Структура и динамика решетки гетероструктур на основе феррита висмута и титаната бария-стронция на подложке оксида магния

© Ю.И. Головко¹, В.М. Мухортов¹, О.А. Бунина², И.Н. Захарченко², А.С. Анохин², В.Б. Широков², Ю.И. Юзюк²

¹Южный научный центр РАН, Ростов-на-Дону, Россия ²Южный федеральный университет, Ростов-на-Дону, Россия E-mail: yuzyuk@rambler.ru

(Поступила в Редакцию 12 ноября 2009 г.)

Пленки феррита висмута, легированные неодимом, получены на монокристаллических подложках MgO с эпитаксиальным тонким (1-2 nm) подслоем титаната бария-стронция методом высокочастотного распыления керамических мишеней при повышенном парциальном давлении кислорода при температурах ниже температур сегнетоэлектрического и магнитного переходов. Методами дифракции рентгеновских лучей и спектроскопии комбинационного рассеяния света установлено, что в этих пленках феррита висмута реализуется новая фаза, которая не наблюдается в объемных образцах. Симметрия такой фазы моноклинная, элементарная ячейка содержит две формульные единицы, а вектор спонтанной поляризации отклоняется от направления [111]_{сub} и может иметь различные компоненты вдоль осей x, y и z.

Работа проводилась при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 08-02-13511 офи-ц, 09-02-00254-а и 09-02-00666а).

1. Введение

Экспериментальные данные, накопленные с момента получения первых мультиферроиков [1,2] — кристаллических твердых тел, в которых сосуществуют хотя бы два из трех параметров порядка: магнитного, электрического или деформационного, — позволили создавать материалы, обладающие в обычных условиях сильными магнитоэлектрическими свойствами. Феррит висмута BiFeO₃ (BFO) является практически единственным материалом как с сегнетоэлектрическим, так и с антиферромагнитным упорядочением уже при комнатной температуре, что очень важно для практического применения мультиферроиков.

Ниже температуры сегнетоэлектрического перехода $(T_c = 1083 \, {\rm K})$ кристаллическая структура монокристалла BFO описывается пространственной группой R3c. Ромбоэдрическая элементарная ячейка содержит две формульные единицы и при комнатной температуре имеет параметры a = 0.562 nm и $\alpha = 59.35^{\circ}$ [3]. Спонтанная поляризация ориентирована в направлении [111] псевдокубической перовскитной ячейки. Антиферромагнитное упорядочение G-типа возникает ниже $T_{\rm N} = 643 \, {\rm K}$, так что магнитные моменты ионов железа, сохраняя локально антипараллельную ориентацию, поворачиваются по спирали, ориентированной вдоль направления [101], и период этой циклоиды составляет 62 nm [4]. Наличие такой циклоиды приводит к тому, что в среднем по объему линейный магнитоэлектрический эффект и спонтанная намагниченность равны нулю [5,6].

Подавление спиновой циклоиды можно осуществить наложением сильного магнитного поля [7] или замеще-

нием ионов висмута редкоземельными ионами. Добавление ионов неодима способствует подавлению циклоидальной структуры и может приводить к увеличению остаточной поляризации и намагниченности насыщения [8], а также к уменьшеию сегнетоэлектрического коэрцитивного поля и токов утечки [9]. Высоких значений электрической поляризации, магнитоэлектрического эффекта и гигантской магнитоемкости удалось достичь в тонких пленках BiFeO3 за счет сильных эпитаксиальных напряжений, разрушающих магнитное циклоидальное упорядочение [10]. Эти эффекты открывают широкие перспективы для практического использования мультиферроиков в управляемых устройствах СВЧ-диапазона и элементах памяти нового поколения. Недавно обнаруженный в пленках феррита висмута, допированного кальцием, новый эффект — управление электрическим полем свойствами инвертированного *p*-*n*-перехода [11] — свидетельствует о широких возможностях применения структур на основе пленок мультиферроиков в твердотельной электронике.

Наиболее перспективным путем оптимизации функциональных свойств BFO является вариация эпитаксиальных напряжений в пленках за счет выбора подложки или создания промежуточного буферного слоя между пленкой и подложкой. Ранее нами были получены пленки (Bi_{0.98}Nd_{0.02})FeO₃(BNFO), в которых ось [001] пленки параллельна оси [001] подложки MgO, а оси [100] и [010] пленки ориентированы вдоль направлений [110] и [110] подложки соответственно [12–14]. В настоящей работе представлены результаты получения и исследования пленок BNFO на монокристаллических подложках MgO с подслоем монокристаллического Ba_{0.8}Sr_{0.2}TiO₃ (BST).

Для получения многослойной гетероструктуры BNFO/BST на (001) срезах монокристаллов MgO использовались две ВЧ-распылительные системы "Плазма 50 СЭ", где в качестве мишеней применялись стехиометрические керамические диски диаметром 50 mm. Основное отличие используемой методики осаждения известных аналогов состоит в использовании от сильноточного высокочастотного разряда. Подводимая ВЧ-мощность (80 W/cm²), высокое давление кислорода (0.6 Torr) и специальная геометрия электродов позволяли распылять оксид на кластерном уровне, с последующим образованием в плазме динамически стабильных наночастиц сложного оксида, которые служили паровой фазой для осаждаемой пленки. Используемая нами методика высокочастотного распыления ранее была успешно применена для получения эпитаксиальных пленок титаната бария-стронция [15].

На рис. 1 приведено изображение микрорельефа участка (5 \times 5 μ m, толщина 50 nm) поверхности пленки BNFO/BST/MgO, полученное на атомно-силовом микроскопе Интегра. Измерения выполнены в полуконтактном режиме с использованием стандартного кремниевого кантилевера NSG11. Шероховатость пленки 7.5 nm. Микрорельеф поверхности типичен для пленки BFO [16].

Структурное совершенство пленок, параметры элементарной ячейки в направлении нормали к плоскости подложки и в плоскости подложки, а также ориентационные соотношения между пленкой и подложкой при комнатной температуре устанавливались рентгенографированием на дифрактометре Rigaku Ultima IV (конфигурация высокого разрешения для исследования тонких пленок, германиевый монохроматор на первичном пучке, Си K_{α_1} -излучение). При проведении рентгеноструктурных исследований использовались методы $\Theta - 2\Theta$ -сканирования, $2\Theta - \omega$ -сканирования, φ -сканирования, метод скользящего падения рентгеновского пучка,

Рис. 1. Микрорельеф поверхности пленки BNFO/BST/MgO.

Рис. 2. Геометрия съемки рентгенограмм на дифрактометре Ultima IV. *а* — для асимметричных отражений, *b* — при скользящем падении рентгеновских лучей.

съемка симметричных и асимметричных брэгговских отражений. На рис. 2, *а* показана геометрия съемки асимметричных отражений, а на рис. 2, *b* — геометрия съемки при скользящем падении рентгеновских лучей. Измерение состава полученных пленок проверялось с использованием анализатора СОМЕВАХ-тісго. В качестве эталона применялся монокристалл BFO.

Керамическая мишень, использованная для осаждения пленок BNFO, имеет ромбоэдрически искаженную перовскитную ячейку с параметрами при комнатной температуре (в гексагональной установке) a = b = 0.558 nm, c = 1.39 nm, которые совпадают с параметрами решетки BFO [17].

Основные особенности осаждения BNFO по сравнению с BST проявляются во влиянии температуры подложки на синтез и кристаллизацию пленки. В структурах титаната бария-стронция повышение температуры от 723 до 1023 К приводило к следующей последовательности структурного совершенства пленок: рентгеноаморфные — поликристаллические — текстурированные — монокристаллические. В структурах же на основе BNFO при повышении температуры подложки от 613 до 823 К наблюдалась обратная последовательность: монокристаллические пленки, текстурированные пленки, поликристаллические пленки и пленки, состоящие из смеси оксидов. Пороговая температура подложки в процессе напыления BNFO на (100) MgO для монокристаллического роста пленки составляет 613 К, что ниже температур *T*_N и *T*_C для BFO.

Толщина монокристаллического подслоя BST перед напылением BNFO варьировалась от 2 до 100 nm. Влияние подслоя проявлялось в изменении ориентации пленки BNFO относительно кристаллографических направлений оксида магния по сравнению с осаждением на

Рис. 3. Рентгенограмма 2Θ-*ω*-сканирования монокристаллической пленки BNFO на (100) MgO с подслоем BST. На вставке приведен профиль отражения рефлекса (004).

подложку без подслоя. Для всех исследованных пленок независимо от толщины монокристаллического подслоя BST наблюдалась параллельная ориентация осей пленки BNFO и подложки MgO в плоскости срастания.

Результаты рентгенодифракционного 20- ω -сканирования в интервале углов от 5 до 120° (шаг сканирования 0.04°) монокристаллической пленки BNFO толщиной 90 nm на подложке (100) MgO с подслоем BST (толщина 3 nm) приведены на рис. 3. В области рефлексов 002 и 004 подложки с помощью аттенюатора установлено ослабление интенсивности 1/800. На рентгенограмме присутствуют только отражения (00*l*) примитивной перовскитной ячейки BNFO и отражение (002) и (004) от подложки, что свидетельствует об ориентации оси [001] пленки параллельно оси [001] подложки MgO. Примесные фазы обнаружены не были. Вертикальная разориентировка относительно нормали к подложке, определенная по ширинам кривых качания отражения (002) пленки, составляет $\sim 2^{\circ}$. Параметр *c* примитивной перовскитной ячейки больше, чем у объемного материала, и равен 0.3987 ± 0.0001 nm.

Для доказательства факта гетероэпитаксиального роста, определения азимутальной разориентации пленки и ориентационных соотношений между пленкой и подложкой использовался метод φ -сканирования псевдокубических отражений (113) и (103) пленки и подложки. Для того чтобы вывести плоскость (*hkl*) в отражающее положение, угол ω (рис. 2, *a*) устанавливался равным разности между углом отражения Θ и углом α между нормалями к плоскости подложки и к семейству плоскостей {*hkl*}. Использование этого метода дает возможность зафиксировать отражения только от кристаллографических плоскостей, для которых $\Theta > \alpha$. На рис. 4 показаны рентгенограммы отражений (113) от пленки и подложки при изменении угла φ от 0 до 360°. На рентгенограмме присутствуют четыре отражения, отстоящие друг от друга на 90°, при этом угловые положения отражений от пленки и подложки совпадают. Положения осей [100] и [010] соответствуют углам φ , равным 0 и 90° соответственно. Следовательно, в пленке присутствует только одна азимутальная ориентировка пленки относительно подложки: ось [001] пленки параллельна оси [001] подложки MgO, а две другие оси пленки [100] и [010] ориентированы вдоль направлений [100] и [010] подложки соответственно. Этот результат отличается от полученного при напылении пленки BNFO на MgO без подслоя BST, где в азимутальной плоскости пленка развернута на 45° относительно подложки [14].

Для регистрации рефлексов hk0 от пленки использовалась съемка в горизонтальной плоскости в геометрии скользящего падения. При этом первичный пучок падает на поверхность пленки под углом $\omega = 0.3^{\circ}$, близким к критическому (рис. 2, b), а отражение регистрируется под углом $\Theta_D = 0.3^{\circ}$ к поверхности образца. При такой геометрии съемки отражения от подложки не регистрируются. Плоскости hk0 выводились в отражающее положение при φ -сканировании с неподвижным детектором, после чего рефлексы регистрировались при согласованном вращении детектора в горизонтальной

Рис. 4. Рентгенограмма φ -сканирования рефлексов (113) пленки BNFO и подложки MgO в интервале углов φ от 0 до 360°.

Рис. 5. Профили рефлексов (*hk*0), полученные при 2 $\Theta_{\chi} - \varphi$ -сканировании образца при скользящем падении рентгеновских лучей.

плоскости и вращении образца вокруг вертикальной оси (метод $2\Theta_{\chi}-\varphi$). На рис. 5 приведены рентгенограммы отражения (100), (110), (200) и (220). Результаты $2\Theta_{\chi}-\varphi$ -сканирования подтверждают, что угол между осями [100] и [010] равен 90°. Параметры примитивной перовскитной ячейки в плоскости подложки $a = b = 0.3950 \pm 3$ nm меньше, чем у объемного материала, что свидетельствует о присутствии в пленке в плоскости подложки двумерных сжимающих напряжений.

В результате сканирования выделенных областей обратного пространства выявлено присутствие дополнительных сверхструктурных рефлексов, которые удалось проиндицировать в предположении удвоенной перовскитной ячейки как (135), (117). Следовательно, элементарная ячейка пленки BNFO является тетрагональной (хотя и не исключается и моноклинная ячейка, поскольку угол между осью [001] и плоскостью (001) в настоящей работе не определялся) с параметрами C = 2c = 0.7974 nm и A = B = 2a = 0.7900 nm. Для того чтобы сделать выбор между моноклинной и тетрагональной ячейками, необходимы дополнительные прецизионные исследования; полученных в настоящей работе рентгенографических данных для этого недостаточно.

Спектры комбинационного рассеяния

Спектры комбинационного рассеяния света (КРС) возбуждались поляризованным излучением аргонового лазера ($\lambda = 514.5$ nm) и регистрировались однопроходным спектрометром Renishaw, оснащенным фильтром NExT (Near-Excitation Tuneable filter) для анализа низкочастотной области спектров. Возбуждающее излучение фокусировалось на образец с помощью оптического микроскопа Leica, диаметр сфокусированного пучка на образце составлял 2μ m.

Поляризационные спектры КРС гетероструктуры ВNFO/BST/MgO, представленные на рис. 6, были получены на образцах, точно ориентированных в соответствии с кристаллографическими осями подложки MgO, так что $X \parallel [100], Y \parallel [010]$ и $Z \parallel [001]$. Толщина пленки BNFO составляла 250 nm, а подслоя BST — 6 nm. Спектры КРС были получены как в геометрии нормального обратного рассеяния, когда волновые векторы возбуждающего и рассеянного света направлены нормально к поверхности пленки вдоль оси Z, так и в геометрии обрат-

Рис. 6. Поляризационные спектры КРС гетероструктуры BNFO/BST/MgO. Стрелками указаны слабые линии в спектре $Z(XX)\overline{Z}$ с частотами 275, 352, 473, 531 и 625 сm⁻¹ и в спектре $Z(XY)\overline{Z}$ с частотами 224, 268 и 667 сm⁻¹.

ного рассеяния от торца пленки, когда волновые векторы падающего и рассеянного света параллельны оси Y, а поляризация падающего/рассеянного света параллельна оси X либо оси Z. Важно подчеркнуть, что спектр тонкой пленки BST не регистрируется из-за ее малой толщины, а кристалл MgO не имеет КРС активных линий в частотном интервале ниже $800 \,\mathrm{cm}^{-1}$, поэтому наблюдаемые спектры относятся к пленке BNFO.

Частоты линий в поляризационных спектрах КРС гетероструктуры BNFO/BST/MgO не совпадают с частотами в спектрах монокристалла BFO от плоскости (001)_{сиb} при комнатной температуре [18]. Следует отметить, что полуширины линий в спектре пленки BNFO/BST/MgO существенно больше, чем в монокристалле BFO, поэтому линии выше 200 cm⁻¹ сильно перекрываются. Уширение линий, по-видимому, обусловлено локальными структурными искажениями при замещении Ві на Nd, о чем сообщалось ранее в [19]. Разделение спектров на составляющие контуры в модели аддитивных осцилляторов позволило определить частоты линий в спектрах гетероструктуры BNFO/BST/MgO. В спектрах диагональных геометрий рассеяния $Z(YY)\overline{Z}$, $Z(XX)\overline{Z}$ и $Y(ZZ)\overline{Y}$, которые практически эквивалентны, наблюдаются линии с частотами 74, 144, 174, 228, 275, 352, 473, 531 и 625 cm⁻¹. В спектрах недиагональных геометрий рассеяния $Y(XZ)\overline{Y}$ и $Z(XY)\overline{Z}$ наблюдаются линии с частотами 76, 143, 175, 224, 268 и 667 сm⁻¹. Частоты линий и их разделение по поляризациям в спектрах гетероструктуры NBFO/BST/MgO существенно отличаются от экспериментальных результатов, полученных на пленках BFO и NBFO на других подложках. В спектрах КРС поликристаллических ромбоэдрических пленок BNFO на подложках Pt/TiO₂/SiO₂/Si [12], пленок чистого BFO на LaNiO₃/SrTiO₃ [20] и в спектрах поликристаллических ромбоэдрических пленок BFO, выращенных золь-гельметодом на поверхности тонкой пленки BST (30 nm), предварительно осажденной на покрытую платиной кремниевую подложку (BST/Pt/TiO2/SiO2/Si) [21], поляризационной зависимости не наблюдалось в силу поликристаллического характера пленок. В поляризационных спектрах тетрагональных и ромбоэдрических пленок BFO [19,22] наиболее интенсивные линии 136, 168 и 212 ст⁻¹ наблюдались всегда в диагональных геометриях рассеяния, а менее интенсивные линии в области 250–597 ст⁻¹ — в недиагональных.

Поляризационные характеристики спектров КРС исключают ромбоэдрическую симметрию гетероструктуры BNFO/BST/MgO, что согласуется с данными рентгеноструктурного анализа. Наличие спектра в геометрии рассеяния $Z(XY)\overline{Z}$ (рис. 6) однозначно свидетельствует о том, что пленка NBFO не является тетрагональной *с*-доменной. Наличие линий 143, и 175 и 224 сm⁻¹ как в диагональных, так и в недиагональных геометриях рассеяния свидетельствует о понижении симметрии. Очевидно, что симметрия элементарной ячейки NBFO на подложке BST/MgO отлична от симметрии на подложке SrTiO₃, о чем свидетельствуют следующие факты. Самая

низкочастотная линия 76 сm $^{-1}$, имеющая *E*-симметрию в ромбоэдрической фазе, появляется как в диагональных, так и в недиагональных геометриях рассеяния, что может быть обусловлено снятием вырождения этой моды. Линии с частотами 143, 175 и 224 cm⁻¹ относятся к полносимметричным колебаниям ромбоэдрической фазы монокристалла и их появление в спектрах BNFO пленки для недиагональных компонент тензора КРС активности может иметь место либо при понижении симметрии до орторомбической или моноклинной, либо при наличии а- и с-доменов тетрагональной фазы. Последний вариант не согласуется с приведенными выше результатами рентгеноструктурных исследований. Таким образом, хотя параметры элементарной ячейки в плоскости подложки одинаковы, ее симметрия должна быть ниже тетрагональной, т. е. имеет место орторомбическая или моноклинная фаза с двумя формульными единицами в элементраной ячейке, причем степень моноклинного искажения весьма мала, так как спектры диагональных компонент тензора КРС активности весьма близки друг к другу, а спектры недиагональных компонент в пределах погрешности эксперимента состоят из линий с одинаковыми частотами и отличаются только интенсивностями.

4. Обсуждение результатов

Хорошо известно, что низкосимметричная ромбоэдрическая фаза монокристалла BFO есть искаженная перовскитная структура, которая описывается двумя трехкомпонентными параметрами порядка $R_{25} + F_{1u}$, где R_{25} характеризует антифазные вращения октаэдров, а F_{1u} отвечает поляризации. Развороты октаэдров одинаковы вокруг каждой из трех осей с углом поворота порядка 12° [23–25] уже при температуре сегнетоэлектроческого перехода (1083 K), который сопровождается появлением спонтанной поляризации, направленной вдоль пространственной диагонали. Симметрия низкосимметричной фазы описывается пространственной группой R3c и параметр порядка имеет вид (φ , φ , φ , p, p, p).

Симметрийный анализ структурных искажений, индуцированных разворотом кислородных октаэдров и полярными смещениями катионов в пленках перовскитов на (100) поверхности кубической подложке, выполнен авторами работы [26], где перечислены более 30 возможных фаз, из которых 19 содержат две формульные единицы в элементарной ячейке и являются сегнетоэлектрическими. Из них одна является тетрагональной *I4cm*, одна — тригональной *C*1, а остальные — орторомбическими либо моноклинными. Следует отметить, что в случае эпитаксиального роста на (100) поверхности кубической подложки ромбоэдрическая симметрия пленки запрещена.

В нашем случае осаждение тонких эпитаксиальных пленок BNFO производится при температурах суще-

1341

ственно ниже Т_С на кубическую подложку, на которой предварительно выращена тонкая пленка BST, находящаяся при температуре осаждения BNFO в параэлектрической тетрагональной фазе [27]. Тетрагональная симметрия поверхности подложки и промежуточного слоя BST приводит к росту пленки BNFO с псевдотетрагональной ячейкой, симметрия которой ниже тетрагональной. Структурные искажения, возникающие в эпитаксиальной пленке BNFO, включающие как антифазные вращения кислородных октаэдров, так и смещения ионов Ві относительно этих октаэдров, могут приводить к орторомбической или моноклинной фазе, в которой вектор спонтанной поляризации отклоняется от направления [111]_{сub} и может иметь различные компоненты вдоль осей x, y и z. Из перечисленных в [26] возможных сегнетоэлектрических фаз следует отбросить четыре фазы с выделенным направлением спонтанной поляризации вдоль оси z, так как в этом случае будет возникать c-доменная структура, не согласующаяся с данными КРС. Исходя из принципа Кюри симметрия пленки должна быть подгруппой группы симметрии объемного BFO и тетрагональной кубической поверхности подложки. Выполнение этих условий приводит к симметрии Сс пленки с параметром порядка (ϕ_1 , ϕ_1 , ϕ_2 , p_1 , p_1 , p_2), т.е. с поляризацией под углом к поверхности пленки. Для уточнения симметрии пленок BNFO на монокристаллических подложках MgO и BST/MgO необходимы дополнительные прецизионные структурные исследования.

5. Заключение

Методом высокочастотного катодного распыления керамических мишеней при повышенном парциальном давлении кислорода получены пленки BNFO на монокристаллических подложках (001) MgO с наноразмерным подслоем BST. В эпитаксиальных пленках BNFO, выращенных при температурах ниже температур сегнетоэлектрического и магнитного переходов, возникают сжимающие напряжения в плоскости подложки, которые приводят к образованию в пленках в отличие от объемного образца псевдотетрагональной структуры с удвоенными параметрами а, b и с элементарной ячейки. Анализ поляризационных спектров КРС, полученных в различных геометриях рассеяния, позволил исключить тетрагональную симметрию элементарной ячейки. Совокупный анализ экспериментальных результатов и теоретико-групповых расчетов позволяет заключить, что в пленках BNFO на подложках MgO с подслоем BST реализуется новая фаза, которая не наблюдается в объемных образцах. Симметрия такой фазы моноклинная, элементарная ячейка содержит две формульные единицы, а вектор спонтанной поляризации отклоняется от направления [111]_{сиb} и может иметь различные компоненты вдоль осей х, у и z. Необходимы уточнение структуры таких пленок и исследование их магнитных свойств.

Список литературы

- Г.А. Смоленский, А.И. Аграновская. ЖЭТФ 28, 1491 (1958).
- [2] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская, Н.Н. Крайник. ФТТ 2, 2982 (1960).
- [3] J. Jacobson, B.F. Fender. J. Phys. C 8, 844 (1975).
- [4] I. Sosnovska, T. Peterlin-Neumaier, E. Steichle. J. Phys. C15, 4835 (1982).
- [5] А.М. Кадомцева, А.К. Звездин, Ю.Ф. Попов, А.П. Пятаков, Г.П. Воробьев. Письма в ЖЭТФ 79, 705 (2004).
- [6] А.К. Звездин, А.П. Пятаков. УФН 174, 465 (2004).
- [7] B. Ruette, S. Zvyagin, A.P. Pyatakov, A.A. Bush, J.F. Li, V.I. Belotekov, A.K. Zvezdin, D. Viehland. Phys. Rev. B 69, 064 114 (2004).
- [8] F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, J. Zhu. Appl. Phys. Lett. 89, 242 914 (2006).
- [9] G.L. Yuan, S.W. Or, H.L.W. Chan, Z.G. Liu. J. Appl. Phys. 101, 024106 (2007).
- [10] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh. Science **299**, 1719 (2003).
- [11] C.-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh. Nature Mater. 8, 485 (2009).
- [12] М.А. Кузнецов, Е.Д. Мишина, А.И. Морозов, А.С. Сигов, Ю.И. Головко, В.М. Мухортов, В.Т. Мошняга. Нанои микроскопическая техника 12, 20 (2007).
- [13] Н.Э. Шерстюк, Н.А. Ильин, С.В. Семин, Е.Д. Мишина, В.М. Мухортов. ФТТ 51, 1284 (2009).
- [14] В.М. Мухоротов, Ю.И. Головко, Ю.И. Юзюк. УФН 179, 909 (2009).
- [15] В.М. Мухортов, Ю.И. Юзюк. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. ЮНЦ РАН, Ростов н/Д (2008) 224 с.
- [16] G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott. Phys. Rev. Lett. **100**, 027602 (2008).
- [17] P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski. J. Phys. C 13, 1931 (1980).
- [18] H. Fukumura, S. Matsui, H. Harima, T. Takahashi, T. Itoh, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama. J. Phys.: Cond. Matter 19, 365 224 (2007).
- [19] M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo. Appl. Phys. Lett. 88, 042 907 (2006).
- [20] Y. Yang, J.S. Sun, K. Zhu, Y.L. Liu, L. Wan. J. Appl. Phys. 103, 093 532 (2008).
- [21] N.M. Murari, A. Kumar, R. Thomas, R.S. Katiyar. Appl. Phys. Lett. 92, 132 904 (2008).
- [22] M.K. Singh, S. Ryu, H.M. Jang. Phys. Rev. B 72, 132 101 (2005).
- [23] H.D. Megaw, C.N.W. Darlington. Acta Cryst. A 31, 161 (1975).
- [24] В.Б. Широков, В.И. Торгашев. Кристаллография **49**, 25 (2004).
- [25] A. Palewicz, R. Przenioslo, I. Sosnowska, A.W. Hewat. Acta Cryst. B 63, 537 (2007).
- [26] В.Б. Широков, Ю.И. Юзюк, В.В. Леманов. ФТТ 51, 972 (2009).
- [27] Ю.И. Головко, В.М. Мухортов, Ю.И. Юзюк, Р.Е. Janolin, B. Dkhil. ФТТ 50, 467 (2008).