Оптические исследования фазовых переходов в оксифториде (NH₄)₂NbOF₅

© С.В. Мельникова¹, Н.М. Лапташ², К.С. Александров¹

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ² Институт химии ДВО РАН, Владивосток, Россия E-mail: msv@iph.krasn.ru

(Поступила в Редакцию 2 февраля 2010 г.)

Проведены поляризационно-оптические исследования, измерения двулучепреломления Δn и угла поворота оптической индикатрисы φ кристалла (NH₄)₂NbOF₅ в интервале температур 100–350 К. Обнаружены две аномалии двулучепреломления при температурах $T_{01} = 258$ К и $T_{02} \approx 219$ К. Согласно картине двойникования, в кристалле осуществляется последовательное изменение симметрии: ромбическая \leftrightarrow моноклинная 1 \leftrightarrow моноклинная 2. Ось второго порядка моноклинных фаз (или нормаль к плоскости) направлена по [100]_p. Исследовано влияние одноосного сжатия по [011]_p и электрического поля $E \approx 25$ kV/cm вдоль [100]_p на двойниковую структуру. Сегнетоэластический фазовый переход при T_{01} обусловлен появлением сдвиговой деформации $x_4(T)$ и сопровождается значительными аномалиями двулучепреломления. Сильные предпереходные явления маскируют скачки двулучепреломеления $\Delta n(T)$ и угла поворота индикатрисы $\varphi(T)$ при T_{01} .

Работа выполнена при финансовой поддержке грантов: Президента РФ (НШ-4645.2010.2), РФФИ № 09-02-00062, Интеграционного проекта СО РАН № 101.

1. Введение

Интерес к кристаллам оксифторидов A2MOxF6-x объясняется возможностью получить новые функциональные материалы с широким диапазоном прозрачности и ацентричной симметрией, так как структура этих соединений включает изолированные полярные комплексы MO_xF_{6-x}. Эти псевдооктаэдрические полиэдры обычно имеют полное или частичное разупорядочение атомов F(O). Довольно часто в процессе понижения температуры происходит постепенное упорядочение этих элементов при фазовых переходах $G_0 \leftrightarrow G_1 \leftrightarrow G_2$ [1–3]. В исследованных ранее кристаллах данного семейства [1-3] дипольные моменты полярных комплексов скомпенсированы в ячейке и симметрия кристаллов неполярная. Однако, согласно недавним структурным исследованиям [4], в кристалле (NH₄)₂NbOF₅ были установлены полярные группы симметрии в трех разных температурных областях: *Стс*2₁ (293 K); *С*2 (233 K); *Іа* (198 К). Этот результат достигнут введением определенных законов двойникования кристалла во всех трех случаях, в том числе и при комнатной температуре. Согласно этим группам симметрии, в (NH₄)₂NbOF₅ спонтанная поляризация изменяет свое направление в разных температурных областях. Таким образом, мы вправе ожидать аномального поведения диэлектрической проницаемости при фазовых переходах. Отсутствие генерации второй оптической гармоники в этом веществе авторы [4] объясняют влиянием все тех же двойников. Согласно исследованиям теплоемкости и диэлектрической проницаемости [5], в кристалле (NH₄)₂NbOF₅ действительно существует последовательность трех фаз $G_0 \leftrightarrow G_1 \leftrightarrow G_2$, разделенных фазовыми переходами первого рода при температурах $T_{01} = 258$ К и $T_{02} = 218.9$ К. Фазовые превращения сопровождаются большими изменениями энтропии: $\Delta S_1 = 21.6 \pm 2.1$ J/(mol·K), $\Delta S_2 =$ = 16.6 ± 1.6 J/(mol·K). Однако диэлектрическая проницаемость обнаруживает лишь небольшие ступенчатые изменения при T_{01} или полное отсутствие аномалий при T_{02} [5], что свидетельствует о несегнетоэлектрической природе переходов.

В настоящей работе выполнены поляризационнооптические наблюдения и измерения двулучепреломления кристалла (NH₄)₂NbOF₅ в интервале температур 90–350 К с целью исследования природы фазовых переходов (ФП) в нем. Проведены попытки выявления двойников во всех фазах. Исследовано влияние механического сжатия X_4 и электрического поля E на обнаруженную двойниковую структуру.

2. Экспериментальные результаты

Температурное поведение двулучепреломления $\Delta n(T)$ кристалла (NH₄)₂NbOF₅ исследовалось на пластинках срезов (100) (Δn_a), (010) (Δn_b) и (001) (Δn_c) компенсаторами Берека (Leica) с точностью $\cong 10^{-5}$ и Сенармона с чувствительностью не ниже $\cong 10^{-7}$ на длине волны 6328 Å в интервале температур 100–350 К. Первый метод использовался для определения абсолютного значения измеряемой величины, второй — позволял исследовать ее температурную зависимость с высокой точностью. Кристаллооптические наблюдения проводились с помощью поляризационного микроскопа Axioskop 40. Электрическое поле прикладывалось вдоль [100] с помощью прозрачных электродов, одно-

Рис. 1. Температурная зависимость двулучепреломления кристалла (NH₄)₂NbOF₅. $I - \Delta n_a$, $2 - \Delta n_c$, $3 - \Delta n_b$.

Рис. 2. Поведение температурного коэффициента двулучепреломления $d(\Delta n)/dT$ кристалла (NH₄)₂NbOF₅. $1 - \Delta n_a$, $2 - \Delta n_c$, $3 - \Delta n_b$.

осное механическое сжатие осуществлялось вдоль [011] (здесь и далее используется кристаллографическая установка ромбической фазы).

Результаты исследования температурных зависимостей двулучепреломления Δn_a , Δn_b и Δn_c кристалла (NH₄)₂NbOF₅ представлены на рис. 1. Видно, что кристалл обладает большой анизотропией оптических констант и его можно отнести к числу сильно двулучепреломляющих веществ. При комнатной температуре наибольшее значение величины двулучепреломления ($\Delta n_a = 0.035$) обнаруживается в направлении [100], наименьшее — по [010] ($\Delta n_b = 0.016$). При распространении света по [001] двулучепреломление кристалла $\Delta n_c = 0.019$. Зависимости $\Delta n(T)$ в процессе охлаждения в области 350–290 К имеют линейный характер, но ниже 290 К наблюдаются существенные отклонения от линейности в срезах (100) и (001), а при $T_{01} = 258$ К фиксируется сильное, но плавное возрастание оптической анизотропии. В области температур ниже 200 К разница показателей преломления достигает значений $\Delta n_a = 0.085$, $\Delta n_c = 0.062$. Фазовый переход при $T_{02} \approx 219$ К в зависимостях $\Delta n_a(T)$ и $\Delta n_c(T)$ практически не заметен. На кривой $\Delta n_b(T)$ в этой температурной области можно заметить перегиб. Наиболее ярко оба фазовых перехода проявляются в аномлиях температурного коэффициента двулучепреломления $d(\Delta n)/dT$ (рис. 2).

Исследования в поляризованном свете показали, что при комнатной температуре в пластинках прямых кристаллографических срезов (NH₄)₂NbOF₅ наблюдается ровное и прямое погасание, характерное для ромбической симметрии. Нами были проведены специальные исследования по выявлению предполагавшейся в [4] двойниковой структуры методами травления и введением компенсаторов, однако результаты оказались отрицательными: при комнатной температуре двойниковая структура с помощью светового микроскопа не выявлена. В процессе охлаждения пластинок срезов (010) и (001) хорошее погасание сохраняется во всем исследованном интервале температур. В образце среза (100) в области температур $(T - T_{01}) \le 1 - 2 \,\mathrm{K}$ погасание становится размытым, затем при $T_{01} = 258 \text{ K}$ формируется полосчатая доменная структура вдоль направлений [010] и [001] с пересекающимися границами. Образуются двойниковые области шириной 10-100 µm, различающиеся положением погасания на угол 2 . При дальнейшем охлаждении двойники укрупняются с преобладанием объема одной компоненты (рис. 3, a, b). Благодаря этому явлению существует возможность измерений двулучепреломления $\Delta n(T)$ и $\varphi(T)$ в одном домене. Никаких дополнительных изменений в картине двойникования или в состоянии погасаний при температуре второго $\Phi\Pi T_{02} \approx 219 \,\mathrm{K}$ не обнаружено. Как отмечалось выше, в срезах (010) и (001) при температурах ниже T_{01} четкое погасание пластинок сохраняется. Двойников не видно. Однако их можно визуализировать, например введением компенсатора Берека (рис. 3, c). На фото в левой части образца видны "сломы" интерференционных полос компенсатора на двойниковых границах вдоль [100]. Таким образом, возникшая ниже $T_{01} = 258 \text{ K}$ двойниковая структура кристалла представляет собой систему пересекающихся областей с доменными стенками по (010) и (001). В срезе (100) двойники различимы в поляризованном свете из-за поворота оптической индикатрисы вследствие появления сдвиговой деформации x₄. Температурная зависимость угла поворота оптической индикатрисы $\varphi(T)$ вокруг оси [100] в отдельном двойнике представлена на рис. 4. Угол поворота плавно возникает при 258 К, затем возрастает до значений $\phi \approx 7.5^{\circ}$ и ниже $\sim 200 \,\mathrm{K}$ уже не изменяет своей величины. Зависимость $\varphi(T)$ не обнаруживает дополнительной аномалии при $T_{02} \approx 219 \, \text{K}.$

Для выяснения природы двойникования были проведены исследования влияния механического сжатия X_4 и электрического поля E на двойниковую структуру кристалла (NH₄)₂NbOF₅, визуализирующуюся в пластинке (100) при температурах $T \le T_{01}$. Установлено, что при приложении сжимающего напряжения вдоль [011] наблюдаются перемещение двойниковых границ и образование монодоменного состояния только в непосредственной близости от перехода ($T_{01} - T \le 2$ K). При более низких температурах одноосное сжатие не влияет

Рис. 3. Наблюдение двойникования образцов различных срезов кристалла $(NH_4)_2NbOF_5$ в фазах G_1 и G_2 . Различие в положениях погасания компонент двойниковой структуры в срезе (100) (a, b). c — визуализация двойниковой структуры в пластинках срезов (010) и (001) с помощью компенсатора Берека.

Рис. 4. Температурная зависимость угла вращения оптической индикатрисы $\varphi(T)$.

на двойниковую картину вплоть до разрушения кристалла. Однако постоянное электрическое поле вплоть до E = 25 kV/cm, приложенное вдоль [100], не переключает двойниковые области. Не найдено и генерации второй оптической гармоники в названном выше температурном диапазоне.

3. Обсуждение результатов

Исследования, проведенные нами, подтверждают сведения [5] о существовании в кристалле (NH₄)₂NbOF₅ последовательности трех фаз: $G_0 \leftrightarrow G_1 \leftrightarrow G_2$, разделенных фазовыми переходами ($T_{01} = 258$ К и $T_{02} \approx 219$ К). Наблюдения в поляризованном свете показали, что симметрия высокотемпературной фазы G₀ действительно ромбическая. В низкотемпературных фазах G₁ и G₂ выявлена двойниковая структура с границами по (010) и (001) (рис. 3) и поворотом индикатрисы в срезе (100). Это указывает на то, что в результате ФП при Т₀₁ появляется компонента сдвиговой спонтанной деформации $x_4(T) \sim \varphi(T)$ и переход может быть назван сегнетоэластическим. При внимательном исследовании тонких ($\sim 100\,\mu m$) образцов (100)-среза в области температур $(T - T_{01}) \le 1 - 2 \,\mathrm{K}$ было установлено, что размытость погасания происходит из-за формирования в предпереходной области очень мелкой псевдодоменной структуры на дефектах образца: царапины, напряжения роста и т.д. При отжиге эти явления уменьшаются. Таким образом, в кристалле (NH₄)₂NbOF₅ неоднородные напряжения способны индуцировать сегнетоэластическую фазу в предпереходной области исходной фазы. Ниже второго ФП (T₀₂) никаких изменений в картине двойникования не обнаружено, сингония кристалла не изменяется. Таким образом, первый переход является сегнетоэластическим, второй — нет.

Из полученных данных следует, что в кристалле имеет место последовательность изменения симметрии: ромбическая \leftrightarrow моноклинная 1 \leftrightarrow моноклинная 2. При этом

ось второго порядка моноклинных фаз (или нормаль к плоскости) направлена по [100]. Этот вывод вполне согласуется со структурными данными [4]. Однако геометрия наблюдаемой нами двойниковой структуры указывает на потерю двух плоскостей симметрии при T₀₁: (010)и (001), второй из которых нет в полярной группе симметрии $Cmc 2_1$ исходной фазы G_0 согласно [4], но она есть в группе Стст исходной фазы других кристаллов данного семейства: $(NH_4)_2MoO_2F_4$ и $(NH_4)_2WO_2F_4$ [6]. Следует отметить, что законы двойникования, выбранные в [4] для кристалла $(NH_4)_2NbOF_5$ в фазе G_1 , не совпадают с наблюдавшимися нами и описанными выше. Не найдено также экспериментальных доказательств принадлежности этого кристалла полярным группам симметрии: нет генерации второй оптической гармоники во всех фазах, не удалось развернуть петлю диэлектрического гистерезиса и не обнаружено влияния электрического поля на выявленные двойники. К тому же температурное поведение диэлектрической проницаемости этого кристалла, согласно [5], указывает на несегнетоэлектрическую природу фазовых переходов.

На рис. 5 изображена аномальная часть двулучепреломления $\delta n(T)$ кристалла (NH₄)₂NbOF₅, представляющая собой отклонение измеряемой величины от экстраполированной из высокотемпературной области линейной зависимости $\Delta n(T)$ (рис. 1). Видно, что в исследованном кристалле в широком интервале температур выше ФП наблюдаются сильные предпереходные явления, образующие "хвосты" двулучепреломления, растянутые на ≈ 30 К. Аномальная часть $\delta n(T)$ при T_{01} достигает 10% от максимального значения, маскируя, таким образом, скачок двулучепреломления. Поэтому первородный характер перехода проявляется в наших экспериментах лишь по наличию температурного гистерезиса: $\delta T_{01} \approx 1$ К. Из-за отсутствия фазового фронта и четкого погасания при T₀₁ не виден также скачок и при измерениях угла поворота индикатрисы $\varphi(T)$. Температурное поведение двулучепреломления в фазе G₁

Рис. 5. Зависимость аномальной части двулучпреломления кристалла (NH₄)₂NbOF₅ от температуры. $1 - \delta n_a$, $2 - \delta n_c$, $3 - \delta n_b$.

Рис. 6. Линейная взаимосвязь аномальной части двулучепреломления и квадрата угла вращения оптической индикатрисы в фазе G_1 кристалла (NH₄)₂NbOF₅. $I - \delta n_a$, $2 - \delta n_c$.

хорошо описывается теорией Ландау для переходов первого рода, близких к трикритической точке.

При измерениях в координатах исходной фазы G_0 аномальная часть двулучепреломления δn , возникшая в фазе G_1 , обусловлена появлением параметра перехода η и связана с ним квадратичной зависимостью: $\delta n \sim \eta^2$. В случае собственного (псевдособственного) перехода: $\varphi(T) \sim x_4(T) \sim \eta(T)$. На рис. 6 сведены вместе результаты измерений двулучепреломления и угла поворота оптической индикатрисы кристалла (NH₄)₂NbOF₅. Видно, что почти во всей области моноклинной фазы G_1 аномальная часть двулучепреломления этого кристалла изменяется пропорционально квадрату угла поворота: $\delta n \sim \varphi^2$. Этот факт свидетельствует в пользу того, что данный ФП может быть отнесен к разряду "собственных" сегнетоэластических переходов.

Сравнивая результаты исследований двулучепреломления трех представителей семейства $A_2MO_xF_{6-x}$ $(NH_4)_2WO_2F_4$ [1], $(NH_4)_2MoO_2F_4$ [2] и $(NH_4)_2NbOF_5$, нельзя не заметить внешнюю схожесть зависимостей $\Delta n(T)$ в этих кристаллах. Температурное поведение двулучепреломления обнаруживает две особые температурные точки: при T_{01} происходит сильное изменение оптических констант, тогда как при T_{02} виден лишь слабый перегиб зависимостей $\Delta n(T)$. В то же время кристаллы различаются последовательностью смены симметрии при $\Phi\Pi$.

В $(NH_4)_2WO_2F_4$ имеет место последовательность ромбическая \leftrightarrow триклинная 1 \leftrightarrow триклинная 2, в $(NH_4)_2NbOF_5$ — ромбическая \leftrightarrow моноклинная 1 \leftrightarrow моноклинная 2, а в $(NH_4)_2MoO_2F_4$ сингония кристалла не изменяется: ромбическая \leftrightarrow ромбическая 1 \leftrightarrow ромбическая 2. В вольфрамовом и ниобиевом соединениях

выше сегнетоэластических переходов при T_{01} в широком интервале температур имеют место существенные предпереходные "хвосты" двулучепреломления, тогда как в молибденовом наблюдается строгая линейная зависимость $\Delta n(T)$ в исходной фазе вплоть до температурного перехода.

4. Заключение

Проведенные исследования нами кристалла (NH₄)₂NbOF₅ позволили обнаружить две температуры, при которых зависимости $\Delta n(T)$ испытывают аномалии: $T_{01} = 258 \,\mathrm{K}$ и $T_{02} \approx 219 \,\mathrm{K}$. Фазовый переход при $T_{01} = 258 \, {\rm K}$ сопровождается двойникованием в пластинках среза (100), значительными аномалиями двулучепреломления и характерным температурным гистерезисом $\delta T \approx 1$ К. Сильные предпереходные явления маскируют скачок $\Delta n(T)$. При $T_{02} \approx 219 \, \text{K}$ аномалия двулучепреломления выражена слабо, и ФП никак не проявляется в картине двойникования, возникшей ниже Тол. Согласно наблюдениям в поляризованном свете, в кристалле имеет место последовательность изменения симметрии: ромбическая $(G_0) \leftrightarrow$ моноклинная 1 $(G_1) \leftrightarrow$ моноклинная 2 (G₂) (ось моноклинности вдоль [100]). Фазовый переход при То1 обусловлен появлением сдвиговой деформации $x_4(T) \sim \varphi(T)$. В области фазы G_1 аномальная часть двулучепреломления δn пропорциональна φ^2 . Эксперименты показали, что электрическое поле вдоль [100] вплоть до значений $E \approx 25 \, \text{kV/cm}$ не влияет на расположение двойниковых границ, поэтому наблюдаемые двойники не являются сегнетоэлектрическими доменами. В то же время при приложении сжимающего напряжения вдоль [011] замечены перемещение двойниковых границ и образование монодоменного состояния в очень узкой температурной области вблизи перехода $(T_{01} - T \sim 2 \text{ K})$. Комплекс выполненных экспериментов позволяет предполагать, что фазовый переход при T₀₁ является собственным (псевдособственным) сегнетоэластическим, обусловленным появлением параметра перехода: $\eta(T) \sim x_4(T) \sim \varphi(T) \sim \sqrt{\delta n}(T)$.

Список литературы

- [1] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ **48**, *1*, 110 (2006).
- [2] С.В. Мельникова, Н.М. Лапташ. ФТТ 50, 3, 493 (2008).
- [3] В.Д. Фокина, Е.В. Богданов, Е.И. Погорельцев, В.С. Бондарев, И.Н. Флеров, Н.М. Лапташ. ФТТ 52, 1, 148 (2010).
- [4] A.A. Udovenco, N.M. Laptash. Acta Cryst. B 64, 527 (2008).
- [5] В.Д. Фокина, Е.В. Богданов, М.В. Горев, М.С. Молокеев, Е.И. Погорельцев, И.Н. Флеров, Н.М. Лапташ. ФТТ 52, 4, 728 (2010).
- [6] N.M. Laptash, A.A. Udovenko, A.B. Slobodyuk, V.Ya. Kavun. Abstr. 14 Eur. Symp. Fluorine Chem. Poznan, Poland (2004). P. 253.