Спектрально-кинетические характеристики кристаллов и нанокерамик на основе BaF₂ и BaF₂ : Се

© П.А. Родный¹, С.Д. Гаин¹, И.А. Миронов², Е.А. Гарибин², А.А. Демиденко², Д.М. Селиверстов³, Ю.И. Гусев³, П.П. Федоров⁴, С.В. Кузнецов⁴

 ¹ Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия
² ЗАО "ИНКРОМ", Санкт-Петербург, Россия
³ Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина, Ленинградская обл., Россия
⁴ Научный центр лазерных материалов и технологий Института общей физики им. А.М. Прохорова РАН, Москва, Россия
E-mail: Rodnyi@tuexph.stu.neva.ru

(Поступила в Редакцию 22 декабря 2009 г.)

Исследованы оптические характеристики монокристаллов BaF_2 и BaF_2 : Се, а также нанокерамик, полученных из этих монокристаллов методом одноосного горячего прессования. Показано, что введение ионов Ce^{3+} в BaF_2 практически не влияет на сверхбыстрый (~ 0.9 ns) компонент излучения. Нанокерамика BaF_2 : Се обладает большей интегральной интенсивностью люминесценции, чем соответствующий монокристалл, и существенно большей интенсивностью, чем нелегированный кристаллл BaF_2 . Показано, что медленный (сотни наносекунд) компонент спада люминесценции BaF_2 : Се обусловлен процессом переноса энергии от экситонов к ионам Ce^{3+} .

1. Введение

В настоящее время возрождается интерес к исследованию фторида бария. Наличие в ВаF2 сверхбыстрого $(\sim 0.9\,\mathrm{ns})$ компонента свечения позволяет конструировать детекторы ионизирующих излучений с высоким (110 ps) временным разрешением [1]. Однако интегральная интенсивность (для сцинтилляторов — это световыход LY) быстрого компонента невелика. Кроме того, в спектре излучения BaF2 присутствует экситонная полоса $(\lambda_m \approx 300 \,\mathrm{nm})$ с нежелательно длительным временем спада (600-800 ns). Указанная проблема решалась двумя основными путями: 1) внедрением в BaF₂ примеси, в частности La³⁺, подавляющей длительный компонент [2]; 2) введением активатора, преобразующего экситонное излучение в более быстрое активаторное свечение. Естественным выбором активатора стал трехвалентный церий, широко используемый в сцинтилляционных кристаллах, поскольку Се³⁺ обладает достаточно коротким (20-70 ns) временем спада (d-f-переходы) [3]. Ранее эксперименты показали, что при оптимальной ($\sim 0.2 \text{ mol.}\%$) концентрации ионов Ce^{3+} (концентрации, при которой максимальна интенсивность люминесценции) световыход BaF₂:Се оказался несколько ниже такового у чистого BaF₂ [2-4]. Было высказано предположение, что если содержание ионов Се³⁺ в кристалле превышает 0.2 mol.%, то происходит образование цериевых агрегатов [2] либо Се³⁺-О²⁻-центров [4].

В более позднем исследовании [5] было получено небольшое увеличение световыхода кристалла $BaF_2:Ce$ и показано, что в рекомбинационном процессе принимают участие автолокализованные дырки в виде V_k -

и *H*-центров. В работах [5,6] подробно изучена роль дырочных центров, мелких ловушек и неидентифицированных дефектов в процессе переноса энергии к центрам люминесценции в кристаллах BaF₂:Се.

В последнее время предпринимаются попытки улучшения кинетических и других характеристик сцинтилляторов на основе фторида бария путем создания BaF2керамик [7–10]. Следует отметить, что керамики обладают рядом преимуществ по сравнению с монокристаллами, в частности высокой механической и термической прочностью; по этой причине процесс поиска эффективных керамик для лазеров и сцинтилляторов активно развивается [8,9]. В [7] ВаF₂-керамика получена путем прессования порошков с размером частиц 0.3-5 µm; прозрачность таких керамик оказалась низкой, но при этом регистрировалось значительное уменьшение (до $\sim 5\,\mathrm{ns})$ времени высвечивания экситонной полосы. Установлено, что процесс пластической деформации BaF₂ (и других фторидов со структурой флюорита) сопровождается расслоением и упрочнением материала, а также большими кристаллографическими сдвигами [11]. Образующиеся слои имеют размер нанометрового диапазона, т.е. сильная пластическая деформация кристаллов группы флюорита приводит к образованию нанокерамик [8]. В работе [10] получена вдвое большая интенсивность люминесценции BaF₂:Се-нанокерамики по сравнению с ее интенсивностью для соответствующего кристалла. Структурные и некоторые другие характеристики фторидных нанокерамик подробно изучены методами электронной и атомной силовой спектроскопии [8].

В настоящей работе исследованы спектральнокинетические характеристики кристаллов BaF₂ и ВаF₂: Се, а также нанокерамик, полученных из этих кристаллов путем их одноосного горячего прессования. Исследования проведены при рентгеновском возбуждении образцов с целью определения их сцинтилляционных характеристик.

2. Методика эксперимента

Выращивание исследуемых кристаллов, формирование керамик и последующая обработка (отжиг, резка, полировка и т.д.) образцов осуществлялись в ЗАО "ИНКРОМ". Выращивание монокристаллов осуществлялось методом Степанова-Стокбаргера, полученные образцы квалифицированы как кристаллы BaF2 марки ВУФ, т.е. материалы, обладающие высокой прозрачностью в коротковолновой области спектра. Нанокерамики получали путем одноосного горячего прессования исходных кристаллов. На первом этапе работы максимальная прозрачность керамик в широком оптическом диапазоне от 200 до 700 nm достигалась путем варьирования двух основных параметров: температуры и степени деформации. Температура прессования изменялась в пределах от 800 до 1200°С. Относительная степень деформации варьировалась в пределах от 2 до 10, она определялась по формуле $\delta l = (l_0 - l_k)/l_k$, где l_0 и l_k начальная и конечная высота образца. В результате удалось получить нанокерамику, прзрачность которой соответствует прозрачности монокристалла в видимой области спектра и слегка ниже таковой в коротковолновой области, при $\lambda < 250 \, \text{nm}$ (рис. 1). Для измерений использовались полированные образцы монокристаллов и нанокерамик (в дальнейшем для краткости кристаллов и керамик), приготовленных в виде параллелепипедов размером $3 \times 4 \times 10$ mm.

Спектры оптического пропускания образцов измерялись с помощью спектрофотометра СФ-26. Измерение спектров люминесценции образцов осуществлялось при непрерывном рентгеновском (40 kV) возбуждении. Регистрирующая часть содержала монохроматор МДР-2 и фотоэлектронный умножитель ФЭУ-106. В полученные спектры внесены необходимые поправки. Для измерения кинетики люминесценции использовался импульсный рентгеновский (30 kV) источник с длительностью импульсов ≤ 1 пs и частотой следования 12 kHz [12]. Регистрирующая часть собрана по стандартной схеме "старт–стоп", временно́е разрешение системы не хуже 50 ps.

3. Результаты эксперимента

Оптические характеристики ряда исследуемых образцов представлены на рис. 1. Как отмечалось, прозрачность кристалла (кривая 1) и керамики (кривая 2) BaF_2 практически совпадает в видимой и ближней УФ-областях спектра. Для BaF_2 : Се кристалла (кривая 3) и керамики (кривая 4) характерно сильное поглощение

Рис. 1. Оптическое пропускание образцов BaF₂ толщиной 3 mm (*1*, *2*) и BaF₂:Ce (0.025 mol.%) толщиной 15 mm (*3*, *4*). *1*, *3* — кристалл, *2*, *4* — керамика.

Рис. 2. Спектры РЛ образцов фторида бария. *1* — кристалл BaF₂, *2* — керамика BaF₂, *3* — кристалл BaF₂: Ce (0.1 mol.%), *4* — керамика BaF₂: Ce (0.1 mol.%).

в области $\lambda < 300$ nm, за которое ответственны f-d-переходы иона Ce³⁺.

На рис. 2 представлены спектры рентгенолюминесценции (РЛ) исследованных образцов BaF₂. Видно, что

Образец	Форма	Ce ³⁺ , mol.%	$ au_1, \mathrm{ns}$	I_{m1}	τ_2 , ns	$ au_3, \mathrm{ns}$	LY^*
BaF_2	Кристалл	_	0.9 ± 0.3	1500	_	370 ± 25	1.0
BaF_2	Керамика	_	0.9 ± 0.4	1400	_	310 ± 40	0.95
BaF ₂ :Ce	Керамика	0.1	0.9 ± 0.3	1200	29 ± 4	360 ± 40	1.74
BaF ₂ :Ce	Кристалл	0.1	1.3 ± 0.4	1300	47 ± 2	240 ± 40	2.70
BaF ₂ :Ce	Керамика	0.05	1.1 ± 0.2	1400	30 ± 7	265 ± 40	1.98

Основные характеристики исследованных образцов: τ_1 , τ_2 , τ_3 — постоянные времени спада, I_{m1} — максимум интенсивности (число событий) сверхбыстрого компонента

* Световыход LY определялся как интегральная интенсивность РЛ, т.е. площадь под спектральной кривой; световыход кристалла BaF₂ принят за единицу.

Рис. 3. Кинетика РЛ образцов нелегированного фторида бария. *1* — керамика, *2* — кристалл. На вставке — кинетика РЛ кристалла BaF₂ во временном окне 5 µs.

спектры нелегированных кристалла (кривая 1) и керамики (кривая 2) схожи, оба образца содержат коротковолновую полосу 220 nm, за которую ответственны остовно-валентные переходы [13]. Широкая экситонная полоса с максимумом вблизи 300 nm более интенсивна в кристалле.

В случае BaF₂:Се измерения проводились для образцов с содержанием Ce³⁺ 0.025–0.2 mol.%. Оптимальное содержание Ce³⁺ как для кристаллов, так и для керамик оказалось вблизи 0.1%. В качестве примера на рис. 2 приведены спектры РЛ кристалла (кривая 3) и керамики (кривая 4) BaF₂:Ce (0.1 mol.%). Форма спектров РЛ кристаллов и соответствующих керамик весьма схожа. Спектр РЛ BaF₂:Ce содержит остовно-валентную полосу (220 nm) и две типичные для ионов Ce³⁺ полосы 308 и 322 nm; часть экситонного излучения проявляется в виде полосы с максимумом при 270 nm. Световыход РЛ BaF_2 : Се керамики в 1.5 раза выше, чем в соответствующем кристалле, и в 2.7 раза выше, чем в чистом BaF_2 (рис. 2, таблица). Здесь нужно учитывать, что спектры РЛ измерялись при непрерывном режиме возбуждения, т.е. они включают в себя и крайне медленные компоненты РЛ.

Результаты измерения кинетики РЛ чистых образцов BaF_2 отображены на рис. 3. Кривые содержат сверхбыстрый субнаносекундный компонент и медленный компонент τ_3 : остовно-валентная и экситонная люминесценция соответственно. Видно, что в керамике $\tau_3 = 310$ пs несколько меньше, чем в кристалле $\tau_3 = 370$ пs (см. таблицу). Заметим, что полученное более низкое значение $\tau_3 = 370$ пs для кристалла BaF_2 по сравнению с общеизвестным значением (600–800 ns) обусловлено относительно узким временным окном (800 ns); при измерении во временном окне $5 \mu s \tau_3$ кристалла составляет 650 ns (вставка к рис. 3).

Рис. 4. Кинетика РЛ керамик. *1* — BaF₂:Ce (0.05 mol.%), *2* — BaF₂:Ce (0.1 mol.%).

Примеры кинетических кривых для BaF_2 : Се приведены на рис. 4. Кривые содержат три постоянных спада: сверхбыструю τ_1 , быструю τ_2 и медленную τ_3 ; значения этих постоянных приведены в таблице. Важно, что интенсивность I_{m1} сверхбыстрого компонента в BaF_2 : Се практически такая же, как в чистом BaF_2 . Это означает, что введение ионов Ce^{3+} в BaF_2 не подавляет остовновалентную люминесценцию. Быстрый компоенент τ_2 имеет значение (см. таблицу), характерное для разрешенных d-f-переходов иона Ce^{3+} . Постоянная спада медленного компонента τ_3 в BaF_2 : Се близка к таковой в BaF_2 .

4. Обсуждение результатов

Получение ВаF₂-керамики с высокой ("кристаллической") прозрачностью в видимой и ближней УФ-областях спектра (рис. 1) имеет важное значение для сцинтилляционной и лазерной техники, а также для оптики световых потоков большой мощности.

Измерение спектральных и кинетических характеристик РЛ (рис. 2–4) выявило некоторые различия и преимущества керамик по сравнению с соответствующими кристаллами. Для чистого BaF_2 регистрировалось некоторое уменьшение постоянной спада τ_3 керамики по сравнению с кристаллом (см. таблицу). Считается [7], что экситоны могут излучательно аннигилировать на границах зерен керамики, результатом чего является уменьшение времени спада экситонной РЛ.

Результат измерения спектрально-кинетических характеристик BaF₂:Се несколько необычен. Спектр РЛ содержит две интенсивные полосы 308 и 322 nm, соответствующие $5d \rightarrow 4f({}^{2}F_{7/2})$ - и $5d \rightarrow 4f({}^{2}F_{5/2})$ -переходам ионов Ce³⁺. В то же время медленная составляющая РЛ (τ_3) , которая дает основной вклад в световыход BaF₂:Ce, не соответствует по времени иону Се³⁺, который должен высвечиваться за десятки наносекунд (разрешенные *d*-*f*-переходы). Это означает, что происходит перенос энергии от экситонов, время жизни которых в BaF₂ составляет сотни наносекунд, к ионам Се³⁺. В пользу механизма переноса энергии экситон — Ce³ свидетельствует также тот факт, что интенсивность коротковолновой части излучения (полоса 270 nm) уменьшается с ростом концентрации церия. Кроме того, значительному "провалу" в спектре РЛ (рис. 2) в области от 280 до 300 nm соответствует максимум поглощения ионов Ce^{3+} (рис. 1).

Основной уровень иона Ce³⁺ расположен в середине запрещенной зоны [14], а уровень V_k -центра лежит вблизи (~ 1 eV) потолка валентной зоны BaF₂. Вероятность захвата дырки V_k -центром оказывается существенно выше, чем ионом Ce³⁺. Небольшая часть ионов Ce³⁺ возбуждается непосредственно, внося вклад в кинетику РЛ в виде быстрой постоянной спада τ_2 (рис. 4, таблица). В результате процесс переноса энергии в BaF₂: Се можно представить следующим образом. Рентгеновское излучение создает в кристалле или керамике высокоэнергетические электроны и дырки, которые затем релаксируют и термализуются. Термализованная дырка может быть захвачена V_k -центром либо ионом Ce³⁺. Бо́лышая часть дырок захватывается V_k -центрами (точнее, дырки участвуют в аксиальной релаксации, преобразуясь в V_k -центры [15]). Затем V_k -центры захватывают электроны из зоны проводимости, образуя автолокализованные экситоны [15], которые в BaF₂ излучательно аннигилируют за время ~ 600 ns, а в BaF₂:Се передают свою энергию ионам Ce³⁺. Поскольку время жизни иона Ce³⁺ в возбужденном *d*-состоянии на порядок ниже времени жизни автолокализованного экситона, основное время спада РЛ (τ_3) в BaF₂:Се контролируется экситонами.

5. Заключение

В работе получены следующие экспериментальные результаты.

 Методом одноосного горячего прессования синтезированы нанокерамики фторида бария с высокой прозрачностью в видимой и ближней УФ-областях спектра.

2) Установлено, что при оптимальной концентрации ионов Ce^{3+} во фториде бария интенсивность сверхбыстрого компонента РЛ практически такая же, как в чистом BaF_2 .

3) Интегральная интенсивность РЛ BaF₂:Се (кристаллов и керамик) существенно выше, чем для нелегированного кристалла BaF₂. В случае BaF₂:Се получено небольшое увеличение интенсивности РЛ для систем нанокерамика/монокристалл.

4) Регистрировалось небольшое уменьшение времени спада длительного (τ_3) компонента РЛ ВаF₂ керамики по сравнению с кристаллом. Существенное уменьшение τ_3 получено при введении ионов скандия в ВаF₂, о чем будет доложено в отдельной публикации.

Мы полагаем, что возможности улучшения люминесцентных характеристик нанокерамик на основе BaF₂ не исчерпаны. В дальнейшем планируется варьировать условия синтеза и отжига образцов, а также провести поиск оптимальных концентраций и соотношений активаторов и соактиваторов.

Список литературы

- [1] R. Novotny. IEEE Trans. Nucl. Sci. 38, 379 (1991).
- [2] P. Dorenbos, R. Visser, R.W. Hollander, C.W.E. van Eijk, H.W. den Hartog. Rad. Effects Defects Solids 119–121, 87 (1991).
- [3] C.W.E. van Eijk. Nucl. Instrum. Meth. Phys. Res. A 460, 1 (2001).
- [4] R. Visser, P. Dorenbos, C.W.E. van Eijk, A. Vtijerink, G. Blasse, H.W. den Hartog. J. Phys.: Cond. Matter 5, 1659 (1993).
- [5] A.J. Wojtowicz, P. Szupryczynski, J. Glodo, W. Drozdowski, D. Wisniewski. J. Phys.: Cond. Matter 12, 4097 (2000).
- [6] S. Janus, A.J. Wojtowicz. Opt. Mater. **31**, 523 (2009).

- [7] М.В. Астахов, А.О. Родин, В.В. Селезнев, М.Ю. Пигунов. Нано- и микросистем. техника 9, 26 (2009).
- [8] Т.Т. Басиев, М.Е. Дорошенко, В.А. Конюшкин, В.В. Осико, П.П. Федоров, В.А. Демиденко, К.В. Дукельский, И.А. Миронов, А.Н. Смирнов. Изв. РАН. Сер. хим. 5, 863 (2008).
- [9] С.Х. Батыгов, Л.С. Болясникова, Е.А. Гарибин, В.А. Демиденко, М.Е. Дорошенко, К.В. Дукельский, А.А. Лугинина, И.А. Миронов, В.В. Осико, П.П. Федоров. ДАН 422, 179 (2008).
- [10] Г.М. Шапочкин. Спектроскопия фторидных кристаллов и нанокерамик, активированных церием, с применением синхротронного излучения. Автореф. канд. дис. МГУ, М. (2009). 18 с.
- [11] Н.П. Скворцова. ФТТ 48, 70 (2006).
- [12] П.А. Родный, С.Б. Михрин, А.Н. Мишин. Письма в ЖТФ **26**, *15*, 72 (2000).
- [13] P.A. Rodnyi. Rad. Measurements 38, 343 (2004).
- [14] П.А. Родный, И.В. Ходюк, Г.Б. Стрыганюк. ФТТ **50**, 1578 (2008).
- [15] R.T. Williams, K.S. Song. J. Phys. Chem. Solids 51, 679 (1990).