для того, чтобы изменить стехиометрию материала, последняя, по-видимому, не может являться причиной существова

Рис. 4. Изменение константы сверхтонкого взаимодействия A_{\perp} (*a*) и количества центров $NO_3^{2-}(I)$ и $NO_3^{2-}(II)$ (*b*) при отжиге УФ-облученного ГАП. На части *b* за единицу принято общее количество центров NO_3^{2-} в неотожженном образце.

ния в ГАП центров NO_3^{2-} с разными параметрами СТВ. На наш взгляд, для комплексов NO_3^{2-} можно провести аналогию с комплексами CO_2^- , которые в ГАП также образуют парамагнитные центры двух типов $CO_2^-(I)$ и $CO_2^-(II)$, различие между которыми заключается в наличии в ближайшем окружении центра $CO_2^-(II)$ непарамагнитного дефекта структуры [12,13]. Тогда можно предложить следующие модели парамагнитных центров NO_3^{2-} в ГАП. Центры $NO_3^{2-}(I)$ расположены в бездефектной области ГАП. Центры $NO_3^{2-}(II)$ отличаются от центров $NO_3^{2-}(I)$ наличием в своем окружении непарамагнитного дефекта решетки, взаимодействие с которым приводит к уменьшению спиновой плотности неспаренного электрона на ядре азота и, как следствие, к уменьшению параметров СТВ. Разнобой в значениях параметров СТВ центров NO_3^{2-} в ГАП в различных работах может быть связан с разным расстоянием такого дефекта от NO_3^{2-} . При отжиге происходит удаление дефекта от комплекса NO_3^{2-} , что приводит к увеличению параметров СТВ центров $NO_3^{2-}(II)$ и приближению их к параметрам центра $NO_3^{2-}(I)$. В то же время отжиг не влияет на параметры центров $NO_3^{2-}(I)$, так как их окружение является термически стабильным.

В рамках предложенных моделей центров $NO_3^{2-}(I)$ и $NO_3^{2-}(II)$ можно объяснить различие в процессах дефектообразования комплексов NO₃²⁻ в ГАП при их облучении разным излучением, в частности различие в спектрах ЭПР образцов, облученных у-лучами и УФ-светом. Под воздействием как у-, так и УФ-облучения происходит ионизация мелких (по глубине залегания уровня в запрещенной зоне) дефектных центров (электронных ловушек) в ГАП, в результате чего возникают свободные электроны [14]. Эти электроны способны захватываться ионами NO₃⁻, в результате чего возникает парамагнитный комплекс NO₃²⁻. Под воздействием УФ-облучения в структуре апатита образовываются два типа центров $NO_3^{2-}(I)$ и $NO_3^{2-}(II)$, различие между которыми обусловлено наличием или отсутствием вблизи радиационноиндуцированного комплекса NO₃²⁻ непарамагнитного дефекта решетки. По-видимому, соотношение концентраций центров I и II будет связано со степенью дефектности исходного материала. С другой стороны,

Рис. 5. Изменение формы ЭПР-сигнала γ -облученного ГАП с увеличением СВЧ-мощности (инверсия спектра ЭПР центров NO_3^{2-}). Компоненты спектра в области A_{\parallel} , имеющие слабую интенсивность, не показаны.

такое высокоэнергетическое излучение, как γ -лучи, способно само создавать дополнительные непарамагнитные дефекты в решетке апатита. Причем концентрация этих дефектов может быть столь велика, что в ЭПР-спектрах γ -облученных ГАП проявляется только сигнал от комплексов NO₃²⁻(II). Термический отжиг разрушает (или смещает) уже существующие непарамагнитные дефекты решетки, в результате чего сверхтонкое взаимодействие NO₃²⁻(II) центров увеличивается и приближается к СТВ центров NO₃²⁻(I).

Список литературы

- [1] В.С. Соболев. Физика апатита. Наука, Новосибирск (1975). 111 с.
- [2] А.Б. Брик, А.П. Шпак, А.П. Клименко, В.Л. Карбовский, В.А. Дубок, А.М. Калиниченко, Н.Н. Багмут, В.В. Бевз. Минерал. журн. (Украина) 28, 20 (2006).
- [3] D.W. Holcomb, R.A. Young. Calcif. Tissue Int. 31, 189 (1980).
- [4] K. Beshah, C. Rey, M.J. Glimcher, M. Schimizu, G. Griffin. J. Solid State Chem. 84, 71 (1990).
- [5] M. Ikeya. New applications of electron spin resonance. Dating, dosimetry and microscopy. World Scientific, Singapore (1993). 500 p.
- [6] F.J. Callens, R.M.H. Verbeek, D.E. Naessens, P.F.A. Matthys, E.R. Boesman. Calcif. Tissue Int. 44, 114 (1989).
- [7] Л.Г. Глинская, М.Я. Щербакова, Ю.Н. Занин. Кристаллография 15, 1164 (1970).
- [8] F.J. Callens. Nucleonika 42, 565 (1997).
- [9] S. Ishchenko, I. Vorona, S. Okulov. Semicond. Phys. Quantum Electron. Optoelectron. 2, 84 (1999).
- [10] T. Murata, K. Shiraishi, Y. Ebina, T. Miki. Appl. Rad. Isotop. 47, 1527 (1996).
- [11] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. 1. 651 с.
- [12] И.П. Ворона, Н.П. Баран, С.С. Ищенко, В.В. Рудько, Л.С. Чумакова, В.Ю. Поварчук. ФТТ 50, 1779 (2008).
- [13] V.V. Rudko, I.P. Vorona, N.P. Baran, S.S. Ishchenko, I.V. Zatovsky, L.S. Chumakova. Health Phys. 98, 322 (2010).
- [14] J.E. Aldrich, B. Pass. Health Phys. 54, 469 (1988).