Диэлектрические спектры тонких пленок мультиферроика Bi_{0.98}Nd_{0.02}FeO₃ в терагерцевом диапазоне частот

© Г.А. Командин¹, В.И. Торгашев², А.А. Волков¹, О.Е. Породинков¹, И.Е. Спектор¹, В.М. Мухортов²

¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия ² Южный федеральный университет, Ростов-на-Дону, Россия E-mail: oporodinkov@ran.gpi.ru

(Поступила в Редакцию 21 декабря 2009 г.)

Методами субмиллиметровой спектроскопии на основе ламп обратной волны (ЛОВ) и инфракрасной Фурье-спектроскопии в диапазоне частот $8-1000 \,\mathrm{cm^{-1}}$ при комнатной температуре измерены спектры пропускания и отражения тонких пленок мультиферроика $\mathrm{Bi}_{0.98}\mathrm{Nd}_{0.02}\mathrm{FeO}_3$ на подложках монокристаллического MgO. В рамках модели слоистой среды рассчитаны спектры комплексной диэлектрической проницаемости пленок. Обнаружены мощный рост потерь в области $30 \,\mathrm{cm^{-1}}$ при уменьшении толщины пленок и обусловленное им пятикратное увеличение статической диэлектрической проницаемости (до 500 в пленке толщиной $32 \,\mathrm{nm}$). Явление обсуждается в рамках феноменологической теории фазовых переходов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований в рамках проекта № 09-02-00574-а.

1. Введение

Мультиферроики — вещества, в которых сосуществуют разные по типу параметры порядка: магнитный, сегнетоэлектрический и сегнетоэластический [1,2], что допускает возможность взаимного управления соответствующими характеристиками этих веществ [3].

Феррит висмута BiFeO₃ (BFO) давно известен как материал, в котором магнитное и сегнетоэлектрическое упорядочения реализуются при температурах выше комнатной [4,5]. В последние годы исследования ВFО активизировались [6]. В частности, во множестве работ проведены исследования его решеточных свойств и антиферромагнитных резонансов методами ИК-спектроскопии [7-10] и спектроскопии комбинационного рассеяния [11-22]. В области приложений возрос интерес к тонким пленкам феррита висмута (и атомнозамещенных аналогов) ввиду возможности их использования в планарных технологиях [23]. Кроме того, в тонких наноразмерных пленках BFO происходит разрушение циклоиды — пространственно модулированной структуры, препятствующей в обычных условиях возникновению линейного магнитоэлектрического эффекта [22]. Подавлению циклоидальной структуры также способствует легирование феррита висмута ионами неодима [17].

В настоящей работе методами субмиллиметровой ЛОВ спектроскопии и инфракрасной Фурье-спектроскопии выполнены измерения спектров пропускания и отражения двухслойной гетероэпитаксиальной структуры $Bi_{0.98}Nd_{0.02}FeO_3/MgO$ (BNFO/MgO) в диапазоне частот 8-1000 cm⁻¹ при комнатной температуре. По полученным данным в рамках модели слоистой среды рассчитаны широкодиапазонные спектры действительной и мнимой частей диэлектрической проницаемости пленок

BNFO разной толщины. Обнаружено заметное различие их диэлектрических свойств. Этот эффект анализируется в рамках феноменологической теории фазовых переходов.

2. Эксперимент и обработка спектров

Пленки BNFO были выращены на монокристаллических подложках MgO среза (001) методом высокочастотного распыления керамических мишеней того же состава [22]. Распыление оксида производилось в плазме высокочастотного разряда на кластерном уровне при следующих внешних параметрах: давлении кислорода 0.6 Torr, расстоянии между мишенью и подложкой 23 mm, подводимой высокочастотной мощности 73 W/cm², пороговом значении температуры подложки для монокристаллического роста 350°С. Определение химического состава мишени и пленок производилось на анализаторе СОМЕВАХ-тісго. В качестве эталона использовался монокристалл BiFeO3. Концентрация неодима в пленках соответствовала концентрации в мишени с точностью до 1%. Для исследований были изготовлены пять гетероэпитаксиальных структур BNFO/MgO с пленками толщиной 32, 81, 108, 135 и 324 пт.

Ориентация кристаллографических направлений в пленках ВNFO на подложках MgO определялась на дифрактометре ДРОН-7 методом рентгенодифракционного сканирования в θ -2 θ -геометрии и интервале углов 20 < 2 θ < 110°. Полуширина кривых качания не превышала 5°. Пример рентгенограммы приведен на рис. 1. Из того факта, что на рентгенограмме присутствуют только нерасщепленные псевдокубические отражения (001) и (002) перовскитной фазы BNFO и только отражение (001) от подложки, можно сделать заключение, что направление [001]_{вNFO} параллель-

Рис. 1. Рентгенограммы монокристаллической пленки BNFO толщиной $d_f = 32 \text{ nm}$ на (001) MgO ($\theta - 2\theta$ -сканирование). На вставке — φ -сканирование отражений (113) BNFO и (113) MgO.

но направлению $[001]_{MgO}$. По данным φ -сканирования отражений (113) (вставка на рис. 1) установлены ориентационные соотношения: $[100]_{BNFO} \parallel [110]_{MgO}$ и $[010]_{BNFO} \parallel [1\overline{10}]_{MgO}$.

Материалом подложек для указанных пленок был специально выбран монокристаллический MgO. Обычно при исследовании пленок BFO в качестве подложек используют монокристаллы титаната стронция SrTiO₃ (STO) [11,12,16,20]. Однако для измерений спектрального отклика монокристаллический оксид магния предпочтителен. В электродинамике STO на терагерцевых частотах доминирует интенсивная мягкая мода, что приводит к сильному поглощению ниже 100 cm⁻¹, полностью подавляющему отклик магнитных и электродипольных возбуждений в ВFO. Монокристаллический MgO, наоборот, на частотах ниже собственной частоты фонона $\sim 400\,{
m cm^{-1}}$ имеет слабое поглощение [24], обусловленное разностными двухфононными процессами. При моделировании отклика гетероструктур это поглощение в подложке поддается количественному учету [25].

Для спектральных измерений в настоящей работе использовались две взаимодополняющие экспериментальные методики — лабораторная техника на основе ламп обратной волны (субмиллиметровая ЛОВ-спектроскопия) и стандартный инфракрасный Фурьеспектрометр Bruker IFS-113v. В соответствии с этим запись спектров производилась раздельно для двух частично перекрывающихся частотных областей: 8–40 сm⁻¹ с разрешением не хуже 0.01 сm⁻¹ и 30–1000 сm⁻¹ с разрешением 0.5 сm⁻¹ на частотах до 100 сm⁻¹ и 2 сm⁻¹ на более высоких частотах. Все измерения проводились при комнатной температуре.

По полученным спектрам рассчитывались дисперсионные параметры пленки с использованием френелевских формул взаимодействия плоской волны с двухслойной средой [26]. При заданных толщинах слоев и диэлектрических параметрах MgO, определенных ранее в [25], моделировались экспериментальные спектры пропускания и отражения гетероструктур путем подбора диэлектрических параметров BNFO до наилучшего совпадения расчетных и экспериментальных кривых. При этом в модели учитывались дисперсионные свойства материалов каждого из слоев в форме зависимости диэлектрических параметров BNFO и MgO от частоты.

На первом этапе частотная зависимость диэлектрических параметров BNFO и MgO моделировалась суммой независимых осцилляторов

$$\varepsilon(\nu) = \varepsilon_{\infty} + \sum_{i=1}^{n} \frac{\Delta \varepsilon_{i} \nu_{i}^{2}}{\nu_{i}^{2} - \nu^{2} + i\nu\gamma_{i}},$$
(1)

где v_j — собственная частота осциллятора (частота поперечного оптического фонона), $\Delta \varepsilon_j$ — диэлектрический вклад в статическую проницаемость, γ_j — затухание *j*-го осциллятора, ε_{∞} — высокочастотная диэлектрическая проницаемость.

Для уточнения описания спектров вводилась связь между осцилляторами, их вклад в сумму (1) представлялся формулой [27]

 $\varepsilon_i(v) =$

$$=\frac{s_1(v_2^2-v^2+iv\gamma_2)+s_2(v_1^2-v^2+iv\gamma_1)-2\sqrt{s_1s_2}(\alpha+iv\delta)}{(v_1^2-v^2+iv\gamma_1)(v_2^2-v^2+iv\gamma_2)-(\alpha+iv\delta)^2},$$
(2)

где α — действительная и δ — мнимая константы связи, $s_j = \Delta \varepsilon_j v_j^2$ — сила *j*-го осциллятора, j = 1, 2.

На рис. 2 представлены экспериментальные и модельные спектры пропускания (a) и отражения (b) одной из исследованных гетероструктур BNFO/MgO с толщиной пленки 324 nm. Как видно, измеренные и расчетные спектры пропускания (рис. 2, а) в области частот $\nu \sim 100\,{\rm cm^{-1}}$ совпадают по периоду интерференции, но различаются по амплитуде осцилляций. Это обусловлено высокой погрешностью измерений ИК-спектрометра на низкочастотном краю его рабочего диапазона. Поскольку толщины подложки и пленки различаются на несколько порядков величины, период интерференции в гетероструктуре в подавляющей степени определяется диэлектрической проницаемостью и толщиной подложки. Величины же максимумов интерференции более чувствительны к толщине и диэлектрическим потерям в пленке. В спектре отражения (рис. 2, b) в области $\nu > 100\,{\rm cm^{-1}}$ наблюдается резкое падение амплитуды интерференции, которому соответствует провал в спектре пропускания (рис. 2, a). Как было показано ранее в работе [25], данная особенность является следствием двухфононных разностных процессов поглощения в подложке MgO. Диэлектрическим откликом подложки обусловлена и мощная полоса в спектре отражения в области 400-700 сm⁻¹ (область остаточных лучей).

Рис. 2. Панорамные спектры пропускания (a) и отражения (b) (со стороны пленки) гетероструктуры BNFO/MgO, Точки — эксперимент, пунктир — модельный спектр подложки MgO, сплошная линия — модельный спектр гетероструктуры BNFO/MgO с пленкой BNFO толщиной $d_f = 324$ nm. Указаны интервалы длин волн SBMM и IR, используемые в экспериментальных методиках.

На фоне деталей, связанных преимущественно с подложкой, на рис. 2 хорошо различимы полосы диэлектрического отклика пленки. В спектрах пропускания они проявляются в виде широких провалов, модулирующих интерференционные осцилляции подложки, а спектрам отражения придают изрезанный вид. В целом, спектры пропускания более чувствительны к вкладу низкочастотных мод пленки, а спектры отражения — к вкладу высокочастотных мод.

3. Результаты и обсуждение

Дисперсионные параметры пяти пленок BNFO, полученные фитингом экспериментальных спектров (рис. 2), приведены в табл. 1. На рис. 3 и 4 представлены соответствующие этим параметрам расчетные спектры действительной и мнимой частей диэлектрической проницаемости. Для сравнения на рисунках приведены также диэлектрические спектры керамики феррита висмута ВFO, подробно исследованные ранее в работе [10]. Как видно на рис. 3, спектры толстой пленки BNFO и керамики BFO качественно схожи, демонстрируют одинаковые по добротности пики поглощения на примерно

Таблица 1. Параметры полярных мод в пленках BNFO разной толщины при 300 К ($\varepsilon_{\infty} = 7.5$)

Мола	As	$\Delta \epsilon = \Sigma \Delta \epsilon = \nu_{\rm cm} cm^{-1} = \nu_{\rm cm} cm^{-1}$		22/12			
тигода	<u>цс</u>	2	<i>ν</i> , α	γ, απ	YIV		
I	2	3	4	5	6		
Толщина пленки $d_f = 324$ nm,							
толщина подложки $d_s = 0.234 \mathrm{mm}$							
	- 22		- 64.5	- 27	- 0.42		
L2 13	52 10		133	27 40	0.42		
	12		270	35	0.30		
L 1 15	52		309	78	0.15		
L5 L6	0.16		435	22	0.05		
L7	1.3		535	41	0.08		
_,		69.7					
$d_f = 135 \mathrm{nm}, d_s = 0.735 \mathrm{mm}$							
L1	85		38	26	0.68		
L2	39		66	20	0.30		
L3	19		133	30	0.22		
L4	14		263	35	0.13		
L5	4.6		300	71	0.24		
<i>L</i> 6	0.16		435	22	0.05		
L7	1.7		535	53	0.10		
		78.5					
	d_f =	= 108 nm,	$d_{s} = 0.39$	0 mm			
L1	120		34	26	0.76		
L2	40		67	20	0.30		
L3	20		132	32	0.24		
L4	12		265	40	0.15		
L5	4.1		305	80	0.26		
L6	0.16		435	22	0.05		
L/	1.04	773	537	50	0.09		
$ $ $ $ $//.5$ $ $ $d_c = 81 \text{nm}$ $d_c = 0.710 \text{mm}$							
7.1	150	01 mm,	us 0.712	20	0.04		
	150		32	30	0.94		
L2 13	40		133	23 53	0.54		
	43		267	50	0.40		
15	62		306	79	0.15		
16	0.2		435	20	0.20		
L0 L7	0.95		540	44	0.08		
2,	0150	107.3	0.0		0.00		
$d_f = 32 \mathrm{nm}, d_s = 0.409 \mathrm{mm}$							
L1	400		35	30	0.86		
L2	40		66	25	0.38		
L3	40		131	70	0.53		
L4	8.2		267	50	0.18		
L5	2.6		306	88	0.29		
L6	0.2		460	30	0.06		
L7	0.5		551	49	0.09		
		91.5		-			

Рис. 3. Сравнительные спектры действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей диэлектрической проницаемости толстой пленки BNFO ($d_f = 324$ nm) (сплошная линия) и керамики BFO (пунктир) [10].

одних и тех же частотах. При этом суммарный фононный вклад в диэлектрическую проницаемость на низких частотах у пленки BNFO по сравнению с керамикой BFO оказывается в 2 раза бо́льшим.

Наиболее яркий результат, который демонстрирует рис. 4, — значительный рост потерь на низкочастотном участке диэлектрического спектра в районе $30\,\mathrm{cm}^{-1}$ по мере уменьшения толщины пленки. Самая низкочастотная фононная мода L1 (табл. 1), малозаметная в спектрах поглощения толстых пленок, превращается в спектре тонкой пленки (32 nm) в мощный резонанс. Мода L1 сильно заторможена, величина отношения затухания у к частоте v порядка единицы. По форме L1 близка к релаксации, своим контуром она накрывает практически весь спектр фононных потерь, являясь для высокочастотных пиков своеобразной подставкой. Вклад полосы L1 в статическую диэлектрическую проницаемость $\Delta \varepsilon$ жестко связан с ростом интенсивности поглощения и тоже сильно зависит от толщины пленки. От совсем малого вклада в толстых пленках он увеличивается до значения ~ 400 в тонкой пленке толщиной $32\,\mathrm{nm}$, пятикратно превышая суммарный вклад всех остальных фононов.

Явление увеличения диэлектрической проницаемости с уменьшением толщины в этих же пленках BNFO уже наблюдалось в работе [22] при импедансных измерениях мостовым методом на низких частотах. Для сравнения данные настоящей работы и [22] представлены на рис. 5.

Рис. 4. Спектры действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей диэлектрической проницаемости пленок толщиной 324 (1), 135 (2), 108 (3), 81 (4) и 32 nm (5). Пунктирная линия — спектр керамики BFO.

Рис. 5. Зависимость диэлектрической проницаемости пленок от толщины. *1* — модельный расчет настоящей работы, *2* — данные мегагерцевых диэлектрических измерений работы [22].

Мода	ИК-спектр				Спектр комбинационного рассеяния					
	Наст. раб.	[10]	[8]	[9]	[14]	[15]	[16]	[17]	[20]	[22]
Ε	30	39.4, 47.2								
Ε	64.3	72.3, 102.1	71.9, 99.4	66, 126	77, 136	75(TO), 81(LO), 132(TO)		111.7	72, 76	74
A_1	132.8	131.4, 141.0, 217.0	134.6, 170.3, 228.0	180, 215	147, 176, 227	145(LO), 175.5(LO), 222.7(LO)	140, 175, 220	126.1, 165.5, 213.0	140, 172, 219	142, 171, 225
Ε	270	272.0, 297.6	262.8	240, 262 274	265, 279	263(TO), 276(TO), 295(TO)	275	259.5	261, 269 289	
Ε	309	325.6, 377.3	310.5, 345.1, 369.2	340, 375	351, 375	348(TO), 370(TO)	370, 405	339.6, 366.6	352, 370, 406	
<i>A</i> ₁ , <i>E</i>	435	439.6, 490.0	433.1, 472.5	433, 475	437, 473 490	441(TO), 471(LO)	470	425, 476.9	478	
Ε	534.8	536.6, 546.1	521.1, 554.9	521, 600	525	523(TO), 550(TO)	540	530.9, 599.6	529, 547 609, 808, 946, 1093	

Таблица 2. Частоты дипольных резонансов в пленке BNFO толщиной $d_f = 324 \,\mathrm{nm}$ в сравнении с частатами фононных мод из литературных источников (температура комнатная, $\varepsilon_{\infty} = 7.5$)

Как видно, величина и характер зависимости от диэлектрической проницаемости тонких пленок от толщины на частотах $10 \,\mathrm{cm^{-1}}$ (0.3 THz) и 1 MHz близки. Это означает, что практически весь вклад в статическую проницаемость формируется в терагерцевом диапазоне частот, причем решающая роль в этом процессе в пленках с толщинами меньше 100 nm принадлежит низкочастотной заторможенной моде *L*1.

В значениях параметров фононных мод BFO, многократно измерявшихся разными метолами [8-12,14-17,20-22,28-36], заметен большой разброс. В табл. 2 в качестве примера приведены частоты фононных колебаний, взятые из разных работ. Разброс объясняется разницей типов исследуемых образцов (монокристаллы, керамика, пленки) и способов их приготовления. Последнее обстоятельство порождает разногласия и относительно структуры тонких эпитаксиальных пленок феррита висмута. Сообщается о принадлежности пленок ВFО на подложках STO к тетрагональной [11,23], ромбоэдрической [37,38], моноклинной [20,39] и триклинной [40] сингониям.

В нашем случае (рис. 4) спектры всех пленок демонстрируют не менее шести резонансных пиков поглощения, что превышает число возможных ИК-активных двукратно вырожденных мод тетрагональной симметрии. По этой причине вариант тетрагональной структуры для наших пленок BNFO неприемлем. Поскольку диэлектрические спектры пленок BNFO в ИК-диапазоне выше 50 cm^{-1} качественно совпадают со спектрами керамики BFO с ромбоэдрической структурой R3c [10], считаем, что симметрия толстой пленки BNFO (d = 324 nm) близка к ромбоэдрической.

Примитивная ячейка BFO ($a_{\rm rh} = 5.63$ Å, $\alpha_{\rm rh} = 59.358^{\circ}$) содержит две формульные единицы, Z = 2 [41]. В этом случае колебательное представление имеет вид: $\Gamma_{\rm vib} = 4A_1 + 5A_2 + 9E$ и допускает существование девяти ИК-активных мод. Дисперсионным анализом в спектрах BNFO нами выделено семь решеточных колебаний, два из которых идентифицированы как A_1 -колебания. В силу того, что ось *с* ячейки в наших пленках перпендикулярна подложке, в ИК-спектрах, строго говоря, могут быть активны только *E*-моды. Предполагаем, что моды A_1 в нашем случае возбуждаются из-за нестрогой перпендикулярности волнового вектора плоскости (*a*, *b*) пленки в разных местах поверхности образца.

Отдельную проблему для интерпретации содержит низкочастотная область спектров, где по мере уменьшения толщины пленки формируется мощная резонансная полоса поглощения L1 (рис. 4). Причиной возникновения в спектрах новых полос поглощения обычно считаются структурные преобразования в материале образца. С этой позиции появление в пленках BNFO

η			Пространственная группа	V'	Ба	зисные векто	Тип искажений		
M_5	R_8	Γ_{10}		υ	a	b	с		
000	000	000	<i>Pm</i> 3 <i>m</i> (N 221)	1	\mathbf{a}_1	a ₂	a 3	0	
000	000	100	P4mm (N 99)	1	$-\mathbf{a}_3$	\mathbf{a}_2	\mathbf{a}_1	3	
000	111	000	$R\bar{3}c$ (N 167)	2	$a_2 + a_3$	$a_1 + a_3$	$a_1 + a_2$	2	
001	022	000	<i>Pnma</i> (N 62)	4	$a_2 + a_3$	$2\mathbf{a}_1$	$a_2 - a_3$	4	
000	100	200	<i>I4cm</i> (N 108)	2	$a_2 - a_3$	$a_2 + a_3$	$2a_1$	6	
000	100	002	Fmm2 (N 42)	2	$2a_1$	$2\mathbf{a}_2$	$2a_{3}$		
000	012	034	Fm (N 8)	2	$2a_1$	$2\mathbf{a}_2$	$2a_{3}$		
000	111	222	<i>R</i> 3 <i>c</i> (N 161)	2	$a_2 + a_3$	$a_1 + a_3$	$a_1 + a_2$		
000	121	343	<i>Cc</i> (N 9)	2	$a_1 + a_3$	$a_1 - a_3$	$2\mathbf{a}_2$		
100	000	002	P4bm (N 100)	2	$a_1 - a_2$	$a_1 + a_2$	a ₃	5	
100	220	330	$Pcm2_1$ (N 26)	4	$2a_{3}$	$a_1 + a_2$	$a_2 - a_1$	7	
001	$02\bar{2}$	300	$Pna2_1$ (N 33)	4	$a_2 - a_3$	$a_2 + a_3$	$2a_1$		
001	200	300	P4bm (N 100)	4	$a_2 - a_3$	$\mathbf{a}_2 + \mathbf{a}_3$	$2a_1$		

Таблица 3. Соответствующие фазовой диаграмме на рис. 6 подгруппы пространственной группы $Pm\bar{3}m$ (η — параметр порядка, V'/V — изменение объема ячейки низкосимметричной фазы относительно ячейки перовскита; тип искажений соответствует работе [42])

низкочастотной моды L1 в области 30 ст-1 свидетельствует о структурных искажениях первоначально ромбоэдрической фазы при уменьшении толщины пленки. Такие искажения действительно могут происходить в BNFO с участием вращательных и полярных мод, если продолжить аналогию в BFO. Как было показано в работе [10], структура ВFO определяется трехкомпонентным параметром порядка в *R*-точке зоны Бриллюэна кубического перовскита (мода R8 описывает антифазное вращение сорпяженных октаэдров) и трехкомпонентным параметром порядка в Г-точке (мода поляризации симметрии Г₁₀). Совместная конденсация этих двух мод $(R_8 \oplus \Gamma_{10})$ и задает ромбоэдрическую структуру BFO. В работе [42] однако, нами отмечалось, что с параметрами, которые сейчас рассматриваются как базовые для BNFO, допустимы и другие варианты структурных искажений.

Теоретико-групповой расчет, выполненный нами по схеме работы [42] дает возможную для BNFO фазовую диаграмму, представленную на рис. 6. Из нее следует, что на линии фазовых переходов первого рода сопряженно с фазой R3c располагается орторомбическая фаза Fmm2. Структурная фрустрация между фазами Fmm2 и P4mm устраняется посредством моноклинной фазы Fm. В табл. 3 даны значения компонент параметров порядка, образованных из мод $M_5 \oplus R_8 \oplus \Gamma_{10}$ кубического прототипа, которые конденсируются в фазах, изображенных на рис. 6. Мода М₅ хотя с необходимостью и присутствует в других фазах, но в структурных искажениях фаз Fmm2 и Fm не участвует. Фазы Fmm2 и R3c энергетически близки, и переход между ними не сопровождается существенными структурными искажениями. По этой причине изменения спектра фононного отклика на высоких частотах с изменением толщины пленки незначительны. В то же время все фононные

моды в фазах Fmm2 и Fm становятся невырожденными. Благодаря этому на низких частотах активизируется мода L1. Другими словами, в изначально ромбоэдрической структуре пленок при уменьшении толщины происходит искажение, понижающее симметрию, что снимает вырождение с первоначально вырожденного низкочастотного фонона и активирует в ИК-поглощении две его компоненты.

В качестве дополнительного аргумента в пользу предложенной интерпретации отметим, что гетероструктура

Рис. 6. Фазовая диаграмма для модели трех взаимодействующих мягких мод $M_s \oplus R_8 \oplus \Gamma_{10}$ согласно [42] с реализацией фазовых состояний, приведенных в табл. 3. Цифры (0, 2–7) — типы ротационно-полярных искажений в перовските. Штриховые линии соответствуют фазовым переходам второго рода, сплошные — первого рода. Пунктирные линии — термодинамические пути. Темные кружки — мультифазные точки, светлые кружки — точки фазовых переходов при реализации смены фазовых состояний вдоль термодинамического пути.

BNFO/MgO с пленкой d = 270 nm была исследована в работе [43] методом рентгеновской топографии обратного пространства. Зарегистрированные сверхструктурные рефлексы для пленки BNFO индексированы в предположении гранецентрированной орторомбической ячейки, что согласуется с выводами настоящей работы.

4. Заключение

В диэлектрических спектрах пленок BNFO на подложке MgO в области терагерцевых частот (8–1000 cm⁻¹) зарегистрированы семь решеточных резонансов, шесть из которых на частотах выше 50 cm⁻¹ соответствуют резонансам керамики BFO. Дополнительный по отношению к BFO низкочастотный резонанс в BNFO в области 30 cm^{-1} ($\approx 1 \text{ THz}$) найден низкодобротным ($\gamma/\nu \sim 1$), сильно зависящим от толщины пленки, дающим основной вклад в статическую диэлектрическую проницаемость — до 80% у пленки толщиной 32 nm.

С использованием теоретико-группового анализа показано, что в тонких пленках BNFO на подложке MgO реализуется орторомбическое (или моноклинное) фазовое состояние симметрии *Fmm2* (*Fm*). Такое структурное искажение ранее не наблюдалось на других подложках.

Список литературы

- [1] K. Aizu. Phys. Rev. B 2, 754 (1970).
- [2] D.B. Litvin. Acta Cryst. A 64, 316 (2008).
- [3] K.F. Wang, J.-M. Liu, Z.F. Ren. Adv. Phys. 58, 321 (2009).
- [4] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ 2, 2982 (1960).
- [5] Г.А. Смоленский, В.М. Юдин, Е.С. Шер, Ю.Е. Столыпин. ЖЭТФ 43, 877 (1962).
- [6] G. Catalan, J.F. Scott. Adv. Mater. 21, 2463 (2009).
- [7] W. Kaczmarek, A. Granja. Solid State Commun. 17, 851 (1975).
- [8] S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, J. Kreisel. Phys. Rev. B 75, 024 403 (2007).
- [9] R.P.S.M. Lobo, R.L. Moreira, D. Lebeugle, D. Colson. Phys. Rev. B 76, 172 105 (2007).
- [10] Г.А. Командин, В.И. Торгашев, А.А. Волков, О.Е. Породинков, И.Е. Спектор, А.А. Буш. ФТТ 52, 4, 684 (2010).
- [11] M.K. Singh, S. Ryu, H.M. Jang. Phys. Rev. B 72, 132101 (2005).
- [12] M.K. Singh, H.M. Jang, S. Ryu, M.-H. Jo. Appl. Phys. Lett. 88, 042 907 (2006).
- [13] R. Haumont, J. Kreisel, P. Bouvier, F. Hippert. Phys. Rev. B 73, 132 101 (2006).
- [14] H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama. J. Phys.: Cond. Matter 19, 365 224 (2007).
- [15] M. Cazayous, D. Malka, D. Lebeugle, D. Colson. Appl. Phys. Lett. 91, 071910 (2007).
- [16] H. Béa, M. Bibes, S. Petit, J. Kreisel, A. Barthélémy. Phil. Mag. Lett. 87, 165 (2007).

- [17] G.L. Yuan, S.W. Or, H.L.W. Chan. J. Appl. Phys. 101, 064 101 (2007).
- [18] H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama. J. Magn. Magn. Mater. **310**, e367 (2007).
- [19] M.K. Singh, R.S. Katiyarand, I.F. Scott. J. Phys.: Cond. Matter 20, 252 203 (2008).
- [20] R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott. Phys. Rev. B 77, 014 110 (2008).
- [21] P. Rovillain, J. Cazayous, Y. Gallais, A. Sacuto, R.P.S.M. Lobo, D. Lebeugle, D. Colson. Phys. Rev. B 79, 180 411 (2009).
- [22] В.М. Мухортов, Ю.И. Головко, Ю.И. Юзюк. УФН 79, 909 (2009).
- [23] J. Wang, J.B. Neaton, H. Zeng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh. Science **299**, 1719 (2003).
- [24] J.R. Jaspers, A. Kahan, J.N. Plendl, S.S. Mitra. Phys. Rev. 146, 526 (1966).
- [25] Г.А. Командин, О.Е. Породинков, И.Е. Спектор, А.А. Волков. ФТТ 51, 1928 (2009).
- [26] М. Борн, Э. Вольф. Основы оптики. 2-е изд. Наука, М. (1973). 719 с.
- [27] A.S. Barker, J.J. Hopfield. Phys. Rev. 135, A 1732 (1964).
- [28] A. Kumar, N.M. Murari, R.S. Katiyar. Appl. Phys. Lett. 92, 152 907 (2008).
- [29] P. Hermet, M. Goffinet, J. Kreisel, Ph. Ghosez. Phys. Rev. B 75, 220 102 (2007).
- [30] H.M. Tütüncü, G.P. Srivastava. J. Appl. Phys. 103, 083 712 (2008).
- [31] Y. Yang, L.G. Bai, K. Zhu, Y.L. Liu, S. Jiang, J. Liu, J. Chen, X.R. Xing, J. Phys.: Cond. Matter 21, 385 901 (2009).
- [32] D. Rout, K.-S. Moon, S.-J.L. Kang. J. Raman Spectr. 40, 618 (2009).
- [33] S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou. J. Mater. Sci. 44, 5102 (2009).
- [34] A.A. Porporati, K. Tsuji, M. Valant, A.-K. Axelsson, G. Pezzotti. J. Raman Spectr. 41, 84 (2010).
- [35] R. Haumont, P. Bouvier, A. Pashkin, K. Rabia, S. Frank, B. Dkhil, W.A. Crichton, C.A. Kuntscher, J. Kreisel. Phys. Rev. B 79, 184 110 (2009).
- [36] M.K. Singh, W. Prellier, H.M. Jang, R.S. Katiyar. Solid State Commun. 149, 1971 (2009).
- [37] R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, F. Zavaliche, S.Y. Yang, R. Ramesh, Y.B. Chen, X.Q. Pan, X. Ke, M.S. Rzchowski, S.K. Streiffer. Appl. Phys. Lett. 88, 242 904 (2006).
- [38] X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll. Appl. Phys. Lett. 86, 062 903 (2005).
- [39] G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, D. Viehland. Appl. Phys. Lett. 86, 182 905 (2005).
- [40] L. Yan, H. Cao, J. Li, D. Viehland. Appl. Phys. Lett. 94, 132 901 (2009).
- [41] F. Kubel, H. Schmid. Acta Cryst. B 46, 698 (1990).
- [42] В.И. Торгашев, В.Б. Широков, А.С. Прохоров, Л.А. Шувалов. Кристаллография 50, 689 (2005).
- [43] I.N. Leontyev, A.S. Anokhin, Yu.I. Yuzyuk, Yu.I. Golovko, V.V. Mukhortov, D. Chernyshov, V. Dmitriev, P.-E. Janolin, B. Dkhil, M. El-Marssi. В сб.: Порядок, беспорядок и свойства оксидов (ОДРО-12). Ростов н/Д (2009). Т. 2. С. 12.