О механизме фазового превращения в Ag₂Se

© Ф.Ф. Алиев, М.Б. Джафаров, А.А. Саддинова

Институт физики НАН Азербайджана, Баку, Азербайджан E-mail: farzali@physics.ab.az

(Поступила в Редакцию 29 сентября 2009 г.)

Проведен дифференциальный термический анализ $\Delta T_y(T)$ в вакууме и исследован градиент температуры $\Delta T_x(T)$ вдоль образца в Ag₂Se при переходе $\alpha \to \beta$. Показано, что переходы $\alpha \to \alpha'$ и $\beta' \to \beta$ отвечают переходу типа смешения, а переход $\alpha' \to \beta'$ относится к реконструктивному переходу. Обнаружено, что градиент температуры вдоль образца при переходе $\alpha' \to \beta'$ проходит через глубокий минимум, который связан с сильным возрастанием удельной теплоемкости.

1. Введение

Определение термодинамических и кинетических параметров фазового перехода (ФП), изучение различных структурных характеристик кристаллических модификаций до и в процессе ФП способствуют выяснению механизма превращения. С этой точки зрения нахождение связи между структурным превращением и поведением термодинамических и кинетических свойств материала является весьма важным. Для выявления этой связи необходимо исследовать свойства материала в температурной области ФП, что в то же время позволяет получить информацию о самом процессе ФП. В настоящей работе рассмотрены особенности ФП в селениде серебра.

2. Экспериментальные результаты

Исследованы температурные зависимости электропроводности $\sigma(T)$, термоэдс $\alpha_0(T)$, $\Delta T_x(T)$, коэффициента Холла R(T) и проведен дифференциальный термический анализ (ДТА) $\Delta T_y(T)$ стехиометрического образца Ag₂Se и образцов с избытком Se и Ag до 0.1 at.%. Как видно из рис. 1, на всех образцах в области 390 К наблюдается небольшой пик $\sigma(T)$, за которым (при $T \approx 395$ K) следует резкое уменьшение величины σ . Зависимость $\alpha_0(T)$ перед основным ФП проходит через максимум, после чего при $T \sim 397$ К резко уменьшается (рис. 2). Для всех образцов коэффициент Холла R(T) до и после перехода $\alpha \to \beta$ практически не зависит от температуры (рис. 3).

Температурные зависимости $\Delta T_{v}(T)$ для всех образцов Ag₂Se представлены на рис. 4. На кривой $\Delta T_{v}(T)$ максимумы наблюдаются при температурах ~ 389, 395 и 405 К, несколько бо́льших, чем на зависимостях $\sigma(T)$ и $\alpha_0(T)$. Анализ $\Delta T_v(T)$ позволяет предположить, что основной ФП сопровождается дополнительными переходами $\alpha \rightarrow \alpha'$ и $\beta' \rightarrow \beta$ по схеме $\alpha_{383\,\mathrm{K}} \to \alpha_{395\,\mathrm{K}}' \to \beta_{405\,\mathrm{K}}' \to \beta_{416\,\mathrm{K}}$. Привлекает внимание тот факт, что максимум при $T \sim 395 \,\mathrm{K}$ является существенно асимметричным. Возможно, это связано с числом дефектов, возникающих при ФП. По данным $\Delta T_{\nu}(T)$ определены изменения энтропии ΔS и энтальпии превращения ΔH в условной точке перехода T_0 , а также величины минимального объема фазовой флуктуации V и теплоты ФП Q (см. таблицу).

На рис. 5 представлены температурные зависимости $\Delta T_x(T)$. Как видно, $\Delta T_x(T)$ при $T \sim 400$ К проходит через глубокий минимум, а до и после точки основного ФП (~ 400 K) наблюдаются небольшие пики.

Как видно из приведенных зависимостей, избытки Se и Ag почти не изменяют температуру переходов T_0 .

Образец	Параметр								
	Переход	<i>Т</i> ₀ , К	Q, cal/g	a', K^{-1}	V, 10 ²⁰ cm ³	ΔH , cal/mol · K	$\Delta S,$ cal/mol · K	$\Delta C_p,$ cal/mol · K	$C_p,$ cal/mol · K
Ag ₂ Se	$\alpha ightarrow lpha'$	395	0.4	0.29	1.85	100	0.26	0.38	27
-	lpha' ightarrow eta'	405	4.4	0.39	0.91	1300	3.30	0.40	139
	eta' o eta	415	0.3	0.27	1.30	71	0.17	0.37	29
$Ag_2Se + 0.1$ at.% Se	lpha ightarrow lpha'	394	0.3	0.30	1.86	88	0.23	0.36	26
	$lpha' { ightarrow} eta'$	403	4.3	0.38	0.81	1267	3.20	0.39	140
	eta' o eta	414	0.2	0.28	1.31	60	0.15	0.37	30
$Ag_2Se + 0.1$ at.% Ag	lpha ightarrow lpha'	386	0.3	0.28	1.90	110	0.30	0.34	28
	$lpha' { ightarrow} eta'$	407	4.5	0.38	0.83	1350	3.40	0.39	142
	$\beta' ightarrow eta$	416	0.3	0.28	1.39	75	0.18	0.36	30

Изменение термодинамических параметров в Ag₂Se при фазовых переходах

3. Обсуждение результатов

Для ФП основную роль играет изменение внутренней энергии кристалла, которая является суммой всех энергий, заключенных в структуре, включая энергии различных связей между атомами. Сила межатомных связей зависит от расстояния между атомами и уменьшается с увеличением этого расстояния [1]. При структурном ФП структуры могут переходить одна в другую двумя различными способами. Если структуры имеют низкие симметрии, то переход происходит без искажения симметрии кристалла. Такой переход называется переходом типа смешения, где $\Delta S/R < \ln 2$.

Из таблицы видно, что для переходов $\alpha \to \alpha'$ и $\beta' \to \beta \Delta S/R < \ln 2$, т.е. эти переходы относятся к переходам типа смещения. Имеется много разновидностей таких переходов, которые при повышении температуры ведут себя сначала как переходы второго рода, где $\Delta H = 0$, а затем по достижении некоторой критической температуры имеет место небольшой скачок ΔH (как в переходах $\alpha \to \alpha'$ и $\beta' \to \beta$, см. таблицу), что определенно указывает на переход первого рода. Но обычно такие переходы являются смешанными [1]. В этом смысле

Рис. 1. Температурные зависимости электропроводности $\sigma(T)$ в Ag₂Se. 1 — стехиометрический состав, 2 — Ag₂Se + 0.1 at.% Se, 3 — Ag₂Se + 0.1 at.% Ag.

Рис. 2. Температурные зависимости термоэдс $\alpha_0(T)$ в Ag₂Se. Обозначения те же, что на рис. 1.

Рис. 3. Температурные зависимости коэффициента Холла в Ag₂Se. Обозначения те же, что на рис. 1.

Рис. 4. Температурные зависимости ДТА в Ag₂Se.

Рис. 5. Температурные зависимости $\Delta T_x(T)$ в Ag₂Se. *I* — стехиометрический состав, *2* — с добавкой Ag.

Физика твердого тела, 2010, том 52, вып. 10

переходы $\alpha \to \alpha'$ и $\beta' \to \beta$ также можно называть смешанными.

Вторая ситуация возникает, когда две структуры различаются настолько сильно, что нельзя перейти от одной к другой без разрыва первоначально имевшихся связей, так что при переходе должны иметь место разбиение кристалла на несколько областей и трансформация этих областей в другой кристалл. В этом случае удовлетворяется условие $\Delta S/R < \ln 2$ [2]. Такой процесс называется реконструктивным переходом [1].

В работе [3] установлено, что в низкотемпературной орторомбической фазе симметрия в Ag₂Se соответствует Р₂₂₂, где связь преимущественно ковалентная [4]. Высокотемпературная модификация Ag₂Se имеет ОЦКрешетку, пространственная группа F43m [5], а химические связи соответствуют ковалентно-ионным [6]. Таким образом, симметрии и химические связи низко- и высокотемпературных фаз сильно различаются. Эти факты свидетельствуют о том, что переход $\alpha \rightarrow \beta$ не может происходить без промежуточных фаз α' и β' , т.е. они являются как бы мостом для перестройки решетки $\alpha \rightarrow \beta$. Если при переходах $\alpha \rightarrow \alpha'$ и $\beta' \rightarrow \beta$ несущественно изменяются симметрия и химические связи, то можно предположить, что их изменения происходят только при переходе $\alpha' \rightarrow \beta'$, где $\Delta S/R < \ln 2$ (см. таблицу). Это свидетельствует о том, что переход $\alpha' \rightarrow \beta'$ относится к реконструктивному типу.

Таким образом, в Ag₂Se переходы $\alpha \to \alpha'$ и $\beta' \to \beta$ являются смешанными, а переход $\alpha' \to \beta'$ принадлежит к реконструктивному типу.

Обратимся к анализу $\Delta T_x(T)$ при переходе $\alpha' \to \beta'$. Как видно из рис. 5, в переходе $\alpha' \to \beta'$ при критических температурах (~ 400 K) $\Delta T_x(T)$ проходит через глубокий минимум. Этот факт также наблюдался при исследовании теплопроводности методом светового импульса [7].

При постоянной мощности $\Delta T_x(T)$ отражает ход обратной температурной зависимости коэффициента теплопроводности $\chi(T)$ и теплоемкости $C_p(T)$. Поэтому минимум $\Delta T_x(T)$ может быть обусловлен либо возрастанием $\chi(T)$, либо увеличением $C_p(T)$.

Как отмечалось выше, в переходе $\alpha' \rightarrow \beta'$ при температуре T_0 химические связи разрываются. В этой случае кристалл ведет себя как плотный газ [8]. В этой модели (модель плотных газов и жидкостей) рассматривается плотный газ или жидкость, состоящие из \bar{N} твердых непроницаемых сфер — молекул диаметром d, помещенных в объем \bar{V} . Эти молекулы (или атомы) расположены так, что образуют кубическую решетку, причем расстояние между их центрами равно $(\bar{V}/\bar{N})^{1/3}$. Уравнение состояния плотного газа имеет следующий вид:

$$p[\bar{V} - 0.7816b^{1/3}\bar{V}^{2/3}] = RT,$$
(1)

что является приближенным уравнением состояния для газа из твердых сферических молекул (атомов) при больших плотностях. Значение численной постоянной в (1)

зависит от избранного типа упаковки кристалла. Например, для ГЦК-решетки эта постоянная *a* равна 0.6962, а для ОЦК-решетки — 0.7163. Другая постоянная *b* равна $2/3\bar{N}d^3$. Сравнение параметров *a* и *b* в (1) со значениями a_0 и b_0 в Ag₂Se (для ОЦК-решетки Ag₂Se $a_0 = 0.498$) при переходе $\alpha' \rightarrow \beta'$ показывает небольшую разницу. Поэтому, не учитывая малое отклонение между *a*, *b* в (1) и a_0 , b_0 в Ag₂Se в точке T_0 , можно рассчитать χ , используя модели плотных газов и жидкостей [8],

$$\chi = 2.8k_0 V_0^{-2/3} \xi^{-1/2} U_s, \qquad (2)$$

где k_0 — постоянная Больцмана, $V_0^{1/3} = (\bar{V}/\bar{N})^{1/3}$, \bar{N} — число атомов, \bar{V} — объем элементарной ячейки, $\xi = C_p/C_V = 1.15$ — отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме, U_s — скорость распространения звука в плотных газах ($U_s = 3.5 \cdot 10^5$ cm/s). Расчет дает $\chi = 1.2 \cdot 10^{-4}$ W/cm · K. Как видно, в точке $T_0 \chi$ не увеличивается, а, наоборот, уменьшается.

Известно, что при ФП удельная теплоемкость определяется следующим образом [9]:

$$C_p = C_{p_0} + \Delta C_p L + T \Delta S \frac{dL}{dT},$$
(3)

где $C_{p_0} = 19.6 \text{ cal/mol} \cdot \text{K}$ — удельная теплоемкость до ФП, $\Delta C_p = Q/m\Delta T$, $L(T) = \{1 + \exp[-a'(T - T_0)]\}^{-1}$, $dL/dT = \frac{a'}{2} \frac{1}{1 + ch[a'(T - T_0)]}$ — скорость ФП, m — масса кристалла, a' — постоянная, характеризующая степень размытого ФП, зависящая от объема возможных фазовых флуктуаций, энергии и температуры ФП. Используя значения Q, a' и T₀ из таблицы, мы определили значение С_р для каждого ФП при температуре T₀. Как видно из таблицы, при переходе $\alpha' \rightarrow \beta' C_p$ значительно возрастает, что приводит к сильному уменьшению ΔT_x . Известно, что при $\Phi\Pi$ первого рода C_p в точке T_0 терпит разрыв, благодаря чему значение ΔT_x может уменьшиться. Причина этого вытекает из изложенного выше механизма реконструктивного перехода и состоит в изменении тепловых колебаний угла между связями. Это приводит к образованию локальной тепловой энергии и в результате к изменению этой энергии с температурой. С ростом температуры число обращенных областей быстро возрастает и каждое локальное обращение облегчает обращение соседних участков. При достижении температуры Т₀ все узлы кристалла колеблются с равными амплитудами (идет синхронизация колебаний узлов), благодаря чему передачи энергии от одной стороны к другой не происходит. В итоге сильно возрастает теплоемкость (C = dE/dT) и за счет этого уменьшается ΔT_x с ростом температуры. Таким образом, можно сделать вывод, что уменьшение ΔT_x при переходе $\alpha' \rightarrow \beta'$ связано с возрастанием удельной теплоемкости кристалла в этом переходе.

Список литературы

- [1] М.Дж. Бергер. Кристалл 16, 3, 1084 (1971).
- [2] С.А. Алиев, Ф.Ф. Алиев. ФТП 42, 4, 404 (2008).
- [3] З.Е. Пинскер, Чжоу Цзин-Лян, Р.М. Иманов, Е.А. Локидусь. Кристалл 10, *3*, 275 (1965).
- [4] Г.А. Ахундов, Г.Б. Абдуллаев, М.Х. Алиева, Г.А. Эфендиев. В сб.: Вопросы металлургии и физики полупроводников. Изд-во АН СССР, М. (1961). С. 104.
- [5] В.В. Горбачев. Полупроводниковые соединения A₂¹B^{VI}. Металлургия, М. (1980). С. 132.
- [6] Термические контакты веществ. Справочник / Под ред. В.П. Глушко. АН СССР, ВИНИТИ, М. (1972). В. 6. С. 34.
- [7] М.И. Алиев, Р.Э. Гусейнов, Д.Г. Араслы. Инж.-физ. журн. 22, 6, 1055 (1972).
- [8] Дж. Гиршфельлер, Ч. Кертис, Р. Берд. Молекулярная теория газов и жидкостей. ИЛ, М. (1961). С. 929.
- [9] С.А. Алиев, Ф.Ф. Алиев, З.Ф. Гасанов. ФТТ **40**, *9*, 1963 (1998).