Междолинное рассеяние электронов на фононах в ультратонких сверхрешетках $(GaAs)_m(AIAs)_n(001)$

© С.Н. Гриняев¹, Л.Н. Никитина¹, В.Г. Тютерев²

¹ Томский политехнический университет, Томск, Россия ² Томский педагогический университет, Томск, Россия E-mail: gsn@phys.tsu.ru

(Поступила в Редакцию в окончательном виде 16 декабря 2009 г.)

На основе метода псевдопотенциала и феноменологической модели сил связи исследовано рассеяние электронов на коротковолновых и длинноволновых фононах в сверхрешетках $(GaAs)_m(AlAs)_n(001)$ с ультратонкими слоями (n, m = 1, 2, 3).

Определены деформационные потенциалы для междолинных переходов электронов в зонах проводимости сверхрешеток и твердых растворов соответствующих составов. Показано, что вследствие локализации волновых функций в квантовых ямах $\underline{\Gamma}$, \underline{L} и \underline{X} междолинные переходы электронов в сверхрешетках в целом интенсивнее аналогичных переходов в твердых растворах. В ряду сверхрешеток с ростом доли легких атомов Al деформационные потенциалы монотонно увеличиваются для переходов типа $\underline{X}-\underline{X}$ и уменьшаются для переходов типа $\underline{L}-\underline{L}$, $\underline{X}-\underline{L}$. Потенциалы переходов типа $\underline{\Gamma}-\underline{X}$ и $\underline{\Gamma}-\underline{L}$ изменяются в зависимости от толщины слоев немонотонно за счет выраженных эффектов размерного квантования в глубоких $\underline{\Gamma}$ квантовых ямах GaAs. Усредненные потенциалы в сверхрешетках в твердых растворах.

Работа выполнена при поддержке грантов РФФИ № 080200640-а и Рособразования № 01.2.007 01695.

1. Введение

Междолинное рассеяние электронов на коротковолновых фононах играет важную роль в транспортных и оптических свойствах полупроводников с многодолинным зонным спектром. Оно вызывает известное явление отрицательной дифференциальной проводимости (эффект Ганна), приводит к непрямозонному поглощению света и токам утечки в каскадных лазерах, уменьшает подвижность электронов в каналах транзисторов, влияет на спектр фотолюминесценции горячих электронов и резонансное рамановское рассеяние, меняет вероятности туннелирования электронов в гетероструктурах и т.д. [1]. Интенсивность рассеяния зависит от электронных и колебательных состояний материала и значений деформационных потенциалов (ДП). Полупроводниковые сверхрешетки (SL) представляют значительный интерес для использования междолинных эффектов в приборах опто- и наноэлектроники. Благодаря размерному квантованию и гибридизации состояний в зоне проводимости SL возникают дополнительные конкурирующие долины, колебания атомов принимают смешанный многомодовый характер, а правила отбора для междолинных переходов становятся менее "жесткими", чем в компонентах. В результате рассеяние электронов на фононах в SL происходит по многочисленным каналам и описывается большим числом ДП, что затрудняет интерпретацию экспериментальных данных и моделирование физических свойств. В связи с этим возникает необходимость определения ДП в SL теоретическими методами.

До сих пор теоретические исследования касались в основном процессов внутридолинного рассеяния электронов на длинноволновых оптических и акустических фононах с применением континуальных и микроскопических моделей [2]. Междолинное рассеяние на короткодействующем потенциале изучено в меньшей степени. В [3] методом огибающих волновых функций рассмотрены переходы $\underline{\Gamma} - \underline{X}$ в сверхрешетках $(GaAs)_m(AlAs)_n$ с толстыми слоями. В [4,5] на основе метода псевдопотенциала и феноменологической модели сил связи определены ДП для всех междолинных переходов в тонкослойных сверхрешетках $(GaAs)_1(AlAs)_1$, $(GaAs)_3(AlAs)_1(001)$. Такой подход позволяет получить более полное и точное описание квазичастичных состояний и механизмов электрон-фононного взаимодействия в SL.

В настоящей работе этот подход использован для установления закономерностей междолинного рассеяния электронов на коротковолновых и длинноволновых фононах в ряду ультратонких сверхрешеток $(GaAs)_m(AlAs)_n(001)$ и соответствующих им твердых растворов.

2. Зонный спектр сверхрешеток

Были рассмотрены SL с четным числом монослоев (m+n) (GaAs)₁(AlAs)₃ (SL13), (GaAs)₂(AlAs)₂ (SL22), (GaAs)₃(AlAs)₁ (SL31), в элементарной ячейке которых содержится восемь атомов, расположенных в последовательных слоях ($\gamma = 1, ..., 8$), отстоящих друг от друга на $a_0/2$ вдоль тетрагональной оси ($a_0 = 5.652$ Å постоянная решетки). Пространственная группа симметрии SL — D_{2d}^5 [6]. Вследствие "сворачивания" зоны Бриллюэна ГЦК-решетки в тетрагональную зону Бриллюэна SL сфалеритные волновые векторы <u>k</u> эквивалентны соответствующим волновым векторам SL k (в единицах $2\pi/a_0$): $\Gamma(0, 0, 0) \rightarrow \Gamma + \underline{X}(0, 0, 1) + \underline{\Delta}(0, 0, 0.5)$ + $\underline{\Delta}(0, 0, -0.5)$; $X(-0.5, 0.5, 0) \rightarrow \underline{L}(0.5, -0.5, 0.5)$; $\underline{L}(0.5, -0.5, -0.5) + \underline{\Sigma}(0.5, -0.5, 0) + \underline{\Sigma}(-0.5, 0.5, 0)$; $M(1, 0, 0) \rightarrow \underline{X}(1, 0, 0) + \underline{X}(0, 1, 0) + \underline{W}(0, 1, 0.5)$ + $\underline{\Psi}(0, 1, -0.5)$ + $\underline{W}(1, 0, 0.5)$ + $\underline{M}(1, 0, 0, -0.5)$; $Z(0, 0, 0.25) \rightarrow \underline{\Delta}(0, 0, -0.75)$. Данная связь векторов указывает на возможное происхождение состояний SL из состояний компонент и их твердых растворов.

Расчет зонных спектров SL проводился методом эмпирического псевдопотенциала [7] с учетом условий обрыва и зависимости атомных формафакторов от ближайшего окружения. Вычисленные энергии основных долин зоны проводимости SL $E_{n\mathbf{k}\alpha}$ (*n* — номер зоны, **k** волновой вектор, а — номер неприводимого представления) в точках зоны Бриллюэна Г, Х, М даны в табл. 1. На рис. 1 показана схема уровней в нижних зонах проводимости и переходов между ними, вызванных колебаниями атомов решетки. Для анализа электронных состояний SL был проведен также расчет зонного спектра твердых растворов $(GaAs)_x(AlAs)_{1-x}$ в приближении виртуального кристалла (VC). Потенциалы VC представлялись в виде средневзвешенных потенциалов атомов компонент с концентрацией x = m/(n+m). Рассчитанные энергии зонных уровней VC даны в табл. 1. Тетрагональная компонента кристаллического потенциала SL приводит к смешиванию и расщеплению состояний VC. Потолку валентной зоны во всех SL отвечает состояние с симметрией Г₅. Нижние состояния зоны проводимости SL31 и SL22 имеют симметрию Γ_1 и энергии 0.16 eV, 0.34 eV соответственно (относительно дна зоны проводимости GaAs). Анализ матриц перекрывания волновых функций SL и VC показал, что состояние Γ_1 (SL31) на 90% происходит из состояния $\Gamma_1(VC31)$, состояние $\Gamma_1(SL22)$ на 97% построено из состояния <u>X</u>₁(VC22). В SL13 нижнее состояние зоны проводимости имеет симметрию Г₃ и энергию 0.28 eV, оно на 99% происходит из состояния <u>X₃</u>(VC13). Состояния SL $M_5(1, 0, 0)$ и X₁, $X_3(-0.5, 0.5, 0)$ построены из состояний VC с волновыми векторами <u>X(1,0,0)</u>, <u>X(0,1,0)</u> и <u>L(0.5,-0.5,0.5)</u>, $\underline{L}(0.5, -0.5, -0.5)$ соответственно. На рис. 1 и в табл. 1 происхождение состояний SL из состояний VC указано в скобках.

Результаты расчета зонного спектра GaAs и AlAs согласуются с экспериментальными значениями разрывов зон на гетерогранице GaAs/AlAs: $\Delta E_{\underline{\Gamma}_{l}} = E_{\underline{\Gamma}_{l}}(AlAs) - E_{\underline{\Gamma}_{l}}(GaAs) = 1.00 \text{ eV}, \quad \Delta E_{\underline{L}_{l}} = E_{\underline{L}_{l}}(AlAs) - E_{\underline{L}_{l}}(GaAs) = 0.56 \text{ eV}, \quad \Delta E_{\underline{X}_{1}} = E_{\underline{X}_{1}}(AlAs) - E_{\underline{X}_{1}}(GaAs) = 0.27 \text{ eV}, \\ \Delta E_{\underline{X}_{3}} = E_{\underline{X}_{3}}(AlAs) - E_{\underline{X}_{3}}(GaAs) = 0.22 \text{ eV}.$ Из них следует, что слои GaAs выступают довольно глубокими квантовыми ямами для электронных состояний $\underline{\Gamma}_{1}$ и \underline{L}_{1} , а

Рис. 1. Уровни зон проводимости SL $(GaAs)_3(AlAs)_1(a)$, $(GaAs)_2(AlAs)_2(b)$ и $(GaAs)_1(AlAs)_3(c)$ в симметричных точках Г, *X*, *M* (относительно потолка валентной зоны SL). Пунктирными линиями указаны возможные междолинные переходы с участием фононов.

SL31			SL22			SL13		
п	kα	$E_{n\mathbf{k}\alpha}$	п	kα	$E_{n\mathbf{k}\alpha}$	п	kα	$E_{n\mathbf{k}\alpha}$
17	$\Gamma_1(\underline{\Gamma}_1)$	0.16(0.36)	17	$\Gamma_1^{(1)}(\underline{X}_1)$	0.34(0.36)	17	$\Gamma_3(\underline{X}_3)$	0.28(0.29)
18	$\Gamma_3(\underline{X}_3)$	0.41(0.42)	18	$\Gamma_1^{(2)}(\underline{\Gamma}_1)$	0.39(0.63)	18	$\Gamma_1(\underline{\Gamma}_1)$	0.53(0.84)
19	$\Gamma_1(\underline{X}_1)$	0.85(0.90)	19	$\Gamma_3(\underline{X}_3)$	0.85(0.97)	17,18	$M_5(\underline{X}_3)$	0.28(0.29)
17,18	$M_5(\underline{X}_3)$	0.41(0.42)	17	$M_1(\underline{X}_3)$	0.35(0.36)	19	$M_1(\underline{X}_1)$	0.83(1.00)
19	$M_4(\underline{X}_1)$	0.74(0.90)	18	$M_4(\underline{X}_3)$	0.35(0.36)	17	$X_1(\underline{L}_1)$	0.44(0.76)
20	$M_1(\underline{X}_1)$	0.95(0.90)	19,20	$M_5(\underline{X}_1)$	0.89(0.97)	18	$X_3(\underline{L}_1)$	0.90(0.76)
17	$X_3(\underline{L}_1)$	0.22(0.50)	17	$X_3(\underline{L}_1)$	0.49(0.65)			
18	$X_1(\underline{L}_1)$	0.56(0.50)	18	$X_1(\underline{L}_1)$	0.51(0.65)			

Таблица 1. Зонные энергии SL $E_{nk\alpha}$ относительно дна зоны проводимости $\underline{\Gamma}_1$ (GaAs) в eV (в скобках указаны симметрия и энергия состояний VC, из которых происходят состояния SL)

слои AlAs — сравнительно мелкими квантовыми ямами для состояний X_1 и X_3 . Поэтому эффекты размерного квантования вызывают наибольшие изменения в Γ_1 и (X_1, X_3) -состояниях SL, являющихся аналогами $\underline{\Gamma}_1$ - и \underline{L}_1 -состояний VC соответственно. Так, сильное смешивание на гетерограницах SL31 и SL13 состояний VC из долин \underline{L}_1 и $\underline{\tilde{L}}_1$ приводит к большому расщеплению состояний X_1 и X_3 (~ 0.3–0.5 eV).

3. Фононный спектр сверхрешеток

Фононный спектр SL рассчитывался в модели жестких ионов аналогично [5]. Вследствие близости постоянных решеток и силовых полей GaAs и AlAs особенности колебательных состояний SL в основном связаны с различием масс атомов Ga и Al. Поэтому фононные спектры SL определялись в приближении дефекта масс, в котором параметры межатомного взаимодействия Ga– As и Al–As считаются одинаковыми. Вычисленные частоты $\omega_s(\mathbf{q})$ фононов Г, X и M, вызывающих интенсивные междолинные переходы в SL, даны в табл. 2 с указанием атомов, испытывающих наибольшие колебания. Приближение дефекта масс приводит к дополнительному вырождению некоторых состояний.

Из анализа векторов поляризации был установлен характер колебаний атомов в SL и их связь с колебаниями в компонентах. Колебания атомов SL носят в основном смешанный характер, в них присутствуют как продольные, так и поперечные колебания из оптических и акустических ветвей GaAs и AlAs. Фононы с большими частотами ($\omega_s(\mathbf{q}) > 9 \text{ THz}$) связаны с колебаниями легких атомов Аl. Частоты фононов X_3 (7.338 THz) в SL13 и X₁(7.438 THz) в SL22 близки к частоте продольных оптических (LO) колебаний GaAs <u>L</u>₁(7.32 THz). Им отвечают колебания атомов Ga(1) и As(8), прилегающих к гетерогранице GaAs/AlAs. В аналогичном фононе SL31 X₃(7.228 THz) колебания интерфейсных атомов также представлены с наибольшим весом, но за счет гибридизации с поперечными оптическими (TO) колебаниями GaAs <u>L₃(7.15 THz)</u> в нем присутствуют также и колебания атомов Ga(5) и As(4) внутри слоя GaAs. Фононы (M_1 , M_4) в SL31 и SL13, а также M_5 в SL22 сопровождаются колебаниями атомов As и происходят из продольных акустических (LA) колебаний бинарных кристаллов с частотой 7.055 THz. Эти же колебания определяют в SL и длинноволновый фонон Γ_3 той же частоты. Другие длинноволновые Γ -колебания в SL (табл. 2) происходят из фононов бинарных кристаллов с линии Δ .

4. Определение деформационных потенциалов

Вероятность междолинного рассеяния электронов на фононах в SL из начального состояния $\Psi_{n\mathbf{k}}$ в конечное состояние $\Psi_{n'\mathbf{k}'}$ с поглощением (+) или испусканием (-) фонона дается выражением [4]

$$W(n\mathbf{k}, n'\mathbf{k}') = \frac{2\pi}{\hbar} \sum_{s\mathbf{q}} \frac{|D_{n\mathbf{k},n',\mathbf{k}'}^s|^2}{2\Omega\rho\omega_s(\mathbf{q})} \left(N_s(\mathbf{q}) + \frac{1}{2} \mp \frac{1}{2} \right)$$
$$\times \delta \left(E_{n\mathbf{k}} - E_{n'\mathbf{k}'} \pm \hbar\omega_s(\mathbf{q}) \right),$$

где Ω — объем элементарной ячейки SL, ρ — плотность, $N_s(\mathbf{q})$ — число фононов, $\mathbf{q} = \mathbf{k}' - \mathbf{k}$ — волновой вектор фонона. Квадраты модулей ДП определяются согласно

$$|D_{n\mathbf{k},n'\mathbf{k}'}^{s}|^{2} = \left|\sum_{i,\gamma} \left(\frac{M}{m_{\gamma}}\right)^{1/2} \left(e_{i}^{\gamma}(s,\mathbf{q}) \cdot d_{i}^{\gamma}(n\mathbf{k},n'\mathbf{k}')\right)\right|^{2},$$

где m_{γ} — масса атома с номером γ , $M = \sum_{\gamma} m_{\gamma}$ — масса элементарной ячейки, $d_i^{\gamma}(n\mathbf{k}, n'\mathbf{k}') = \langle \Psi_{n\mathbf{k}} | \frac{dv_{\gamma}}{dx_i} | \Psi_{n'\mathbf{k}'} \rangle$ матричные элементы градиента атомного псевдопотенциала v_{γ} . Таким образом, ДП зависят от свойств электронной и колебательной подсистем через векторы поляризации, волновые функции, массы и формфакторы псевдопотенциалов атомов.

SL	31	SL2	2	SL13		
$\omega_s(\mathbf{q}), \mathrm{THz}$	Атом	$\omega_s(\mathbf{q}), \mathrm{THz}$	Атом	$\omega_s(\mathbf{q})$, THz	Атом	
$6.458(11,12)M_1, M_2$	As(2,4,6,8)	$2.022(2) M_4$	As(4,6)	$6.172(9,10) M_5$	Ga(1)	
6.527(16,17) M ₅	Ga(1.5)	$5.775(10) M_4$	Ga(1,3)	$6.458(11,12) M_1, M_4$	As(2,4,6,8)	
$7.055(18,19) M_1, M_4$	As(2,4,6,8)	$6.458(11,12)M_5$	As(2,4,6,8)	$7.055(14,15) M_1, M_4$	As(2,4,6,8)	
7.131(20,21) <i>M</i> ₅	Ga(3)	$6.997(16) M_1$	Ga(1,3)	9.134(16,17) M ₅	Al(3,5,7)	
$10.611(23,24) M_5$	Al(7)	$7.055(17,18) M_5$	As(2,4,6,8)	$10.232(20) M_4$	Al(3,7)	
$5.826(11) X_1$	Ga(1,3,5), As(8)	$9.679(20) M_4$	Al(5,7)	10.419(21,22) M ₅	Al(3,7)	
$6.082(12) X_3$	Ga(5), As(6)	$11.479(24) M_1$	Al(5,7)	11.747(23,24) M ₅	Al(3,5,7)	
$7.013(14) X_1$	Ga(3), As(2)	5.010(9) X ₃	Ga(3), As(2,6)	5.071(9) X ₃	Ga(1), As(4,8)	
$7.147(16) X_4$	Ga(3), As(2)	$6.182(11) X_1$	Ga(3), As(4)	$6.378(11) X_3$	As(2,4)	
$7.148(17) X_2$	Ga(1,5)	$6.270(12) X_3$	Ga(1), As(4,6)	$6.388(12) X_1$	Ga(1), As(2,4,6)	
$7.228(18) X_3$	Ga(1,5), As(4,8)	$7.016(13) X_1$	Ga(3), As(2)	$7.111(13) X_1$	Ga(1), As(8)	
$7.291(19) X_1$	Ga(1,5), As(4,8)	$7.109(14) X_3$	$Ga(1), \dot{A}s(8)$	$7.147(14) X_4$	Ga(1), As(8)	
$7.481(20) X_3$	Ga(3), As(2)	$7.147(15,16) X_2, X_4$	Ga(1,3)	$7.338(15) X_3$	Ga(1), As(8)	
$7.600(21) X_1$	Ga(1,3,5), As(8)	$7.434(17) X_3$	Ga(1,3), As(2)	$9.602(16) X_3$	Al(3,5)	
$10.570(22) X_3$	Al(7)	$7.438(18) X_1$	Ga(1), As(8)	$9.692(17) X_1$	Al(5,7)	
$10.582(23) X_1$	Al(7)	$9.768(19) X_3$	Al(5,7), As(4,6)	$10.389(18) X_1$	Al(3,7)	
$10.680(24) X_4$	Al(7)	$10.045(20) X_1$	Al(5,7)	$10.536(19) X_3$	Al(3,7)	
7.024(14) Γ ₃	Ga(1,3,5)	$10.680(21,22) X_2, X_4$	Al(5,7)	$10.680(21) X_4$	Al(3,5)	
$7.055(15) \Gamma_3$	As(2,4,6,8)	$11.043(23) X_1$	Al(5,7)	$11.360(23) X_3$	Al(3,5)	
7.786(18,19) Γ ₅	Ga(1,3,5), As(2,4)	$11.212(24) X_3$	Al(5,7)	7.235(13,14) Γ ₅	Ga(1), As(2,8)	
8.323(21) Γ_3	Ga(1,5), As(2,4,6,7)	$7.474(15) \Gamma_1$	Ga(1,3), As(4,8)	$7.814(15) \Gamma_3$	Ga(1), As(2,8)	
10.534(22,23) Γ_5	Al(7)	7.632(16,17) Γ ₅	Ga(1,3), As(2)	$10.727(20) \Gamma_3$	Al(3,7)	
$11.081(24) \Gamma_3$	Al(7)	$11.057(23) \Gamma_1$	Al(5,7)	10.747(21,22) Γ ₅	Al(3,5,7)	
				$11.084(23) \Gamma_3$	Al(3,5,7)	

Таблица 2. Частоты $\omega_s(\mathbf{q})$ и симметрия фононов, вызывающих интенсивные электронные переходы в зоне проводимости SL (в скобках указаны номера фононных ветвей *s* и слоев колеблющихся атомов γ)

5. Результаты расчета деформационных потенциалов

Вычисленные ДП $|D^s_{nk,n'k'}|$ для основных каналов рассеяния электронов в SL даны в табл. 3. На рис. 2 показаны эффективные ДП, объединенные по фононам и усредненные по родственным электронным состояниям

Рис. 2. Усредненные междолинные деформационные потенциалы в SL (темные символы) и VC (светлые символы).

согласно $\left|\sum_{s} |D^{s}_{n\mathbf{k},n'\mathbf{k}'}|^{2}\right|^{1/2}$. Здесь же для сравнения даны

ДП твердых растворов. Видно, что рассеяние электронов на фононах в SL в целом интенсивнее рассеяния в VC. Из данных расчета фононного спектра и ДП SL (табл. 2, 3), а также анализа векторов поляризации SL и бинарных кристаллов GaAs, AlAs были установлены тип и характер колебаний атомов, вызывающих интенсивные междолинные переходы электронов в SL. Рассмотрим результаты анализа для разных каналов рассеяния.

5.1. Междолинное рассеяние $\Gamma_1 - M_5$, $\Gamma_1 - M_1$, $\Gamma_1 - M_4$. Данные каналы рассеяния являются аналогами <u> $\Gamma - X$ </u>-рассеяния VC и обусловлены в основном колебаниями катионов. Наиболее интенсивное рассеяние связано с колебаниями легких атомов Al.

В SL31 переходы из долины Γ в долину M происходят при участии LA- и TO-подобных колебаний крайних атомов Ga в слое GaAs с частотой 6.527 THz, колебаний общего типа атомов As с частотой 6.458 THz, LA-колебаний атомов As с частотой 7.055 THz, LO-колебаний среднего атома Ga в слое GaAs с частотой 7.131 THz и LO-колебаний атомов Al с частотой 10.611 THz.

В SL22 междолинное рассеяние $\Gamma-M$ электронов определяется LO-колебаниями атомов Ga с частотой 6.997 THz, LA-колебаниями атомов As с частотой 7.055 THz, LO-колебаниями атомов Al с частотами 9.679 и 11.479 THz.

	Свер	хрешетка (GaAs)	$_3(AlAs)_1$			
$\Gamma_1 - M_5(M_5)$	$\Gamma_3 - M_5(M_5)$	$X_3 - \tilde{X}_3(M_4)$	$X_1 - \tilde{X}_1(M_1)$	$X_3 - \tilde{X}_1(M_5)$	-	
3.32(16,17) 4.44(20,21) 5.07(23,24)	6.41(16,17) 5.79(20,21) 7.67(23,24)	0.73(19)	1.00(11) 0.69(18)	$\begin{array}{c} 0.49(16,\!17)\\ 0.30(20,\!21)\\ 0.67(23,\!24) \end{array}$		
$\Gamma_1 - X_3(X_3)$	$\Gamma_3 - X_3(X_3)$	$\Gamma_1 - X_1(X_1)$	$\Gamma_3 - X_1(X_1)$	$M_5 - \tilde{X}_1(X_3 + X_4)$	$M_5 - \tilde{X}_3(X_1 + X_2)$	
$\begin{array}{c} 3.10(12) \\ 2.05(18) \\ 2.10(20) \\ 3.51(22) \end{array}$	2.22(12) 3.21(18) 2.21(22)	1.27(11) 2.64(19) 1.01(21)	2.66(11) 2.40(14)	$\begin{array}{c} 3.75(12) \\ 2.58(16) \\ 1.81(20) \\ 2.39(24) \end{array}$	3.68(11) 2.97(17) 3.00(19) 2.40(23)	
$\Gamma_1 - \Gamma_3(\Gamma_3)$	$X_3 - X_1(\Gamma_5)$	$M_5^{(1)}-M_5^{(2)}(\Gamma_3)$				
$\begin{array}{c} 2.54(14) \\ 4.28(15) \\ 1.09(21) \end{array}$	2.50(18,19) 1.42(22,23)	$\begin{array}{c} 3.42(14) \\ 5.76(15) \\ 4.81(24) \end{array}$				
		Сверхрешетн	ka (GaAs) ₂ (AlAs	$(s)_2$		
$\Gamma_1^{(1)} - M_1(M_1)$	$\Gamma_1^{(1)}-M_4(M_4)$	$\Gamma_1^{(2)} - M_1(M_1)$	$\Gamma_1^{(2)}-M_4(M_4)$	$X_3 - \tilde{X}_3(M_4)$	$X_1 - \tilde{X}_1(M_1)$	$X_3 - \tilde{X}_1(M_5)$
6.22(16) 7.43(24)	2.82(10) 7.28(20)	2.85(16) 1.49(24)	7.84(20)	0.46(2) 0.95(20)	0.89(24)	1.38(11,12) 1.00(17,18)
$\Gamma_1^{(1)} - X_3(X_3)$	$\Gamma_1^{(1)} - X_3(X_3)$	$\Gamma_1^{(2)} - X_1(X_1)$	$\Gamma_1^{(2)} - X_1(X_1)$	$M_1 - \tilde{X}_3(X_4)$	$M_4 - \tilde{X}_1(X_2)$	$M_1 - \tilde{X}_1(X_1)$
1.57(12) 3.34(14) 1.18(24)	$2.18(12) \\ 1.63(14) \\ 4.05(19) \\ 2.18(24)$	2.88(11) 2.15(13) 2.11(20) 1.47(23)	1.62(11) 2.85(18) 1.96(23)	2.43(16) 1.64(22)	2.43(15) 1.64(21)	$\begin{array}{c} 3.68(11) \\ 1.71(18) \\ 2.00(20) \\ 1.85(23) \end{array}$
$\Gamma_{1}^{(1)}{-}\Gamma_{1}^{(2)}(\Gamma_{1})$	$X_3 - X_1(\Gamma_5)$	$M_1 - M_4(\Gamma_4)$				
4.74(15) 1.96(23)	1.90(16,17)	0.06(15) 0.07(23)				
	Свер	хрешетка (GaAs)	1(AlAs)3			
$\Gamma_3 - M_5(M_5)$	$\Gamma_1 - M_5(M_5)$	$X_3 - \tilde{X}_3(M_4)$	$X_1 - \tilde{X}_1(M_1)$	$X_3 - \tilde{X}_1(M_5)$		
2.33(9,10) 3.85(16,17) 7.39(21,22) 3.66(23,24)	2.65(16,17) 4.81(21,22)	0.46(15) 0.35(20)	0.96(11) 0.75(14)	0.44(16,17) 0.47(23,24)		
$\Gamma_3 - X_1(X_1)$	$\Gamma_1 - X_1(X_1)$	$\Gamma_3 - X_3(X_3)$	$\Gamma_1 - X_3(X_3)$	$M_5 - \tilde{X}_1(X_3 + X_4)$	$M_5 - \tilde{X}_3(X_1 + X_2)$	
1.95(12) 2.79(13) 2.76(18)	3.13(12) 2.10(13) 3.74(17) 3.89(18)	2.92(11) 1.55(16) 1.25(19) 1.27(23)	$\begin{array}{c} 1.23(9) \\ 1.63(15) \\ 1.36(16) \\ 1.30(23) \end{array}$	$1.88(11) \\ 1.99(14) \\ 1.48(19) \\ 1.32(21)$	1.95(12) 2.79(13) 2.76(18)	
$\Gamma_1 - \Gamma_3(\Gamma_3)$	$X_3 - X_1(\Gamma_5)$	$M_5^{(1)} - M_5^{(2)}(\Gamma_3)$				
4.71(15) 2.51(23)	$\frac{1.18(13,14)}{1.84(21,22)}$	4.38(15) 7.44(20) 3.77(23)				

Таблица 3. Междолинные деформационные потенциалы $|D^s_{\mu k,\mu' k'}|$ (eV/Å) интенсивных электронных переходов между долинами зоны проводимости Г, X и M (в скобках указаны симметрия фононов и номера ветвей s)

 $M_4 - \tilde{X}_3(X_3)$

1.48(9)

3.84(12)

1.60(17)

1.29(24)

Рис. 3. Зависимость максимума амплитуды волновой функции $|\Psi_{\Gamma_1}(\underline{\Gamma}_1)|$ в окрестности атома Ga из первого слоя в ряду SL и VC.

В SL13 основную роль в рассеянии $\Gamma-M$ играют колебания общего типа атома Ga с частотой 6.172 THz, атомов As с частотами 6.458 и 7.055 THz, атомов Al с частотами 9.134 и 11.747 THz, LO- и TO-колебания крайних атомов Al в слое AlAs с частотой 10.419 THz.

5.2. Междолинное рассеяние $\Gamma_1 - X_1$, $\Gamma_1 - X_3$. В SL31 такие переходы вызваны LA-колебаниями атомов Ga в слое GaAs с частотами 5.826 и 6.082 THz, LO- иTOколебаниями крайних атомов Ga и атомов As в слое GaAs с частотами 7.291 и 7.228 THz, колебаниями общего типа атомов Ga в слое GaAs с частотой 7.600 THz и атома Al в слое AlAs с частотой 10.570 THz.

В SL22 в переходах $\Gamma - X$ и M - X основную роль играют LO-колебания атомов Ga в слое GaAs с частотой 7.438 THz, LO- и LA-колебания атомов Al и As в слое AlAs с частотой 9.768 THz, LA-колебания атомов As в слоях GaAs и AlAs с частотой 6.270 THz.

В SL13 переходы $\Gamma - X$ и M - X обусловлены колебаниями общего типа атомов Al в слоях AlAs с частотой 9.692 THz, LO- и TO-колебаниями атомов Al в слое AlAs с частотой 10.389 THz, колебаниями общего типа крайних атомов Al в слоях AlAs с частотами 9.602 и 11.360 THz.

Переходы $\Gamma_1 - X_1$, $\Gamma_1 - X_3$ выступают аналогами перехода $\underline{\Gamma} - \underline{L}$ VC. Модуль вектора поляризации фононов X слабо меняется в ряду SL, поэтому различия в ДП связаны со свойствами Γ - и X-волновых функций SL. Поскольку относительное изменение электронной плотности у состояний X_1 и X_3 в SL менее значительно, чем у состояния Γ_1 , различия в объединенных ДП каналов рассеяния $\Gamma_1 - X_1$ и $\Gamma_1 - X_3$ в основном определяются особенностями волновой функции Γ_1 -состояния. На рис. 3 показаны модули волновых функций Γ_1 SL и VC в плоскости (001). Их поведение в основном повторяет зависимость ДП рассеяния $\underline{\Gamma} - \underline{L}$. Здесь же

для сравнения приведена модельная оценка амплитуд волновых функций в SL, полученная с учетом того, что в ряду SL плотность вероятности состояния $\Gamma_1(\underline{\Gamma}_1)$ $\rho_{\rm SL} = |\Psi_{\rm SL}|^2$ локализована в слоях GaAs и поэтому ее величина обратно пропорциональна ширине квантовой ямы. Это позволяет представить плотность SL в виде $\rho_{\rm SL} = \frac{m+n}{m} \rho_{\rm VC}$, где $\rho_{\rm VC} = |\Psi_{\rm VC}|^2$ — плотность вероятности VC соответствующего состава. Модельные результаты согласуются с точным расчетом, поэтому основной причиной немонотонной зависимости ДП рассеяния $\underline{\Gamma}-\underline{L}$ в SL является эффект "конфайнмента" волновой функции Γ_1 -состояния в квантовой яме GaAs.

5.3. Междолинное рассеяние Γ_3-M_5 , $\Gamma_1^{(1)} - M_1$, $\Gamma_1^{(1)} - M_4$, $M_5^{(1)} - M_5^{(2)}$, $M_1 - M_4$. Данные каналы рассеяния соответствуют рассеянию <u>X</u> - <u>X̃</u> VC и связаны с колебаниями катионов. Наибольшие значения ДП отвечают переходам $\Gamma_3 - M_5$ и $M_5^{(1)} - M_5^{(2)}$, происходящим за счет оптических колебаний атомов Al.

Вследствие подобия электронных плотностей состояний M и $\Gamma(\underline{X})$ усредненный ДП перехода $\underline{X} - \underline{\tilde{X}}$ меняется монотонно в ряду SL.

5.4. Междолинное рассеяние $X_1 - \tilde{X}_1, X_1 - \tilde{X}_3, X_3 - \tilde{X}_3$. Переходы $X_1 - \tilde{X}_1, X_1 - \tilde{X}_3, X_3 - \tilde{X}_3$ являются аналогами перехода $\underline{L} - \underline{\tilde{L}}$ VC и связаны преимущественно с колебаниями анионов. Поскольку электронная плотность вблизи анионов почти не зависит от химического состава, усредненные потенциалы перехода $\underline{L} - \underline{\tilde{L}}$ в SL имеют близкие значения.

5.5. Рассеяние между долинами, отвечающими одному и тому же волновому вектору. В "прямых" переходах участвуют длинноволновые оптические колебания с симметрией Γ_1 , которым в структуре сфалерита соответствует коротковолновый фонон <u>X</u>. Для расчета ДП этих переходов использовались электронные и фононные состояния из малой окрестности Г-экстремума. Полученные ДП слабо зависят от величины и направления волнового вектора фонона.

Междолинные переходы $M_5^{(1)} - M_5^{(2)}$ и $M_1 - M_4$ происходят при участии длинноволновых акустических коле-

Рис. 4. Дисперсия потенциала внутридолинного перехода $M_1 - M_4$ в сверхрешетке (GaAs)₂(AlAs)₂.

баний катионов. При вычислении их ДП использовались электронные состояния из окрестности точки M. В SL13 и SL31 интенсивность перехода $M_5^{(1)}-M_5^{(2)}$ почти не зависит от выбора таких состояний, тогда как в SL22 эта зависимость ДП перехода M_1-M_4 носит сильно анизотропный характер (рис. 4). Вдоль линии $\Sigma(\Gamma-M)$ ДП перехода M_1-M_4 растет с увеличением модуля волнового вектора фонона **q** и достигает своего насыщения; вдоль линии Y(M-X) зависимость почти линейная; вдоль линии V(M-A) ДП близок к нулю. Поэтому в усредненном ДП перехода X-X длинноволновые каналы рассеяния M_1-M_4 и $M_5^{(1)}-M_5^{(2)}$ не учитывались. Величина ДП перехода X-X слабо зависит от состава SL (рис. 2).

6. Заключение

Определены междолинные ДП для основных каналов рассеяния электронов на фононах в нижних зонах проводимости ультратонких сверхрешеток (AlAs)₁(GaAs)₃, $(AlAs)_2(GaAs)_2$, $(AlAs)_3(GaAs)_1$ (001). Показано, что за счет локализации волновых функций в квантовых ямах <u>Г, Х</u> и <u>L</u> междолинные переходы электронов в сверхрешетках в целом интенсивнее соответствующих переходов в твердых растворах. Более сильная локализация волновых функций в глубоких Г-ямах GaAs вызывает немонотонное изменение ДП переходов Г-Х и $\underline{\Gamma} - \underline{L}$ в ряду SL. Максимальную интенсивность имеют переходы Г₃-М₅ и Z₃-М₅, вызванные оптическими колебаниями легких атомов А1 и являющиеся аналогами переходов <u>X</u> – \underline{X} в твердых растворах. Переходы $\Gamma_1 - M_5$, $\Gamma_1 - X_1, \Gamma_1 - X_3, X_1 - X_1, X_1 - X_3, \Gamma_3 - M_5$ в основном связаны с колебаниями катионов, переходы $X_1 - M_5, X_3 - M_5,$ $\Gamma_3 - X_1$, $\Gamma_3 - X_3$ — с колебаниями анионов. Обнаружена сильная анизотропия вероятности перехода $M_1 - M_4$ в SL22 от величины и направления волнового вектора длинноволновых акустических колебаний катионов.

Полученные ДП вместе с данными для матрицы переноса в гетероструктурах GaAs/AlAs(001) [8] позволяют проводить моделирование оптических и транспортных свойств тонких сверхрешеток (GaAs)_m(AlAs)_n(001) с учетом двух основных механизмов рассеяния электронов — на гетерограницах и фононах.

Список литературы

 З.С. Грибников, О.Э. Райчев. ФТП 23, 2171 (1989);
О.Э. Райчев. ФТП 25, 1228 (1991); А. Mlayah, R. Carles, A. Sayari, R. Chtourou, F.F. Charfi, R. Planel. Phys. Rev. B53, 3960 (1996); R. Teissier, J.J. Finley, M.S. Skolnick, J.W. Cockburn. Phys. Rev. B54, R 8329 (1996); V.F. Sapega, V.I. Perel', A.Yu. Dobin, D.N. Mirlin, I.A. Akimov. Phys. Rev. B56, 6871 (1997); S. Guha, Q. Cai, M. Chandrasekhar, H.R. Chandrasekhar. Phys. Rev. B58, 7222 (1998); I.A. Akimov, V.E. Sapega, D.N. Mirlin, V.M. Ustinov. Physica E10, 505 (2001); X. Gao, D. Botez, I. Knezevic. Appl. Phys. Lett. 89, 191119 (2006); J.McTavish, Z. Ikonic, D. Indjin, P. Harrison. Acta Phys. Pol. A 113, 891 (2008).

- [2] М. Строшно. Фононы в наноструктурах. Физматлит. М. (2006). 320 с.
- [3] O.E. Raichev. Phys. Rev. B 49, 5448 (1994).
- [4] S.N. Grinyaev, G.E. Karavaev, V.G. Tyuterev. Physica B 228, 319 (1996).
- [5] С.Н. Гриняев, Л.Н. Никитина, В.Г. Тютерев. ФТТ 48, 120 (2006).
- [6] О.В. Ковалев. Неприводимые и индуцированные представления и копредставления федоровских групп. Наука, М. (1986). 368 с.
- [7] K.A. Mader, A. Zunger. Phys. Rev. B 40, 10391 (1989).
- [8] Г.Ф. Караваев, С.Н. Гриняев. ФТТ 48, 893 (2006); Г.Ф. Караваев, С.Н. Гриняев. Изв. вузов. Физика 50, 34 (2007).