Влияние магнитного поля на ориентацию кристаллографических осей в поверхностных слоях олова

© Е.В. Чарная^{1,2}, Cheng Tien^{2,3}, Min Kai Lee²

 ¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Петергоф, Россия
² Department of Physics, National Cheng Kung University, Tainan, Taiwan
³ Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan
E-mail: charnaya@mail.ru
(Поступила в Редакцию 10 ноября 2009 г.)

Исследования, проведенные методом ЯМР ¹¹⁹Sn, показали, что слои олова, сформировавшиеся при кристаллизации расплава на поверхности объемных образцов поликристаллического β -Sn в постоянном магнитном поле 9.4 T, ориентированы по отношению к направлению магнитного поля. При сравнении интенсивностей сигналов от расплавленных и закристаллизованных слоев выявлено, что объем ориентированных областей может приближаться к объему всего расплавленного поверхностного слоя.

Работа проводилась при финансовой поддержке Государственного университета им. Чен Куна (Тайвань).

1. Введение

В последнее время в связи с развитием нанотехнологии большой интерес вызывают методы, позволяющие направленно изменять свойства поверхностей различных материалов, в том числе металлических поверхностей. Структура поверхности металлов сказывается на характеристиках молекулярных и органических электронных устройств [1,2], влияет на применение металлов в качестве подложек для микроэлектромеханических элементов и тонких оксидных пленок [3], а также на параметры металлических покрытий и экранов. В настоящей работе показана возможность формирования на поверхности поликристаллических образцов β -модификации олова слоев, имеющих одинаковую ориентацию кристаллографических осей, за счет кристаллизации в постоянном сильном магнитном поле.

2. Образцы и эксперимент

При комнатной температуре и выше стабильной является β -модификация олова, плавящаяся при примерно 505 К. Образцы для исследований были приготовлены из поликристаллического олова чистоты 3N (99.9%). Образец № 1 представлял собой пластину толщиной 1.5 mm, с площадью поверхности 1 cm², обернутую тефлоновой пленкой для изоляции. Образцы № 2 и 3 состояли каждый из трех шариков диаметром около 3 mm, помещенных в запаянные вакуумированную и неоткачанную ампулы из кварцевого стекла соответственно. Образцы № 1–3 нагревались при измерениях не выше 504 К. Образец № 4 в виде запаянного в кварцевой ампуле металлического шарика нагревался выше температуры плавления олова.

Экспериментальные исследования проводились на спектрометре ЯМР Bruker Avance 400, оснащенном

сверхпроводящим магнитом, создающим поле 9.4 Т. Для наблюдения спектра изотопа ¹¹⁹Sn регистрировался сигнал свободной прецессии после зондирующего 90° импульса с последующим преобразованием Фурье. Поскольку изотоп ¹¹⁹Sn имеет низкую природную распространенность, для получения достаточно хорошего отношения сигнал-шум число накоплений было не менее 6144. Положение резонансных линий определялось относительно линии ЯМР от расплава олова при 505 К. Точность стабилизации температуры была не хуже 0.5 К.

3. Экспериментальные результаты

Сигнал ЯМР ¹¹⁹Sn не наблюдался при комнатной температуре во всех исследованных образцах, не подвергнутых предварительному прогреву в катушке спектрометра. При нагреве сигналы ЯМР появлялись около 500 К, когда расплавлялся слой олова на поверхности образцов. Спектр при 500 К для всех образцов состоял из одной

Рис. 1. Нормированные линии ЯМР ¹¹⁹Sn от поверхностного расплавленного слоя олова при температуре 500 K (a) и кристаллического слоя при 470 K (b).

Рис. 2. Сдвиг Найта линии ЯМР ¹¹⁹Sn в зависимости от температуры в образцах № 1–3 при охлаждении от 500 К. Номера кривых соответствуют номерам образцов.

линии шириной $\sim 30 \text{ ppm} (4500 \text{ Hz}) (\text{рис. 1}, a)$. Интенсивность сигнала сильно возрастала, когда образец № 4 нагревался выше 505 К. Наблюдаемая резонансная линия очевидно обусловлена жидким оловом [4-8]. Ее положение определяется изотропным сдвигом Найта для расплава K_L [4]. В диапазоне температур до 510 К эта линия практически не смещалась по частоте в соответствии с известной слабой зависимостью сдвига Найта в расплаве олова [5]. При охлаждении образцов № 1-3 сигнал от расплавленного слоя олова полностью исчезал ниже 470 К вследствие кристаллизации. Однако в спектре ¹¹⁹Sn появлялась другая линия, сдвинутая к высокой частоте по отношению к линии ЯМР от расплава (рис. 1, b). Положение этой линии изменялось от эксперимента к эксперименту, но ее сдвиг относительно резонансной линии от расплава лежал в пределах от 300 до 640 ррт. Ширина линии, появившейся после кристаллизации, практически совпадала с шириной линии от расплава. При дальшейшем понижении температуры до комнатной линия линейно сдвигалась к низким частотам, как показано на рис. 2. Интенсивность линии также изменялась для различных образцов и экспериментов, но не превышала интенсивности линии от расплавленного слоя олова при 500 К. Для результатов, представленных на рис. 2, интенсивность резонансных линий ¹¹⁹Sn составляла от 90 до 60% от интенсивности линии, соответствующей расплавленному слою олова.

4. Обсуждение результатов

Для кристаллического олова β -модификации, имеющего тетрагональную симметрию, частота ЯМР ¹¹⁹Sn (спин I = 1/2) определяется двумя параметрами: изотропным $K_{\rm iso}$ и анизотропным $K_{\rm ax}$ сдвигами Найта [4,6,8]. Эти сдвиги выражаются как $K_{iso} = (K_{\parallel} + 2K_{\perp})/3$ и $K_{ax} = (K_{\parallel} - K_{\perp})/3$, где K_{\parallel} и K_{\perp} обозначают сдвиг Найта при ориентации внешнего магнитного поля параллельно и перпендикулярно кристаллографической оси *z* соответственно [6]. Для монокристаллического образца при произвольной ориентации в магнитном поле, соответствующей углу θ между направлением поля и осью *z*, величина сдвига Найта K_s дается выражением [9]

$$K_s = K_{\rm iso} + K_{\rm ax} (3\cos^2\theta - 1). \tag{1}$$

Ранее было получено, что около точки плавления олова величины K_{iso} и K_L связаны друг с другом соотношением $K_{iso} \cong K_L + 210$ ppm [10,11]. Анизотропный сдвиг Найта около точки плавления приблизительно равен $K_{ax} \cong 230$ ppm [8]. Из выражения (1) следует, что для поликристаллического β -олова ширина линии ЯМР ¹¹⁹Sn должна иметь порядок $3K_{ax} \sim 690$ ppm. Таким образом, отсутствие наблюдаемых сигналов ЯМР ¹¹⁹Sn при температурах ниже плавления олова в начале измерений связано с сильным уширением резонансной линии за счет анизотропии сдвига Найта в соответствии с известными данными [8].

Узкие резонансные линии, появляющиеся в спектре ЯМР в результате кристаллизации поверхностного слоя олова ниже 470 К, могут быть связаны только с формированием ориентированных кристаллических областей на поверхности поликристаллических образцов. Действительно, выражение (1) показывает, что для ориентированных кристаллов сдвиг Найта К_s может принимать значения от $K_L + 670 \,\mathrm{ppm}$ до $K_L - 20 \,\mathrm{ppm}$ в полном соответствии с данными, представленными на рис. 2. Отметим, что наблюдаемые нами сдвиги ЯМР для всех образцов относятся к ориентации оси z по отношению к магнитному полю под углом, меньшим 40°. При этом для образца № 3 ось z была почти параллельна внешнему полю. Тот факт, что ширина резонансных линий от поверхностного слоя, закристаллизовавшегося в магнитном поле, близка к ширине линии от расплава, подтверждает высокую степень ориентированности поверхностного слоя. Поскольку интенсивности линий от кристаллического и расплавленного слоя олова на поверхности образцов были близки, большая часть объема слоя приобретает одинаковую ориентацию при замерзании в магнитном поле.

Температурная зависимость положения линий ЯМР от кристаллического слоя олова также указывает на то, что наблюдаемые линии соответствуют ориентированным областям. Известно, что изотропный сдвиг K_{iso} уменьшается, тогда как анизотропный сдвиг K_{ax} растет с уменьшением температуры [8]. Поэтому из соотношения (1) следует более слабая температурная зависимость сдвига линии для больших K_s , что полностью согласуется с рис. 2. Рассчитанный на основе данных для K_{\parallel} и K_{\perp} , приведенных в [8], коэффициент $\frac{1}{K_s} \frac{dK_s}{dT}$ находится в интервале между $1.4 \cdot 10^{-4}$ и $2.2 \cdot 10^{-4}$ К⁻¹, что также согласуется с рис. 2.

Возможно, наблюдаемый эффект ориентирования кристаллических слоев олова на поверхности поликристаллических образцов в магнитном поле обусловлен тем, что магнитное поле вызывает ориентацию образующихся в расплаве центров кристаллизации. Ориентированные центры кристаллизации приводят затем к ориентации макроскопических областей на поверхности. Преимущественная ориентация наночастиц некоторых немагнитных сплавов и металлического цинка в магнитном поле наблюдалась в работах [12–14].

Таким образом, в настоящей работе методом ЯМР обнаружена ориентация поверхностных слоев олова при кристаллизации в магнитном поле. Сравнение интенсивностей линий ЯМР от расплавленного и закристаллизованного слоев показывает, что почти весь объем слоя может быть ориентированным.

Список литературы

- H.B. Akkerman, P.W.M. Blom, D.M. de Leeuw, B. de Boer. Nature 441, 69 (2006).
- [2] Conjugated polymer and molecular interfaces, science and technology for photonic and optoelectronic applications / Eds W.R. Salaneck, K. Seki, A. Kahn, J.-J. Pireaux. Dekker, N.Y. (2002). 888 p.
- [3] J. Goniakowski, C. Noguera. Phys. Rev. B 79, 155433 (2009).
- [4] Ж. Винтер. Магнитный резонанс в металлах. Мир, М. (1976). 288 с.
- [5] J.M. Titman. Phys. Rep. 33, 1 (1977).
- [6] G.A. Matzkanin, T.A. Scott. Phys. Rev. 151, 360 (1966).
- [7] E.V. Charnaya, Cheng Tien, M.K. Lee, Yu.A. Kumzerov. Phys. Rev. B 75, 144101 (2007).
- [8] F. Borsa, R.G. Barnes. J. Phys. Chem. Sol. 27, 567 (1966).
- [9] J.F. Baugher, P.C. Taylor, T. Oja, P.J. Bray. J. Chem. Phys. 50, 4914 (1969).
- [10] E.M. Dickson. Phys. Rev. 184, 294 (1969).
- [11] W.D. Knight, A.G. Berger, V. Heine. Ann. Phys. (N.Y.) 8, 173 (1959).
- [12] S. Asai. Model. Simul. Mater. Sci. Eng. 12, R1 (2004).
- [13] B.A. Legrand, D. Chateigner, R. Perrier de la Bathie, R. Tournier. J. Magn. Magn. Mater. 173, 20 (1997).
- [14] T. Sugiyama, M. Tahashi, K. Sassa, S. Asai. ISIJ Intern. 43, 855 (2003).