Локальная атомная и магнитная структура аморфных сплавов Fe₇₀AI₅B₂₅

© В.С. Покатилов, В.В. Покатилов, Т.Г. Дмитриева

Московский государственный институт радиотехники, электроники и автоматики (Технический университет), Москва, Россия

E-mail: pokatilov@mirea.ru

(Поступила в Редакцию 19 марта 2010 г.)

Исследован ближний порядок вокруг атомов бора, алюминия и железа в аморфных сплавах $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$ методом ядерного магнитного резонанса на ядрах ¹¹ В и ²⁷ Al при 4.2 K, а также методом мессбауэровской спектроскопии на ядрах ⁵⁷ Fe при 87 и 295 K. Измерен средний магнитный момент атомов железа μ (Fe) в этих сплавах методом вибрационного магнитометра. Обнаружено, что замещение атомов железа атомами алюминия не возмущает μ (Fe) в сплаве $Fe_{70}Al_5B_{25}$, приводит к появлению дополнительного вклада со стороны низких частот в спектре ЯМР на ядрах ¹¹ В и сдвигу максимумов распределений сверхтонких полей на ядрах ⁵⁷ Fe. В аморфном сплаве $Fe_{70}Al_5B_{25}$ атомы алюминия замещают атомы железа в ближайших сферах атомов бора и железа. Этот сплав состоит из нанокластеров, в которых атомы бора и железа имеют ближний порядок типа тетрагональной фазы Fe_3B .

1. Введение

Локальная атомная и магнитная структура аморфных сплавов Fe-B изучена достаточно полно (см., например, [1-7]). Определены ближний порядок и локальная магнитная структура в этих сплавах. Было установлено, что в области составов Fe-23-25 at.% В аморфные сплавы состоят преимущественно из кластеров с ближними порядками типа тетрагональной (τ) фазы Fe₃B [1-3,6,7]. Исследования аморфного сплава Fe₇₅B₂₅. методом малоуглового рассеяния поляризованных нейтронов [8] показали, что сплав состоит из кластеров типа τ -Fe₃B с размером 0.8 nm. В работе [9] были проведены электронографические исследования аморфного сплава Fe₇₄B₂₆ и было показано, что в сплаве содержатся нанокристаллы размером ≤ 1 nm. Таким образом, данные ЯМР, нейтронографии и электронной микроскопии показывают, что кластерная (нанокристаллическая) модель наилучшим образом может описать локальную атомную и магнитную структуру аморфных сплавов Fe-B. В рамках кластерной (нанокристаллической) модели мы исходим из того, что рентгеноаморфный сплав состоит из кластеров или нанокристалликов размером $\leq 1 \, \text{nm}$, аналогичных по кристаллической структуре стабильным или метастабильным кристаллическим фазам, близким составу к исследуемому аморфному сплаву. по Аморфные сплавы на основе Fe-B, применяемые в технике, содержат, как правило, дополнительно s-, p-, *d*-атомы. Влияние таких атомов на локальную атомную и магнитную структуру рассматриваемых сплавов практически не изучалось. В настоящей работе исследовалось влияние замещения атомов железа атомами алюминия на ближний порядок в аморфном сплаве Fe₇₀Al₅B₂₅.

2. Образцы и методы исследований

Аморфные сплавы Fe₇₅B₂₅ и Fe₇₀Al₅B₂₅, были приготовлены методом сверхбыстрой закалки расплава (методом спинингования). Аморфное состояние образцов сплавов подтверждено рентгенографическим методом. Проведены химический и рентгеноспектральный анализы полученных образцов. Содержание бора, железа и алюминия определялось с точностью не хуже 0.2 at.%.

Измерения средних магнитных моментов аморфных сплавов $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$ проводились методом вибрационного магнитометра при 77 K и комнатной температуре в магнитных полях до 10 kOe.

Исследования локальной структуры аморфных сплавов Fe-В проводились с помощью импульсного спектрометра ядерного магнитного резонанса на ядрах ¹¹В и ²⁷Al в области частот 25–90 MHz при температуре 4.2 К. Частотная зависимость амплитуды эха корректировалась на квадрат частоты. Измерения эффекта Мессбауэра на ядрах ⁵⁷Fe при 87 K и комнатной температуре были выполнены с помощью спектрометра MS1104 ет (разработка НИИ физики ЮФУ, Ростовна-Дону). Обработка спектров проводилась по программам DISTRI-М (многоядерное восстановление распределения параметров сверхтонкого взаимодействия) [10].

3. Результаты и их обсуждение

В табл. 1 приведены измеренные значения удельной намагниченности насыщения σ_0 , средних магнитных моментов μ_{av} и средних магнитных моментов на атом железа. Эти данные показывают, что замещение 5 at.% железа алюминием слегка уменьшает удельную намагниченность и не изменяет магнитный момент атомов железа. Эт свидетельствует о том, что примесные атомы алюминия не возмущают магнитные моменты атомов железа и входят в сплав как магнитные дырки.

На рис. 1 приведены спектры ЯМР на ядрах 11 В и 27 Аl в аморфных сплавах Fe₇₅B₂₅ и Fe₇₀Al₅B₂₅. Спектры измерялись при таких условиях, чтобы исключить влияние распределения коэффициентов усиления (локальных по-

Состав	T = 293 K			$T = 77 \mathrm{K}$		
	$\sigma_0 \ (\pm 1.5), \ emu/g$	$\mu_{\rm av}\ (\pm 0.04),\ \mu_{ m B}$	$\mu({ m Fe}) \ (\pm 0.04), \ \mu_{ m B}$	$\sigma_0 \ (\pm 1.5), \ emu/g$	$\mu_{\mathrm{av}}\ (\pm 0.04),\ \mu_{\mathrm{B}}$	$\mu({ m Fe}) \ (\pm 0.04), \ \mu_{ m B}$
$\begin{array}{l} Fe_{75}B_{25}\\ Fe_{70}Al_5B_{25}\end{array}$	173.6 170.0	1.40 1.31	1.84 1.81	187.2 182.7	1.51 1.41	2.01 2.01

Таблица 1. Зависимость намагниченности насыщения σ_0 , среднего магнитного момента μ_{av} и среднего магнитного момента на атом железа $\mu(Fe)$ в аморфных сплавах Fe₇₅B₂₅ и Fe₇₀Al₅B₂₅ от температуры

лей анизотропии) на распределения амплитуд эха в спектрах ЯМР. Спектр ЯМР на ядрах ¹¹В сплава Fe₇₅B₂₅ симметричный, и его максимум лежит при 34.4 MHz. Сверхтонкое поле (СТП) на ядре ${}^{11}BH(B) = 25.3 \text{ kOe } [1,4,6].$ Замещение железа 5 at.% алюминия приводит к дополнительному уширению спектра в области низких частот для ядер ¹В и появлению нового спектра от ядер ²⁷А1 в области частот 42-85 MHz. Заметим, что максимумы спектров для ядер ¹¹В в этих сплавах почти совпадают и находятся при 34.4-34.6 MHz. Максимум спектра ЯМР на ядрах ²⁷А1 лежит при 58.8 MHz (СТП на ядре ²⁷А1 равно H(Al) = 30.0 kOe). СТП на ядрах ¹¹B, ²⁷Al и ⁵⁷Fe имеют отрицательный знак. В настоящей работе будем рассматривать абсолютные значения СТП на этих трех ядрах. Ширина спектра ЯМР на ядрах ²⁷А1 составляет $\Delta f = 21 \text{ MHz}$. Атомы алюминия — немагнитные атомы и не возмущают магнитные моменты атомов железа. Появление атомов алюминия в первой координационной сфере (1КС) некоторых атомов бора вместо атомов железа определяет дополнительный вклад в спектр ЯМР ¹¹В со стороны низких частот, показанный на рис. 1.

СТП на ядрах ¹¹В и ²⁷Аl как немагнитных атомов определяется Ферми-контактным взаимодействием [11], причем это поле пропорционально электронной спиновой плотности на ядре рассматриваемого атома (бора или алюминия), обусловленной поляризацией электро-

Рис. 1. Спектр ЯМР на ядрах ¹¹В (область частот 15-42 МНz) и ²⁷Al (область частот 42-85 МНz) при 4.2 К. *1* — Fe₇₀Al₅B₂₅, *2* — Fe₇₅B₂₅, *3* — разность между спектрами *1* и *2*.

нов проводимости магнитными атомами Fe в ближайших KC атомов бора или алюминия. СТП *H* на ядре немагнитного атома записывается в виде

$$H = a \sum_{i} N_{i} \mu_{i} (\text{Fe}), \qquad (1)$$

где *а* — константа сверхтонкой связи для ядер бора или алюминия, N_i — число атомов железа, а μ_i (Fe) — магнитный момент атомов железа в КС *i*. Из этой формулы видна связь между СТП на ядре ¹¹В или ²⁷Al, числом атомов железа и их магнитными моментами в ближайших КС бора или алюминия. Основной вклад в СТП дают магнитные атомы 1КС (см., например, [6,7]).

Будем рассматривать локальные состояния атомов бора, алюминия и железа в исследуемых аморфных сплавах в рамках кластерной (нанокристаллической) модели. Константа связи *a*(B) для ядер ¹¹B в метастабильном соединении *т*-Fe₃B и аморфном сплаве Fe₇₅B₂₅ была рассмотрена в [1,4,6]. Вблизи состава Fe₇₅B₂₅ аморфные сплавы состоят из микрообластей (кластеров) с ближним порядком вокруг атомов бора, аналогичным ближнему порядку атомов бора и железа в фазе *т*-Fe₃B [1,2,6,7]. Фаза *т*-Fe₃B содержит одно кристаллографическое состояние атома бора и три различных равновероятных кристаллографических состояния атомов железа Fe(1), Fe(2) и Fe(3) [12]. Для этой фазы СТП на ядре 11 ВH(B) = 25.3 kOe [1,3,6,7] и в 1КС атома бора содержится девять атомов железа [12], причем в каждом из указанных состояний находятся различные числа атомов, а именно 4Fe(1) с магнитным моментом $\mu[Fe(1)] = 1.7\mu_B$, 3Fe(2) с $\mu[Fe(2)] = 2.0\mu_B$ и 2Fe(3) с µ[Fe(3)] = 2.1µВ [2,3,5-7]. Средний магнитный момент атомов железа в 1КС атома бора равен $\mu(\text{Fe}) = 1.87 \mu_{\text{B}}$ [1,5]. Константа a(B) для ядер ¹¹В в τ -фазе и аморфном сплаве Fe₇₅B₂₅ $a(B) = 1.48 \text{ kOe}/(\mu_B \cdot \text{ atom Fe})$ [6]. В кластерной (нанокристаллической) модели аморфный сплав Fe₇₅B₂₅ состоит из кластеров, в которых атом бора содержит девять атомов железа в ближайшей координационной сфере, и эти девять атомов железа вокруг атома бора образуют тетрадекаэдр [4-7].

На рис. 1 показан дополнительный вклад со стороны низких частот в спектр ЯМР на ядрах ¹¹В, обусловленный замещением части атомов железа атомами алюминия в ближайшей сфере некоторых атомов бора. Этот

Состав	<i>T</i> ,K	$H_{ m av}$ $(\pm 0.8), m kOe$	$\delta_{ m av}$ (±0.004), mm/s	$arepsilon_{ m av}\ (\pm 0.004),$ mm/s	$ heta \\ (\pm 2), \deg$
Fe ₇₅ B ₂₅	293	240.1 (0.9)	0.088 (0.002)	-0.0045 (0.002)	54
Fe70Al5B25		221.5 (0.9)	0.109 (0.002)	-0.005 (0.002)	63
Fe ₇₅ B ₂₅	87	260.3 (1.4)	0.210 (0.003)	-0.005 (0.002)	55
$Fe_{70}Al_5B_{25}$		240.8 (0.9)	0.233 (0.002)	-0.005 (0.002)	65

Таблица 2. Средние значения сверхтонких полей H_{av} , изомерных δ_{av} и квадрупольных ε_{av} сдвигов, а также угла между направлением намагниченности и нормалью к плоскости ленты в сплавах Fe₇₅B₂₅ и Fe₇₀Al₅B₂₅ при 293 и 87 K

дополнительный вклад определялся как разность между спектрами ¹¹В в сплавах $Fe_{70}Al_5B_{25}$ и $Fe_{75}B_{25}$ в области частот 15–35 MHz. Используя формулу (1), оценим количество атомов железа и алюминия в 1КС атомов бора в аморфном сплаве $Fe_{70}Al_5B_{25}$, обусловливающих дополнительный резонансный спектр ЯМР. Средняя резонансная частота на ядрах ¹¹В, соответствующая центру тяжести этой части спектра, $f_{av} = 27.2$ MHz, т.е. СТП H = 20 kOe. Так как магнитный момент атомов железа не возмущается при появлении атомов алюминия в его ближайшей сфере, получаем, что среднее число атомов железа в 1КС некоторой части атомов бора в сплаве (резонансная частота которых приходится на 27.2 MHz) будет равно 7.2 Fe, а атомов алюминия — 1.8 Al.

В работе [13] методом ЯМР на ядрах ²⁷А1 исследован быстро закаленный из расплава кристаллический сплав Fe₉₅Al₅. ЯМР спектр на ядрах ²⁷Al в этом сплаве лежит в области частот 54-65 MHz с максимумом при $f = 60.5 \,\mathrm{MHz}$ и имеет ширину 4 MHz. Как показано в работе [13], спектр обусловлен атомами алюминия, содержащими в своей 1КС восемь атомов железа, и атомами алюминия, частично расположенными в третьей сфере. Как следует из наших данных, резонансные частоты ядер ²⁷Аl в аморфном сплаве Fe₇₀Al₅B₂₅ и быстро закаленном кристаллическом сплаве Fe95Al5 почти совпадают, но ширина спектров ЯМР на ядрах 27 Аl Δf в аморфном сплаве более чем в 5 раз превышает Δf в быстро закаленном кристаллическом сплаве Fe₉₅Al₅. Это обусловлено тем, что атомы алюминия замещают атомы железа в трех равновероятных неэквивалентных кристаллографических состояниях железа в кластерах с ближним порядком типа фазы *т*-Fe₃B. Таким образом, атомы алюминия в аморфном сплаве Fe₇₀Al₅B₂₅ содержат в ближайшей сфере комбинации атомов 10Fe + 4B, 10Fe + 3B и 10Fe + 2B [12]. Аналогичная ситуация наблюдалась в аморфных сплавах Fe₇₀V₅B₂₅ [4,14]. В этих работах было обнаружено, что атомы ванадия замещают атомы железа в трех локальных состояниях в кластерах типа фазы *т*-Fe₃B.

Мессбауэровские спектры аморфных сплавов $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$, измеренные при 87 К, представлены на рис. 2, *a* и *d*. Спектры очень широкие с ярко выраженной магнитной текстурой (с повышенной интенсивностью второй и пятой линий) и указывают на широкое распределение СТП на ядрах ⁵⁷Fe. На рис. 2, b и c приводятся восстановленные из мессбауэровских спектров распределения СТП P(H), а на рис. 2, с и f — восстановленные распределения изомерных сдвигов $P(\delta)$ в тех же сплавах. На рис. 3 приведены распределения P(H), $P(\delta)$ и $P(\varepsilon)$ на ядрах ⁵⁷ Fe в аморфных сплавах Fe₇₅B₂₅ (1) и Fe₇₀Al₅B₂₅ (2) при комнатной температуре. В табл. 2 представлены средние значения для сверхтонких полей $H_{\rm av}$, изомерных $\delta_{\rm av}$ и квадрупольных $\varepsilon_{\rm av}$ -сдвигов в этих сплавах при 293 и 87 К. Как следует из приведенных данных, замещение 5 at.% железа алюминием в аморфных сплавах Fe₇₅B₂₅ приводит к уменьшению среднего СТП *H*_{av} на 19.5 kOe при 87 К и на 18.6 kOe при комнатной температуре, увеличению среднего изомерного сдвига δ_{av} на 0.023 mm/s при 87 K и 0.021 mm/s при комнатной температуре и не изменяет значения квадрупольных сдвигов ε_{av} . Уменьшение среднего сверхтонкого поля на ядрах ⁵⁷Fe обусловлено появлением алюминия в 1КС железа. Атомы алюминия не имеют магнитного момента и, следовательно, уменьшают средний магнитный момент 1КС атомов железа. Во внешней оболочке атомы железа содержат $4s^2$ -, а алюминий — $3s^23p^1$ электроны. Увеличение изомерного сдвига, вероятно, обусловлено тем, что при замещении железа алюминием в сплав добавляется 1*p*-электрон.

На рис. 2, *b* и *e* приведены модельные разложения (по гауссианам) распределения СТП на три подспектра, соответствующие трем парциальным состояниям атомов железа в аморфных сплавах $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$. Это разложение проведено исходя из того, что вблизи состава $Fe_{75}B_{25}$ аморфные сплавы состоят из кластеров с ближним порядком типа фазы τ -Fe₃B [6,7]. СТП для трех состояний атомов железа в аморфных сплавах $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$ при 87 К приведены в табл. 3. В аморфном сплаве $Fe_{75}B_{25}$ СТП совпадают с данными в работах [1,7]. Как видно из табл. 3, замещение 5 аt.% железа алюминием приводит к уменьшению СТП на ядрах ⁵⁷Fe на 20.0, 17.7 и 23.1 kOe для состояний Fe(1), Fe(2) Fe(3) соответственно. Необходимо также отметить, что площади парциальных (модельных) состояний атомов

Рис. 2. Мессбауэровские спектры при 87 К (a, d), восстановленные распределения сверхтонких полей P(H)(b, e) и распределения изомерных сдвигов $P(\delta)(c, f)$ для аморфных сплавов Fe₇₅B₂₅ (a-c) и Fe₇₀Al₅B₂₅ (d-f). Тонкие сплошные линии на частях a и d — разность между экспериментальным и модельным спектрами.

Рис. 3. Распеределения сверхтонких полей P(H)(a), изомерных $P(\delta)(b)$ и квадрупольных $P(\varepsilon)(c)$ сдвигов аморфных сплавов Fe₇₅B₂₅ (1) и Fe₇₀Al₅B₂₅ (2) при комнатной температуре.

Таблица 3. Значения сверхтонких полей H для локальных состояний атомов железа в аморфных сплавах $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$ и их относительная доля S, полученные из модельной расшифровки мессбауэровских спектров, измеренных при температуре 87 K

Состав	Состояние	$H(\pm 1.0)$, kOe	S(±3),%
Fe ₇₅ B ₂₅	1	229.3	34
	2	263.9	35
	3	303.4	31
Fe70Al5B25	1	209.3	34
	2	246.2	35
	3	280.3	31

железа в аморфном сплаве Fe₇₀Al₅B₂₅ также равны друг другу в пределах ошибки. Эти данные показывают, что атомы алюминия равномерно замещают атомы железа во всех трех локальных состояниях железа.

Из мессбауэровких спектров на рис. 2, а и d видно, что вторая и пятая линии имеют увеличенную интенсивность. Это означает, что образцы аморфных сплавов Fe₇₅B₂₅ и Fe₇₀Al₅B₂₅ имеют ярко выраженную магнитную текстуру. Угол θ определяется из соотношения $A_{2,5}/A_{1,6} = 4\sin^2\theta/3(1+\cos^2\theta) (A_{2,5}$ — интенсивности второй и пятой линий, $A_{1,6}$ — интенсивности первой и шестой линий, а θ — угол между направлением у-квантов и направлением намагниченности в ленте). В табл. 2 приводятся значения углов θ , рассчитанные по этой формуле. Как видно из таблицы, замещение 5 at.% железа алюминием слегка уменьшает угол между плоскостью ленты и направлением намагниченности. Природа магнитной текстуры в основном определяется технологией получения аморфных сплавов — методом спинингования, сверхбыстрой закалки расплава на быстро вращающемся стальном диске. Однако уменьшение угла между вектором намагниченности и направлением плоскости ленты означает, что при замещении железа алюминием перпендикулярная плоскости пленки составляющая намагниченности уменьшается.

4. Заключение

Исследован ближний порядок вокруг атомов бора, алюминия и железа в аморфных сплавах $Fe_{75}B_{25}$ и $Fe_{70}Al_5B_{25}$ методом ядерного магнитного резонанса на ядрах ¹¹В и ²⁷Al при 4.2 K, а также методом мессбауэровской спектроскопии на ядрах ⁵⁷Fe при 87 и 295 K. Обнаружено, что замещение атомов железа атомами алюминия: 1) не возмущает средний магнитный момент на атоме железа μ (Fe) в сплаве $Fe_{70}Al_5B_{25}$; 2) приводит к появлению дополнительного вклада со стороны низких частот в спектре ЯМР на ядрах ¹¹В и сдвигу максимумов распределений сверхтонких полей на ядрах ⁵⁷Fe. Обнаружено, что в аморфном сплаве $Fe_{70}Al_5B_{25}$ атомы алюминия замещают атомы железа в

ближайших сферах атомов бора и железа в кластерах с ближним порядком типа фазы τ -Fe₃B. Показано, что кластерная (нанокристаллическая) модель наилучшим образом описывает локальную атомную и магнитную структуру аморфных сплавов Fe₇₅B₂₅ и Fe₇₀Al₅B₂₅.

Список литературы

- I. Vincze, D.S. Bondreaux, M. Tegze. Phys. Rev. B 19, 4896 (1979).
- [2] В.С. Покатилов. ДАН СССР 257, 95 (1981).
- [3] J.C. Ford, J.J. Budnick, W.A. Hines. J. Appl. Phys. 55, 2286 (1984).
- [4] V. Pokatilov, N. Dyakonova. Hyperfine Interactions 59, 525 (1990).
- [5] Y.D. Zhang, W.A. Hines, J.I. Budnick, M. Choi, F.H. Sanches, R. Hasegava. J. Magn. Magn. Mater. 61, 162 (1986).
- [6] В.С. Покатилов. ФТТ 49, 12, 2113 (2007).
- [7] В.С. Покатилов. ФТТ 51, 134 (2009).
- [8] P. Lamparter, S. Steeb, D.M. Kroeger, S. Spooner. Mater. Sci. Eng. 97, 227 (1988).
- [9] J. Zweck, H. Hoffman. Proc. Fifth Int. Conf. RQM. Elsevier Publ. 1, 509 (1985).
- [10] В.С. Русаков. Мёссбауэровская спектроскопия локально неоднородных систем. Алматы (2000). С. 430.
- [11] M.B. Stearns. Phys. Rev. B 4, 11, 4081 (1971).
- [12] П.И. Крипякевич. Структурные типы интерметаллических соединений. Наука, М. (1977). С. 155.
- [13] Y.D. Zhang, J.I. Budnick, F.H. Sanchez, R. Hasegawa. J. Appl. Phys. 67, 5870 (1990).
- [14] В.С. Покатилов, В.П. Овчаров. Металлофизика 12, 1, 113 (1990).