Низкотемпературная электропроводность и переход сверхпроводник-диэлектрик в твердых растворах (Pb_{0.5}Sn_{0.5})_{1-x}In_xTe, связанный с примесными состояниями индия

© Д.В. Шамшур¹, Р.В. Парфеньев¹, А.В. Черняев¹, С.А. Немов²

1 Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Санкт-Петербургский государственный политехнический университет,

Санкт-Петербург, Россия

E-mail: d.shamshur@mail.ioffe.ru

(Поступила в Редакцию 24 декабря 2009 г.)

Исследованы низкотемпературные электрофизические характеристики (включая сверхпроводящие) в полупроводниковом твердом растворе (Pb_{0.5}Sn_{0.5})_{1-x}In_xTe с переменным содержанием индия x = 0.05-0.2. Обнаружено, что уменьшение количества примеси x в материале приводит к уменьшению температуры сверхпроводящего перехода T_c и "диэлектрическому" состоянию материала. Эти эффекты проявляются в увеличении низкотемпературного (T = 4.2 K) сопротивления (Pb_{0.5}Sn_{0.5})_{0.95}In_{0.05}Te более чем на три порядка по сравнению с (Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te. Уменьшение количества In в твердом растворе приводит также к принципиальному изменению вида температурной зависимости сопротивления от металлической в материале с x = 0.2 (уменьшение сопротивления с понижением температуры в интервале 300-4.2 K) к полупроводниковой в образце с x = 0.05 (экспоненциальный рост сопротивления при T < 25 K). Эффект "диэлектризации" материала при уменьшении количества примеси связан со смещением примесной полосы квазилокальных состояний индия к потолку валентной зоны легких дырок соединения и выходом ее в область запрещенной зоны твердого раствора.

Работа поддержана грантами РФФИ (№ 07-02-00726), Президиума РАН и № НШ-2184.2008.2.

1. Введение

Научный интерес к легированным соединениям на основе халькогенидов олова и свинца обусловлен физическими явлениями, связанными с резонансными примесными состояниями элементов III группы (In или Tl), расположенными на фоне спектра валентной зоны [1]. Это прежде всего пиннинг уровня Ферми Е_F дырок при легировании, превышающем уровень концентрации собственных дефектов, резонансное рассеяние дырок в квазилокальные состояния примеси, а также возникновение сверхпроводимости с критическими температурами T_c в гелиевой области температур [2]. Сверхпроводимость (СП) при $T > 0.4 \,\text{K}$ в PbTe: Tl, SnTe: In и твердых растворах на их основе наблюдалась, когда полоса квазилокальных состояний In (или Tl) с высокой плотностью состояний (порядка $10^{21} \, {\rm eV^{-1} \cdot cm^{-3}}$), стабилизирующая уровень Ферми, располагалась на фоне зоны тяжелых дырок [3].

Система полупроводниковых соединений SnTe-PbTe образует непрерывный ряд твердых растворов замещения, в котором происходит инверсия зоны проводимости и валентной зоны при содержании PbTe 65 mol.% (рис. 1). Как показано в работе [2,4], в PbSnTe: In критическая температура СП-перехода может достигать $T_c \sim 4.2$ К (что на порядок превышает T_c для нелегированного SnTe [5] при отклонении от

стехиометрии), а второе критическое магнитное поле $H_{c2}(0) \approx 5 \cdot 10^4$ Oe.

В работах [2,6] показано, что параметры СП-перехода в PbSnTe: In сильно зависят от состава матрицы. Это дает возможность управления электрофизическими и СП-свойствами данных материалов путем варьирования состава твердого раствора и изменения уровня легирования. Кроме того, введение элементов III группы в полупроводниковые соединения на основе $A^{IV}B^{VI}$ имеет практический интерес в связи с возможностью повышения термоэлектрической эффективности указанных материалов при учете резонансного рассеяния дырок в примесные состояния [7].

Одним из наиболее интересных эффектов, наблюдаемых при $T_c < 4.2$ К в твердых растворах SnTe-PbTe, легированных In, является низкотемпературный переход сверхпроводник-диэлектрик (СП-Д), обнаруженный в [8]. Переход (Pb_zSn_{1-z})_{0.84}In_{0.16}Te из СП в диэлектрическое состояние происходит при увеличении содержания свинца z > 0.6, когда полоса квазилокальных состояний In смещается из глубины валентной зоны в запрещенную зону материала (рис. 1). В то же время известно, что в PbTe энергетическое положение квазилокального примесного уровня In смещается в область запрещенной зоны при увеличении концентрации In [9]. Поэтому в настоящей работе ставилась экспериментальная задача изучения температурных зависимостей сопротивления R(T) и параметров СП-перехода при

изменении концентрации индия x = 0.05 - 0.2 и соответственно энергетического положения уровня In в образцах (Pb_{0.5}Sn_{0.5})_{1-x}In_xTe с фиксированным содержанием свинца z = 0.5. Обсуждается также вопрос о границе перехода СП-Д при изменении концентрации In и Pb в твердом растворе (Pb_zSn_{1-z})_{1-x}In_xTe.

2. Экспериментальные результаты и их обсуждение

Для исследования были отобраны образцы $(Pb_{0.5}Sn_{0.5})_{1-x}In_xTe$, состав которых близок к бесщелевому состоянию материала (см. энергетическую лиаграмму на рис. 1). Образны с солержанием свинна *z* = 0.5 и различным количеством примеси In (x = 0.05 - 0.2) изготавливались по металлокерамической технологии, позволяющей добиться максимальной однородности по составу [4]. При синтезе образцов выдерживались следующие технологические параметры: сплавление в вакууме чистых исходных компонентов (Pb, Sn, In, Te) производилось при температурах 900-1000 К с последующим отжигом в течение 360 h при T = 650°C и быстрой закалкой. Полученные слитки, раздробленные до размеров зерен порядка 0.1-0.2 mm, прессовались под давлением $4 \cdot 10^3$ kg/cm² при $T = 380^{\circ}$ С и подвергались гомогенизирующему отжигу при $T = 660^{\circ}$ С. Образцы, вырезанные на электроискровой установке, имели размеры 2×4×10 mm, потенциальные и токовые контакты к образцу изготавливались с помощью серебряной токопроводящей пасты "Контактол". Результаты рентгеноструктурного

Рис. 1. Схема структуры энергетического спектра твердых растворов ($Pb_z Sn_{1-z}$)_{1-x}In_x Те по данным [1,7,14] и настоящей работы. Штриховые линии показывают движение эксремумов *L*-зон, штрихпунктирная линия — смещение квазилокального уровня In (при $x_{ln} \leq 0.05$) в зависимости от состава твердого раствора.

Рис. 2. Температурные зависимости удельного сопротивления твердых растворов ($Pb_z Sn_{1-z}$)_{1-x}In_xTe. Содержание индия *x* указано около кривых.

анализа показали отсутствие следов второй фазы во всех исследованых образцах.

Для изучения влияния уровня легирования примесью индия x на параметры СП-перехода сплавов (Pb_{0.5}Sn_{0.5})_{1-x}In_xTe — T_c и $H_{c2}(T)$ — были проведены измерения электрического сопротивления ρ при температурах 1.4—300 К в магнитных полях до 1 Т и коэффициента Холла R при комнатной температуре. Концентрация дырок рассчитывалась по формуле p = (1/eR).

Для образцов с содержанием In $0.08 \le x \le 0.2$ при понижении температуры в интервале 1.4 < T < 4.2 К наблюдался переход в СП-состояние (рис. 2). По мере уменьшения содержания In в твердом растворе критическая температура уменьшалась, и при x < 0.08 сверхпроводимость исчезала. При этом концентрация дырок при комнатной температуре монотонно уменьшалась (от $6 \cdot 10^{21}$ при x = 0.2 до $2.6 \cdot 10^{20}$ cm⁻³ при x = 0.05). Температурные зависимости удельного сопротивления $\rho(T)$, представленные на рис. 2 для твердых растворов $(Pb_{0.5}Sn_{0.5})_{1-x}In_xTe$ с содержанием примеси In x = 0.05, 0.08, 0.12 и 0.20, при уменьшении xиллюстрируют фазовый переход от СП-состояния в $(Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}$ Те при $T \approx 4.2$ К к экспоненциальному (до трех порядков) возрастанию удельного сопротивления в нормальном состоянии $\rho_{4.2\,\mathrm{K}}$ с понижением температуры T < 25 К в (Pb_{0.5}Sn_{0.5})_{0.95}In_{0.05}Te.

На рис. З показаны характерные зависимости сопротивления от магнитного поля $\rho(H)$ в СП-состоянии образца с x = 0.2. Из данных $\rho(H)$ для образцов № 1–3

Электрофизические характеристики и параметры СП-перехода образцов (Pb_{0.5}Sn_{0.5})_{1-x}In_xTe (для образца с x = 0.16 приведены данные [8]): $\rho_{300 \text{ K}}$ и $\rho_{4.2 \text{ K}}$ удельное сопротивление при T = 300 и 4.2 K соответственно; $p_{300 \text{ K}}$ — холловская концентрация носителей заряда, определенная при T = 300 K; T_c — температура сверхпроводящего перехода; $|\partial H_{c2}/\partial T|_{T_c}$ — абсолютная величина производной второго критического магнитного поля по температуре, экстраполированная к T_c ; N(0) — плотность состояний на уровне Ферми, рассчитанная на одну ориентацию спина; T_c и $|\partial H_{c2}/\partial T|_{T_c}$ определялись из условия $\rho(T, H) = 0.5\rho_{4.2 \text{ K}}$.

x	$ ho_{300 \mathrm{K}},$ $\Omega \cdot \mathrm{cm}$	$ ho_{4.2\mathrm{K}},$ $\Omega\cdot\mathrm{cm}$	$p_{300 \text{ K}},$ 10^{20} cm^{-3}	T_c, \mathbf{K}	$ \partial H_{c2}/\partial T _{T_c},$ kOe/K	N(0), $10^{21} \mathrm{eV}^{-1} \cdot \mathrm{cm}^{-3}$	$H_{c2}(T)$, kOe
0.05 0.08 0.12 0.16	0.0027 0.0021 0.0020 0.0010	2.8 0.16 0.0074 0.0012	2.6 - - 53	 2.67 3.34 4.20	- 5.5 4.9 14	- 0.10 0.19 3.3	10 11 41
0.2	0.0010	0.0011	60	4.24	15	3.9	44

Рис. 3. Зависимости приведенного сопротивления ρ/ρ_N образца (Pb_{0.5}Sn_{0.5})_{0.8}In_{0.2}Te от магнитного поля в области СП-перехода. *T*, К: *I* — 4.1, *2* — 4.0, *3* — 3.9, *4* — 3.8, *5* — 3.5.

были построены температурные зависимости второго критического магнитного поля H_{c2} (рис. 4) и определены величины производной $|\partial H_c/\partial T|_{T_c}$. На основании этих зависимостей были рассчитаны значения критического магнитного поля при нулевой температуре $H_{c2}(0) = 0.69T_c |\partial H_{c2}/\partial T|_{T_c}$ и сделаны оценки плотности состояний на уровне Ферми по формуле $N(0) = 2.84 \cdot 10^{14} \cdot \rho_{N^{-1}} |\partial H_{c2}/\partial T|_{T \to T_c}$ [10], представленные в таблице.

Для обсуждения результатов обратимся к зонной диаграмме системы твердых растворов $(Pb_z Sn_{1-z})_{1-x} In_x Te$ (рис. 1), которая была построена на основании следующих данных о параметрах энергетического спектра.

1) Ширина запрещенной зоны теллурида свинца $E_g \approx 0.19 \text{ eV}$, теллурида олова $E_g \approx 0.3 \text{ eV}$ при 0 K [11,12]. С увеличением количества свинца *z* в твердом растворе скорость сближения *L*-экстремумов валентной зоны и зоны проводимости в линейном приближении $\approx 6 \text{ meV/at.}\%$, бесщелевое состояние в системе твердых растворов реализуется при содержании свинца $z \approx 0.65$.

2) Уровень индия E_{In} в PbTe находится в зоне проводимости на расстоянии 0.07 eV от дна зоны при x < 0.05; с увеличением содержания примеси до $x = 0.20 E_{\text{In}}$ смещается в сторону запрещенной зоны [9] со скоростью $dE_{\text{In}}/dx \sim 4 \text{ meV/at.}\%$. Энергетическое положение E_{In} , отсчитанное от потолка валентной зоны, в SnTe меняется от $E_{\text{In}} \sim 0.3 \text{ eV}$ при x = 0.05 до $E_{\text{In}} \sim 0.4 \text{ eV}$ при x = 0.2, находясь на фоне разрешенных состояний тяжелой Σ -зоны (наши оценки [13], выполненные из данных по холловской концентрации дырок с учетом сложного строения валентной зоны SnTe [14]). В твердом растворе (Pb_zSn_{1-z})_{1-x}In_xTe с увеличением количества свинца E_{In} (x = 0.05) смещается к потолку валентной зоны [3].

3) Энергетическое расстояние между краями *L*-зоны легких дырок и Σ -зоны тяжелых дырок $\Delta E_v = 0.19 \text{ eV}$ для PbTe [3] и ~ 0.3 eV для SnTe [13]; таким образом, энергетическое положение Σ -зоны тяжелых дырок изменяется при переходе от SnTe к PbTe значительно слабее, чем E_{In} .

Рис. 4. Зависимости второго критического магнитного поля от температуры в образцах твердых растворов ($Pb_{0.5}Sn_{0.5}$)_{1-x}In_xTe. x: I - 0.2, 2 - 0.12, 3 - 0.08.

Проведенные оценки показывают, что для исследованных составов (Pb_{0.5}Sn_{0.5})_{1-x}In_xTe ширина запрещенной зоны $E_g \sim 0.07 \text{ eV}$, положение вершины тяжелой зоны относительно вершины *L*-экстремума дырок $\Delta E_v \sim 0.3 \text{ eV}$ (рис. 1). Указанная схема энергетического спектра при x = 0.05 - 0.2 позволяет качественно объяснить полученные экспериментальные результаты. При максимальном количестве индия квазилокальные состояния In располагаются на фоне зоны тяжелых дырок. В таких образцах сверхпроводимость характеризуется максимальной $T_c = 4.24 \text{ K}$ и плотность состояний на уровне Ферми достигает значений $N(0) \leq 4 \cdot 10^{21} \text{ eV}^{-1} \cdot \text{сm}^{-3}$ (см. таблицу).

При уменьшении содержания индия уровень Іп смещается в сторону запрещенной зоны соединения и выходит из зоны тяжелых дырок, что приводит к значительному падению концентрации дырок и уменьшению плотности состояний на уровне Ферми (см. таблицу). В результате уменьшается степень гибридизации квазилокальных состояний In и зонных состояний, ослабляется интенсивность резонансного рассеяния дырок (увеличивается энергетический барьер между зонными и примесными состояниями [15]) и уменьшается температура СП-перехода. При дальнейшем уменьшении концентрации In уровень E_{In} умещается в запрещенную зону твердого раствора, что в эксперименте приводит к экспоненциальному возрастанию удельного сопротивления при понижении температуры (рис. 2, 5). На рис. 5 представлена температурная зависимость сопротивления в образце (Pb_{0.5}Sn_{0.5})_{0.95}In_{0.05}Te; там же показаны данные [8] для (Pb_{0.8}Sn_{0.2})_{0.84}In_{0.16}Te. Отметим, что в работе [8] в серии образцов $(Pb_z Sn_{1-z})_{1-x} In_x Te$ с фиксированным содержанием индия x = 0.16 при увеличении содержания свинца вплоть до z = 0.8 наблюдался аналогичный

Рис. 5. Температурные зависимости удельного сопротивления образцов твердых растворов ($Pb_{0.5}Sn_{0.5}$)_{1-x}In_xTe (x = 0.05) и ($Pb_z Sn_{1-z}$)_{0.84}In_{0.16}Te (z = 0.8) (данные работы [8]) в области диэлектрического состояния.

Рис. 6. Фазовая граница между СП-состоянием (I) и диэлектрическим состоянием II твердых растворов $(Pb_z Sn_{1-z})_{1-x} In_x Te$ в координатах $x_{In} - z_{Pb}$. *I*, 2 — составы, обладающие СП- и диэлектрическим состояниями соответственно. Горизонтальная сплошная линия ограничивает предел растворимости примеси индия в $(Pb_z Sn_{1-z})_{1-x} In_x Te$ [2,4].

переход от СП-состояния материала к экспоненциальной зависимости $\rho(T)$. Из данных рис. 5 следует, что в диапазоне температур 4 < T < 25 К в образцах обоих составов выполняется закон Мотта $\rho_h = \rho \exp\left((T_0/T)^{1/4}\right)$ [16] при близких значениях $T_0 \approx 4 \cdot 10^4$ К [8] (линейная аппроксимация $\ln \rho = f(T^{-0.25})$ для образцов z = 0.8, x = 0.16 и z = 0.5, x = 0.05 показана штриховыми линиями). Можно предположить, что для указанных составов температурная зависимость удельного сопротивления ρ при T < 25 К отражает прыжковый механизм проводимости по локализованным примесным состояниям In, расположенным в области запрещенной зоны. Это предположение соответствует наблюдаемой в эксперименте (рис. 2) диэлектризации образца.

Полученные данные наряду с результатами [2,3,8,13] позволили построить фазовую диаграмму $x_{\text{In}} - z_{\text{Pb}}$ (рис. 6), иллюстрирующую переход от сверхпроводящего к диэлектрическому низкотемпературному состоянию в твердых растворах $(Pb_7 Sn_{1-7})_{1-r} In_r Te$ при изменении состава матрицы (содержания свинца z) и концентрации индия х в пределах растворимости x < 0.24 [2,4]. На рис. 6 (символ 1) показаны составы образцов твердых растворов $(Pb_z Sn_{1-z})_{1-x} In_x Te$, в которых наблюдается СП-состояние при T > 0.4 К. Под штриховой линией диаграммы (рис. 6, символы 2) отмечены составы, в которых сверхпроводимость отсутствует и реализуется "диэлектрическое" состояние, характеризующееся экспоненциальной температурной зависимостью сопротивления с понижением температуры. Область I существования СП-состояния $(Pb_z Sn_{1-z})_{1-x} In_x Te$ распространяется на содержание свинца z < 0.45 при концентрации In 0.05 < x < 0.2. Область II диэлектрического состояния распространяется на значения *z* > 0.45 при содержании In 0.05 < x < 0.2. Таким образом, в области температур

1697

 $T \leq 4.2 \,\mathrm{K}$ в $(\mathrm{Pb}_{z} \mathrm{Sn}_{1-z})_{1-x} \mathrm{In}_{x} \mathrm{Te}$ можно определить смещение перехода СП-Д по составу твердого раствора при заданной концентрации легирующей примеси In.

3. Заключение

Исследован переход СП–Д в твердом растворе (Pb_zSn_{1-z})_{1-x}In_xTe, наблюдающийся при уменьшении содержания индия в соединении. Установлено, что при содержании свинца z = 0.5 он происходит при x < 0.08 и связан со смещением E_{In} в область запрещенной зоны соединения, что подтверждается наблюдением при низких (T < 25 K) температурах зависимостей $\rho(T)$, характерных для прыжковой проводимости по примесным состояниям индия. На основании полученных результатов построена фазовая диаграмма, позволяющая прогнозировать низкотемпературные электрофизические характеристики полупроводникового соединения (Pb_zSn_{1-z})_{1-x}In_xTe для заданного состава и уровня легирования In.

Список литературы

- [1] В.И. Кайданов, Ю.И. Равич. УФН 145, 51 (1985).
- [2] Р.В. Парфеньев, Д.В. Шамшур, С.А. Немов. ФТТ **43**, 1772 (2001).
- [3] А.В. Березин, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. ФТТ **35**, 53 (1993).
- [4] Г.С. Бушмарина, И.А. Драбкин, В.В. Компаниец, Р.В. Парфеньев, Д.В. Шамшур, М.А. Шахов. ФТТ 28, 1094 (1986).
- [5] R.A. Hein, P.H.E. Meijr. Phys. Rev. 179, 497 (1969).
- [6] G.S. Bushmarina, I.A. Drabkin, D.V. Mashovets, R.V. Parfeniev, D.V. Shamshur, M.A. Shachov. Physica B 169, 687 (1991).
- [7] В.И. Кайданов, С.А. Немов, Ю.И. Равич. ФТП 26, 201 (1992).
- [8] В.И. Козуб, Р.В. Парфеньев, Д.В. Шамшур, Д.В. Шакура, А.В. Черняев, С.А. Немов. Письма в ЖЭТФ 84, 37 (2006).
- [9] В.В. Голубев, Н.И. Гречко, С.Н. Лыков, Е.П. Сабо, И.А. Черник. ФТП 11, 1704 (1977).
- [10] В.И. Кайданов, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. Письма в ЖЭТФ **35**, 517 (1982).
- [11] М.А. Коржуев. Теллурид германия и его свойства. Наука, М. (1986). 104 с.
- [12] Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS. Наука, М. (1968). 348 с.
- [13] Р.В. Парфеньев, И.Ю. Смирнов, А.В. Черняев, Д.В. Шамшур, С.А. Немов, В.И. Прошин. НТ-34. Тез. докл. Ростов н/Д (2006). Т. 2. С. 266.
- [14] О.Е. Квятковский. ФТТ 32, 2862 (1990).
- [15] Б.А. Волков, Л.И. Рябова, Д.Р. Хохлов. УФН 172, 875 (2002).
- [16] Н.Ф. Мотт. Переходы металл-изолятор. Наука, М. (1979). 344 с.