Неоднородное парамагнитное состояние нанокерамики LaMnO_{3+δ}, полученной методом ударно-волнового нагружения

© Т.И. Арбузова, В.И. Воронин, Б.А. Гижевский, С.В. Наумов, В.Л. Арбузов

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: naumov@imp.uran.ru

(Поступила в Редакцию 5 августа 2009 г. В окончательной редакции 10 октября 2009 г.)

> Изучены структурные при T = 300 К и магнитные свойства в парамагнитной области нанокерамики LaMnO_{3+ δ}, полученной методом ударно-волнового нагружения. Образцы содержали смесь орторомбической и ромбоэдрической фаз в разных соотношениях. Закон Кюри–Вейсса выполняется в области T > 440 K $> 2T_c$, а в интервале 300 < T < 440 K вблизи дефектов образуются магнитные поляроны. При увеличении концентрации ионов Mn⁴⁺ T_c уменьшается, что обусловлено уменьшением общего числа Мп-ионов, размерными эффектами малых частиц и дальнодействующими упругими напряжениями.

> Работа поддержана совместным проектом Президиума УрО РАН и СО РАН "Спин-зависимые размерные эффекты в квазидвумерных планарных и объемных наноматериалах на основе переходных металлов и их оксидов".

1. Введение

Обнаруженный в перовскитоподобных манганитах эффект колоссального магнитосопротивления (КМС) стимулировал интенсивное изучение их физических свойств из-за возможности использования этого явления в практических устройствах. Однако требование больших магнитных полей ограничивает практическое применение манганитов. Большой эффект магнитосопротивления в низких приложенных полях можно получить, изменяя внутренние свойства. Одним из таких способов является уменьшение размера частиц до наноразмеров. В нанокристаллических манганитах магнитосопротивление увеличивается за счет спин-поляризованного туннелирования между соседними зернами [1,2]. Кроме усиления магнитосопротивления в низких магнитных полях нанокристаллические манганиты имеют высокий потенциал для использования в качестве электродного материала твердотопливных ячеек, катализаторов, в газовых сенсорах. Большое внимание уделялось изучению магнитных и резистивных свойств нанокристаллических манганитов La_{0.67}Ca_{0.33}MnO₃ [1–4]. Менее изучены нестехиометрические составы LaMnO3+6 с катионными вакансиями, однако они представляют интерес для проблемы корреляции состав-структура-свойства.

Для манганитов характерна сильная взаимосвязь между магнитной, электронной и решеточной подсистемами, что определяет большое разнообразие их свойств. Стехиометрический LaMnO₃ содержит только ионы Mn³⁺ и является полупроводниковым антиферромагнетиком *A*-типа с температурой Нееля $T_{\rm N} = 140$ K [5]. Магнитные моменты упорядочены ферромагнитно в (*ac*)-плоскости, которые образуют антиферромагнитную решетку вдоль оси *b*. В нестехиометрических и легированных манганитах появляются ионы Mn⁴⁺, что приводит к ферромагнетизму. Вблизи температуры Кюри T_c наблюдается переход металл-изолятор. Магнитный порядок определяется суммой вкладов от сверхобмена между ионами Mn и двойного обмена Mn³⁺-Mn⁴⁺ [6]. Эти взаимодействия зависят от расстояний и углов связи между ближайшими магнитными ионами, от степени локализации носителей заряда.

В нестехиометрических образцах LaMnO₃ появление ионов Mn⁴⁺ связано с катионными вакансиями. При малых концентрациях Mn⁴⁺ (< 25% от общего числа ионов Mn) число вакансий в La- и Mn-подрешетках однаково [7], поэтому химический состав можно представить в виде $(LaMn)_{1-x}O_3$ или $LaMnO_{3+\delta}$. При большом содержании Mn⁴⁺ число вакансий в Mn-подрешетке больше числа вакансий в La-позициях, поэтому состав корректно записать в виде $La_{1-x}Mn_{1-y}O_3$ (*x* < *y*). На кристаллическую структуру оказывает большое влияние не только количество Mn⁴⁺, но отношение La/Mn и температура [6,8]. Известно, что метод получения и условия термообработки манганитов могут привести к изменению состава и симметрии кристаллической решетки. В работе [7] получены четыре кристаллографические фазы: две орторомбические фазы Рпта с соотношениями $c/\sqrt{2} < b < a$ и $a < c/\sqrt{2} < b$, моноклинная фаза P_{112} и ромбоэдрическая фаза $R\bar{3}c$. Показано, что температура магнитного упорядочения нечувствительна к структурным изменениям, однако магнитный порядок изменяется от антиферромагнитного до ферромагнитного. В легированных манганитах La_{1-r}A_rMnO₃ (A = Ca, Ba, Sr) увеличение числа ионов Mn⁴⁺ приводит к повышению T_c [6]. В нестехиометрических образцах LaMnO_{3+ δ} нет однозначной связи между T_c и концентрацией Mn⁴⁺ из-за фрустрации ферромагнитных взаимодействий. Например, образцы LaMnO_{3+δ}, содержащие 33% ионов Mn⁴⁺, имели разные значения температуры Кюри: T_c = 145, 167 и 287 К [9]. Установлено, что увеличение дефицита в La-подрешетке приводит к увеличению T_c .

Значительные различия магнитных свойств в объемных и нанокристаллических манганитах объясняют неколлинеарностью спинов в поверхностных слоях малых частиц [10]. Магнитные свойства нанокристаллических манганитов, синтезированных разными способами, также различаются. До сих пор нет ясного понимания магнитных свойств наноманганитов. В настоящей работе изучены магнитные и структурные свойства нанокерамики LaMnO_{3+δ}, полученной методом нагружения сферически сходящимися ударными волнами [11]. Нагруженная керамика имела форму шара с радиусом $\sim 22 \,\mathrm{mm}$. Ранее нами исследован наноструктурный манганит LaMnO3+6, полученный методом механохимии [12]. Магнитная восприимчивость χ измерялась на магнитных весах Фарадея в области полей 0.03-10 kOe и в интервале температур 77 < T < 600 K, включающем в себя как магнитоупорядоченную фазу, так и парамагнитную область. Чувствительность весов составляла $10^{-8} \text{ cm}^3/g$. Температура Кюри T_c оценивалась из температурной зависимости магнитной восприимчивости в слабом постоянном поле путем экстраполяции на ось T наиболее резкого уменьшения $\gamma(T)$. Парамагнитная температура Кюри в определялась экстраполяцией высокотемпературной обратной восприимчивости $1/\chi(T)$, а эффективный магнитный момент — по наклону зависимости $1/\chi(T)$.

Нейтронографические исследования кристаллографической структуры выполнены при комнатной температуре с использованием мультидетекторного нейтронного дифрактометра Д-7а, расположенного на горизонтальном канале реактора ИВВ-2М (г. Заречный) в угловом интервале $9-130^{\circ}$ с шагом 0.05° и угловым разрешением $\Delta d/d = 0.02\%$ (длина волны $\lambda = 1.5325$ Å).

В парамагнитной области манганиты имеют полупроводниковый характер проводимости, поэтому большое магнитосопротивление выше T_c нельзя объяснить механизмом двойного обмена. В работах [6,13] высказано предположение, что эффект КМС связан с наномасштабными коррелированными поляронами, которые образуются только в орторомбической фазе. В связи с этим представляют интерес исследования в температурной области $T \gg 2T_c$, тогда как в большинстве работ ограничиваются интервалом температур, расположенным в области до 300 К.

2. Структурные исследования

На рис. 1 представлены нейтронограммы исходного крупнозернистого поликристалла и нанокерамики LaMnO_{3+ δ}. Все нейтронограммы нормированы на 10 000 в максимуме. Анализ законов погасаний рефлексов показал принадлежность исходного поликристалла к пространственной группе $R\bar{3}c$. Уточнение

Таблица 1. Координаты атомов, изотропные параметры B_{iso} и числа заполнения позиций N (в процентах к полной занятости) в поликристалле LaMnO_{3+ δ}

Атом	Позиция	x/a	y/b	z/c	$B_{\rm iso},{\rm \AA}^{-2}$	N, %
La	6a	0.0	0.0	0.25	0.94(1)	94.6(1)
Mn	6b	0.0	0.0	0.0	0.472(1)	93.3(1)
O	18e	0.44718(7)	0.0	0.25	1.28(1)	100

структурных параметров с использованием метода Ритвельда дало хорошую сходимость расчета с экспериментом. Однако на нейтронограмме наблюдались небольшие дифракционные пики, которые не описывались ромбоэдрическим типом решетки. Эти рефлексы можно отнести к орторомбической пространственной группе Рпта. В LaMnO₃ при отклонениях от стехиометрии могут реализовываться различные типы кристаллической решетки [14]. Анализ нейтронограммы для поликристалла выполнялся в двухфазной модели: основная орторомбическая фаза и небольшая примесь орторомбической фазы. Следует отметить, что обнаружено заполнение кислородных позиций более 100%. Это нереальная ситуация, поэтому мы предположили наличие вакансий в катионных подрешетках La и Mn, что согласуется с литературными данными. Уточненные координаты атомов и тепловые параметры приведены в табл. 1. Химическую формулу исходного поликристалла с учетом заполнения позиций можно представить в виде La_{0.946}Mn_{0.933}O₃.

Для нанокерамических образцов, вырезанных на разном расстоянии от поверхности шара, наблюдали изменения соотношений интенсивностей и ширин рефлексов, особенно в больших углах рассеяния. По мере продвижения от поверхности к центру шара возникают дополнительные рефлексы, которые относятся к орторомбической симметрии решетки. На рис. 2 приведен фрагмент

Рис. 1. Нейтронограммы исходного поликристалла LaMnO_{3+ δ} и образцов, подвергнутых воздействию сходящихся ударных волн и вырезанных на разном расстоянии от поверхности шара. *1* — поликристалл, *2* — 0–5 mm, *3* — 10–15 mm, *4* — 15–20 mm.

	Поликристалл	Расстояние от поверхности нагруженного шара, nm						
Параметр		0-5	10-15	15-20				
	Nº 1	Nº 2	Nº 3	Nº 4				
$R\bar{3}c$								
Концентрация, %	97.1(6)	65(3)	52	30(3)				
a, Å	5.52502(8)	5.5264(5)	5.5300(9)	5.512(1)				
<i>c</i> , Å	13.3298(2)	13.321(2)	13.328(2)	13.412(2)				
$V, Å^3$	352.39(1)	352.33(6)	352.97(9)	353.3(1)				
c/a	2.413	2.410	2.410	2.433				
La–O, Å	2.7565(3)	2.7566(6)	2.7585(3)	2.755(3)				
Mn–O, Å	1.9655(3)	1.966(2)	1.968(4)	1.958(4)				
Угол Mn–O–Mn, $^\circ$	162.922(2)	162.64(2)	162.54(3)	167.07(8)				
		Pnma						
Концентрация, %	2.91	35(3)	48	70(4)				
a, Å		5.5004(9)	5.4976(9)	5.5086(9)				
b, Å		7.751(2)	7.763(1)	7.787(1)				
<i>c</i> , Å		5.543(1)	5.544(1)	5.5338(8)				
$V, Å^3$		236.34(8)	236.61(9)	237.38(6)				
(c-a)/(c+a)		0.0039	0.0042	0.0023				
La–O, Å		2.7647(8)	2.7663(7)	2.773(8)				
Mn–O, Å		1.974(3)	1.975(2)	1.986(2)				
Угол Mn $-O1-$ Mn, $^{\circ}$		157.32(6)	157.89(6)	159.0(2)				
Угол Mn–O2–Mn, $^\circ$		164.0(3)	163.2(2)	157.25(5)				

Таблица 2. Структурные характеристики нагруженной керамики LaMnO_{3+δ} (образцы № 1-4)

Рис. 2. Фрагмент нейтронограмм керамики LaMnO_{3+ δ}, показанных на рис. 1. Одинарные стрелки — рефлексы фазы $R\bar{3}c$, двойные — *Pnma*.

нейтронограмм для поликристалла и нанокерамических образцов LaMnO_{3+ δ}. Интенсивность рефлексов от орторомбической фазы (двойные стрелки) увеличивается, а интенсивность рефлексов от ромбоэдрической фазы уменьшается. Это свидетельствует об увеличении содержания орторомбической фазы в центральной части шара. При анализе в рамках двухфазной модели мы

предположили равными ширину и форму линий в $R\bar{3}c$ и *Рпта*-фазах и одинаковыми изотропные тепловые факторы атомов кислорода в орторомбической фазе. В табл. 2 приведены уточненные структурные параметры для двух фаз в нанокерамике LaMnO_{3+ δ}. Исходный поликристалл содержит всего 2.91% *Рпта*-фазы, а в образце из центральной части шара содержание этой фазы увеличилось до 70%. Объем элементарной ячейки для керамики увеличивается по направлению к центру шара.

Рис. 3. Угловые зависимости полуширины рефлексов орторомбической фазы LaMnO_{3+ δ}. *1*-*4* — то же, что и на рис. 1.

Рис. 4. Микроструктура керамики LaMnO_{3+ δ} из различных частей нагруженного шара. *a* — поверхность (0–5 mm), *b* — 3–7 mm от поверхности, *c* — центр (15–20 mm).

Дифракционные линии обычно уширяются при увеличении упругих напряжений и при уменьшении размера частиц (областей когерентного рассеяния). На рис. 3 представлены угловые зависимости полуширины рефлексов орторомбической фазы в нагруженных образцах LaMnO_{3+δ}. Угловые зависимости полуширины рефлексов от ромбоэдрической фазы качественно подобны. Исходный поликристалл LaMnO_{3+δ}, полученный обычным керамическим методом, имеет большой размер частиц (более 1 µm) и слабые упругие напряжения, что проявляется в малой величине полуширины дифракционных линий. В нагруженной керамике наибольшую ширину линий имеют образцы из поверхностных слоев шара. По мере продвижения от поверхности к центру шара полуширина линий в больших углах уменьшается. Учитывая тот факт, что поликристалл и нанокерамика из поверхностных слоев шара имеют близкие значения параметров решетки, можно предположить, что уширение рефлексов связано с увеличением микронапряжений кристаллической решетки и с уменьшением размера кристаллитов. Упругие напряжения увеличиваются от центра ($\varepsilon = 0.48\%$) к поверхности шара $(\varepsilon = 0.71\%)$. Уменьшение микродеформаций в центральной части шара можно объяснить релаксационными процессами в условиях высоких остаточных температур после ударно-волнового нагружения. Микроструктура керамики LaMnO_{3+ δ} из разных частей шара, полученная методом сканирующей электронной микроскопии, представлена на рис. 4. Центральная часть содержала смесь крупных частиц круглой формы размером $d \approx 2.0 \, \mu {
m m}$ и мелких частиц размером $d \approx 500$ nm. Вблизи поверхности шара также имелась смесь (по 50%) крупных частиц с $d = 1.6\,\mu\text{m}$ и мелких частиц размером $d \approx 130\,\text{nm}$ с острыми краями. Наибольшее число малых частиц с размером $d = 200 \,\mathrm{nm}$ обнаружено в области $3-6\,\mu\mathrm{m}$ от поверхности. По-видимому, крупные частицы состоят из более мелких кристаллитов. Оценки размеров областей когерентного рассеяния методом Вильямсона-Холла

Магнитные свойства нанокерамики LaMnO_{3+δ}

Все исследованные образцы обладают ферромагнитным моментом. На рис. 5 представлены температурные зависимости приведенной магнитной восприимчивости χ_{dc} в постоянном поле H = 60 Ое для нанокерамических образцов LaMnO_{3+δ} из разных глубин нагруженного шара. Для сравнения приведена зависимость $\chi_{dc}(T)$ для исходного поликристалла. Самое высокое значение температуры Кюри Т_с имеет образец из центральной части шара. По мере продвижения к поверхности шара Т_с уменьшается. Самое низкое значение Т_с и широкий фазовый переход из магнитоупорядоченного в парамагнитное состояние имеет исходный поликристалл (*R*-фаза). Широкий фазовый переход указывает на неоднородное магнитное состояние. Для магнитных измерений использовались малые образцы массой $m = 2 - 4 \,\mathrm{mg}$, поэтому размытый фазовый переход связан, по-видимому, не с химической неоднородностью образцов LaMnO_{3+ δ}, а с внутренней электронной неоднородностью, характерной для манганитов. Известно, что наномасштабные электронные и структурные неоднородности в манганитах могут привести к разделению магнитных фаз, т.е. к сосуществованию антиферромагнитных и ферромагнитных областей [15].

Измерения восприимчивости в области температур, значительно превышающих T_c , представляют интерес по ряду причин. В далекой парамагнитной области $(T > 2T_c)$ для изолированных магнитных ионов должен

Рис. 5. Температурные зависимости dc-восприимчивости исходного поликристалла LaMnO_{3+ δ} (1) и образцов, вырезанных на расстоянии 0–5 (2), 3–7 (3), 15–20 mm (4) от поверхности шара, в поле H = 60 Oe.

Рис. 6. Температурные зависимости обратной восприимчивости для нанокерамики LaMnO_{3+ δ} из центра нагруженного шара в различных магнитных полях. *H*, kOe: *1* — 2.65, *2* — 5.35, *3* — 8.9. *T*₁ — температура перехода в неоднородное парамагнитное состояние, *T*₂ — температура перехода в однородное парамагнитное состояние.

выполняться закон Кюри-Вейсса

$$\chi = \frac{C}{T - \theta} = \frac{N\mu_{\text{eff}}^2}{3k(T - \theta)},\tag{1}$$

где $\mu_{\mathrm{eff}}^2 = g^2 S(S+1) \mu_{\mathrm{B}}^2, \theta$ — парамагнитная температура Кюри.

Из экспериментальных значений µ_{eff} можно оценить концентрацию магнитных ионов Mn^{3+} (S = 2) и Mn^{4+} (S = 3/2) в LaMnO_{3+ δ}, определяющих магнитный порядок. По характеру поведения зависимости $1/\chi(T)$ в температурном интервале $T_c < T < 2T_c$ можно судить о типе магнитного упорядочения и области сохранения ближнего магнитного порядка. На рис. 6 представлена температурная зависимость обратной восприимчивости в полях 2.65, 5.35 и 8.9 kOe для образца из центральной части шара, содержащего 70% фазы Рпта и 30% фазы $R\bar{3}c$. Видно, что в области T > 300 К восприимчивость не зависит от поля. Закон Кюри-Вейсса с $\mu_{\rm eff} = 4.80 \,\mu_{\rm B}$ и $\theta = 246 \,\rm K$ начинает выполняться только при $T > 440 \,\mathrm{K}$, значительно превышающих $2T_c$. Положительное значение $\theta > T_c$ указывает на ферромагнитные Mn³⁺-Mn⁴⁺-взаимодействия, которые преобладают над антиферромагнитным сверхобменом. Из значения

$$\mu_{\rm eff}^2 = (1-x)g^2 S_1 (S_1 + 1)\mu_{\rm B}^2 + xg^2 S_2 (S_2 + 1)\mu_{\rm B}^2 \qquad (2)$$

была определена концентрация *х* ионов Mn⁴⁺. Полученное значение 12% Mn⁴⁺ хорошо согласуется с нейтронографическими данными. При небольших отклонениях от стехиометрического состава обычно присутствуют вакансии в катионных подрешетках в равном количестве [7]. В этом случае состав данного образца можно представить в виде LaMnO_{3+δ} или LaMnO_{3.06}.

В области 290 < T < 440 К эффективный магнитный момент увеличивается до $5.40 \,\mu_{\rm B}$, а в области 220-290 К — до $\mu_{\rm eff} = 6.04 \,\mu_{\rm B}$. Полученные величины $\mu_{\rm eff}$ значительно выше теоретического значения

	Полистоля	Расстояние от поверхности нагруженного шара, nm			
Параметр	поликристалл	0-5	5-10	15-20	
	Nº 1	Nº 2	Nº 3	Nº 4	
Кристаллическая структура	$2.9\% Pnma + 97.1\% R\bar{3}c$	$35\% Pnma + 65\% R\bar{3}c$	$48\% Pnma + 52\% R\bar{3}c$	$70\% Pnma + 30\% R\bar{3}c$	
T_c , K	127	144	142	150	
Θ, Κ	260	246	234	246	
$\mu_{ m eff},\mu_{ m B}$	4.50	4.70	4.68	4.80	
$T_1 - T_2$, K	< 480	290 - 440	300-420	300-440	
$\mu_{ m eff\ pol},\mu_{ m B}$	5.41	5.12	5.32	5.40	
Концентрация Mn ⁴⁺ , %*	41.7	21	23	12	
Концентрация Mn ⁴⁺ , %**	39	18.6	-	12	

Таблица 3. Магнитные характеристики нагруженной керамики LaMnO_{3+δ} (образцы № 1-4)

Примечание. $\mu_{\rm eff}$ — эффективный магнитный момент в однородном парамагнитном состоянии ($T > T_2$), $\mu_{\rm eff pol}$ — эффективный магнитный момент в неоднородном парамагнитном состоянии ($T_1 < T < T_2$).

* По данным магнитных измерений.

* По данным нейтронографических измерений.

для Mn^{3+} $\mu_{eff} = 4.91 \,\mu_{B}$. Близкие к нашим значения μ_{eff} в температурном интервале $1.2T_c < T < 2.5T_c$ были получены для порошковых образцов La_{1-x}MnO₃ [16]. Состав La_{0.97}MnO₃ (структура Pnma) с $T_c = 118$ K содержал 9% ионов Mn^{4+} и имел $\mu_{eff} = 6.0 \mu_B$, в составе La_{0.93}MnO₃ (структура $R\bar{3}c$) с $T_c = 170$ К находился 21% ионов Mn^{4+} , а величина $\mu_{eff} = 5.8 \,\mu_{B}$. Большие значения µ_{eff} и независимость восприимчивости от величины внешнего магнитного поля в области 300 < T < 440 K свидетельствуют о существовании парамагнитных спиновых поляронов с повышенным магнитным моментом по сравнению с изолированными ионами Mn. Выше 440 К эти поляроны распадаются и манганиты переходят в однородное парамагнитное состояние. Магнитные характеристики исследованных образцов LaMnO_{3+δ} представлены в табл. 3.

При продвижении к поверхности шара изменяется состав керамики LaMnO3, а именно увеличивается концентрация ионов Mn⁴⁺ по отношению к общему числу Мп-ионов. Об этом свидетельствует уменьшение $\mu_{\rm eff}$ в парамагнитной области *T* > 440 К (табл. 3). Оценки концентрации Mn⁴⁺ из магнитных измерений дали следующие значения. Нанокерамика вблизи поверхности шара (образец № 2) содержит 21% ионов Mn⁴⁺, а исходный поликристалл — 41.7% ионов Mn⁴⁺. Эти данные хорошо согласуются с концентрациями Mn⁴⁺, полученными из нейтронографических измерений: в образце № 2 — 18.6% Mn⁴⁺, а в образце № 1 — 39% ионов Mn⁴⁺. Небольшие различия в значениях х могут быть связаны с вакансиями в La-подрешетке, которые не влияют на величину магнитного момента Мп-ионов. Наблюдаемое изменение числа Mn⁴⁺ соответствует структурным изменениям. В LaMnO_{3+δ} при малом содержании Mn⁴⁺ реализуется орторомбическая структура, а при большой концентрации Mn⁴⁺ — ромбоэдрическая [17,18].

На рис. 7 приведена температурная зависимость обратной восприимчивости для образца из поверхност-

ных слоев нагруженного шара. Отличительной чертой этого образца является скачок восприимчивости вблизи $T = 440 \,\mathrm{K}$. Подобное поведение $1/\chi(T)$ наблюдали в нестехиометрических составах LaMnO₃₊₆ $(0 \le \delta \le 0.07)$, которое связывали с температурой исчезновения ян-теллеровских (JT) искажений кристаллической решетки T_{JT} [19-21]. В стехиометрическом LaMnO₃ нарушение кооперативного JT-орбитального упорядочения и переход от орторомбической к ромбоэдрической симметрии происходит вблизи $T_{\rm JT} = 750$ К. При увеличении содержания ионов Mn⁴⁺ $T_{\rm JT}$ смещается в область более низких температур [21]. В образце № 4 (рис. 6) мы не видим скачка восприимчивости, поскольку $T_{\rm JT}$ выше 600 K, а в исходном поликристалле (рис. 8) из-за большой концентрации Mn⁴⁺ Т_{JT} ниже 180 К. В стехиометрическом LaMnO₃ восприимчивость следует закону Кюри-Вейсса выше и ниже T_{JT} вплоть до T_N с одинаковым магнитным моментом, но разными значениями θ [19,20]. Постоянство μ_{eff} указывает на то, что число магнитных ионов и их

Рис. 7. Температурные зависимости обратной восприимчивости для нанокерамики LaMnO_{3+ δ} вблизи поверхности нагруженного шара в различных магнитных полях. Обозначения те же, что на рис. 6. $T_{\rm JT}$ — температура перехода Яна—Теллера.

Рис. 8. Температурные зависимости обратной восприимчивости для исходного поликристалла в различных магнитных полях. Обозначения те же, что на рис. 6.

валентность не изменяются. Увеличение θ выше $T_{\rm IT}$ связано с изменением обменных взаимодействий из-за изменения структурных параметров. В нестехиометрических составах LaMnO_{3+ δ}, содержащих ионы Mn⁴⁺, более высокие по сравнению с теоретическими значениями эффективного магнитного момента свидетельствуют о неоднородном парамагнитном состоянии и локальных обменных связях в области T < 440 К. Качественно подобную каритну поведения $1/\chi(T)$ мы наблюдали в монокристалле La_{0.9}Ca_{0.1}MnO₃. На основании магнитных измерений можно заключить, что независимо от концентрации ионов Mn⁴⁺ в LaMnO₃ закон Кюри-Вейсса начинает выполняться при температурах *T* > 440 K. В области 300 < T < 440 К присутствуют парамагнитные поляроны с повышенным магнитным моментом за счет локализации носителей заряда вблизи дефектов и обменного взаимодействия ионов Mn⁴⁺ с ближайшими Мп³⁺-соседями.

4. Обсуждение результатов

В манганитах температура Кюри T_c определяется конкуренцией ферромагнитных и антиферромагнитных взаимодействий, обусловленных сверхобменом Mn-O-Mnи двойным обменом $Mn^{3+}-Mn^{4+}$. Эти обменные механизмы зависят от структурных параметров, в частности от расстояний и углов связи Mn-O-Mn. В настоящее время открытым вопросом в манганитах является влияние на величину T_c фактора толерантности

$$t = \frac{d_{\text{La}-\text{O}}}{\sqrt{2}(d_{\text{Mn}-\text{O}})},\tag{3}$$

характеризующего искажения перовскитной кубической решетки [6]. В идеальной кубической структуре фактор t = 1, а угол связи Mn–O–Mn равен 180°. В LaMnO₃ при замещении части ионов La³⁺ двухвалентными Ca, Ba, Sr или P3-ионами Y, Pr с меньшими по сравнению с La ионными радиусами в зависимости T_c от

фактора толерантности наблюдается максимум в области t = 0.93 [22]. Максимальную температуру Кюри $T_c = 360 \,\mathrm{K}$ имеют образцы $\mathrm{La}_{0.7} \mathrm{Sr}_{0.3} \mathrm{MnO}_3$ с концентрацией 30% ионов Mn⁴⁺. Увеличение *t* при сохранении числа Mn⁴⁺ приводит к небольшому уменьшению T_c. Так, La_{0.7}Ba_{0.3}MnO₃ имеет более высокое значение t = 0.945, но меньшую величину $T_c = 320$ К. При уменьшении t < 0.93 наблюдается резкое падение T_c до 40 К. Нелегированные образцы LaMnO_{3+ δ} имеют более низкие значения Т_с при таком же содержании Mn⁴⁺ [23]. Зависимость T_c от δ качественно подобна зависимости T_c от t для легированных манганитов, но максимум Т_с сдвинут в область меньших концентраций Mn^{4+} от 30 до 20%. Уменьшение T_c от 168 К и даже переход в спин-стекольное состояние наблюдали в La_{1-x}Mn_{1-y}O₃ при увеличении фактора толерантности от t = 0.951 до 0.975 и увеличении числа ионов Mn⁴⁺ от 23 до 62%, соответствующих катионным вакансиям $x \le 0.049, y \le 0.109$ [23]. Наши образцы LaMnO_{3+ δ} имеют более узкую область концентраций Mn⁴⁺ (12-40%). Вблизи 20% ионов Mn^{4+} отсутствует максимум T_c . Температура Кюри монотонно уменьшается с ростом δ . Фактор t, полученный из усредненных расстояний La-O и Mn-O, при увеличении б в ортофазе Pnma увеличивается от 0.987 до 0.990, а в фазе $R\bar{3}c$ уменьшается от 0.995 до 0.991 (табл. 2). Эти изменения довольно незначительны. Уменьшение температуры Кюри указывает на отсутствие связи между Т_с и t в нагруженной керамике. Близость фактора толерантности к единице свидетельствует о слабых интегральных изменениях решетки, однако возможны локальные искажения решетки вблизи катионных вакансий в объеме и на поверхности малых частиц из-за микронапряжений, созданных внешним воздействием ударных волн.

В механизмах двойного обмена и сверхобмена Mn–O, приближение уменьшение расстояний угла Mn-O-Mn к 180° и увеличение числа пар Mn³⁺-Mn⁴⁺ должны приводить к усилению ферромагнитных обменных взаимодействий и соответственно к повышению Т_с. При движении от центра к поверхности шара расстояние Mn–O в $R\bar{3}c$ -фазе увеличивается от 1.958 до 1.966 Å, а в Рпта-фазе уменьшается от 1.986 до 1.974 Å. Угол связи Мп-О-Мп в R3c-фазе уменьшается от 167.07 до 162.92°. В Рпта-фазе угол двух связей уменьшается от 159.0 до 157.32°, а угол четырех связей увеличивается от 157.25 до 164.9°. Однозначной связи между структурными параметрами и Т_с не прослеживается.

Понижение T_c при увеличении числа Mn^{4+} свидетельствует о существенном влиянии на обменные параметры конкурирующих факторов. Одним из таких факторов, компенсирующих ферромагнитный вклад $Mn^{3+}-Mn^{4+}$ -пар, являются вакансии в Mn-подрешетке. В LaMnO_{3+ δ} при больших δ отношение La/Mn > 1, т.е. число вакансий в Mn-подрешетке превышает число вакансий в La-подрешетке. Вакансии в Mn-подрешетке приводят к уменьшению общего числа магнитных ионов (аналог магнитного разбавления) и ослаблению обменных взаимодействий [23–25]. Не только концентрация магнитных ионов, но и соотношение вакансий в катионных подрешетках играет важную роль для значений T_c в LaMnO_{3+ δ}. В работах [26,27] показано, что наиболее резкий магнитный переход и высокие $T_c = 250$ К имеют составы с отношением La/Mn = 0.9. При увеличении этого отношения температура Кюри понижается, а переход в магнитоупорядоченное состояние расширяется по температуре. Наши образцы имеют относительно низкие значения T_c и широкий фазовый переход, поэтому можно предположить, что отношение La/Mn \geq 1. В исходном поликристалле отношение La/Mn = 1.014.

Другими факторами, приводящими к уменьшению Т_с в наших образцах, могут быть размерный эффект малых частиц и упругие напряжения. Особенностями наноструктурных материалов являются большая протяженность границ раздела и специфическое строение межзеренных границ [28]. В поверхностных слоях малых частиц всегда присутствуют точечные дефекты и дислокации из-за потери 3D-структурной периодичности. Любые нарушения однородности увеличивают внутреннюю энергию. Полная энергия магнитных материалов состоит из обменной энергии, энергии анизотропии, магнитоупругой и магнитостатической энергий. Согласно теории магнитных свойств наночастиц, изменение этих вкладов может изменить основное магнитное состояние [10]. Увеличение обменной энергии за счет пар Mn³⁺-Mn⁴⁺ должно способствовать сохранению ферромагнитного порядка. Однако увеличение объемной и поверхностной анизотропий $K = K^{v} + 2K^{s}/d$ (d — размер наночастиц), а также магнитоупругой энергии может привести к разупорядочению спинов не только на поверхности, но и в ядре наночастиц, к уменьшению Т_с и даже переходу в состояние типа спинового стекла. Понижение Т_с при уменьшении размера частиц наблюдали в нанопорошках $La_{1-x}MnO_{3+\delta}$ [25] и $La_{0.7}Ca_{0.3}MnO_3$, La_{0.7}Sr_{0.3}MnO₃ [3], полученных золь-гель-методом. Как отмечалось выше, при движении от центра к поверхности шара размер кристаллитов в наших образцах уменьшается, а микродеформации увеличиваются. Такую же тенденцию уменьшения Т_с при увеличении содержания кислорода, при уменьшении размера частиц *d* ≤ 11 nm и при увеличении микродеформаций $\varepsilon > 0.64\%$ мы наблюдали в нанопорошках LaMnO_{3+ δ} с орторомбической симметрией решетки, полученных методом размола в шаровой мельнице [12]. Можно предположить, что уменьшение Т_с в нанокристаллическом манганите в основном вызвано уменьшением числа магнитных ионов и эффектами малых магнитных частиц.

Характерной чертой легированных магнитных полупроводников является сохранение локальных спиновых корреляций вблизи дефектов в области температур, значительно превышающих T_c [29,30]. В манганитах со смешанной валентностью ионов Mn неоднородное парамагнитное состояние энергетически выгоднее однородного состояния благодаря ферромагнитному упорядочению ближайших к дефекту ионов Mn³⁺ [31,32]. В работе [31] в рамках модели двойного обмена рассмотрено образование спиновых поляронов с повышенным эффективным моментом вблизи Mn⁴⁺ в непроводящей парамагнитной области. Показано, что средний размер полярона увеличивается при понижении Т, магнитная восприимчивость $\chi \sim T^{-3/5} (T - T_c)^{-1}$ отклоняется от закона Кюри-Вейсса, а температура Кюри Т_с повышается при увеличении концентрации ионов Mn⁴⁺. Когда спиновые поляроны начинают перекрываться, манганиты переходят в ферромагнитное проводящее состояние. В наших образцах не наблюдается повышение Т_с при увеличении числа Mn^{4+} . В области $T > 440 \,\mathrm{K}$ спины ионов Mn случайно ориентированы, на что указывает выполнение закона Кюри-Вейсса. При понижении температуры, когда обменный параметр J > kT > t (t итеграл электронного переноса) образуются локализованные спиновые поляроны. Эффективный магнитный момент таких поляронов больше соответствующих усредненных моментов Mn³⁺ и Mn⁴⁺ и описывается выражением [32]

$$\mu_{\text{eff}}^2 = [x(S_1 + S_2 P)(S_1 + S_2 P + 1) + (1 - x - Px)S_2(S_2 + 1)]g^2 \mu_{\text{B}}^2, \qquad (4)$$

где x — концентрация Mn^{4+} , $S_1 = 3/2(Mn^{4+})$, $S_2 = 2(Mn^{3+})$, $0 \le P \le 6$ — число поляризованных ионов Mn^{3+} .

Согласно этой формуле, в образце № 1 в области 300 < T < 440 К вблизи Mn⁴⁺ поляризованы два ближайшие иона Mn³⁺, находящиеся на расстоянии 3.8935 Å, остальные четыре иона из первой координационной сферы удалены на расстояние 3.9041 Å и являются изолированными ионами. Размер полярона соответствует двум параметрам кристаллической решетки. Постоянство значений $\mu_{\rm eff}$ в этой области температур указывает на неизменность размера спиновых поляронов. При дальнейшем уменьшении T < 300 K наблюдается непрерывное увеличение μ_{eff} . Такое поведение $\chi(T)$ может быть связано с увеличением числа поляризованных спинов и соответственно с увеличением размера спиновых поляронов. Образованию спиновых поляронов способствуют А- и СЕ-типы антиферромагнитного порядка (ферромагнитно упорядоченные плоскости или цепочки). Температура $T \approx 450 \,\mathrm{K}$ является характерной как для нестехиометрических, так и для слабо легированных LaMnO₃. В Ca_{1-x}La_xMnO₃ с псевдокубической структурой при такой же концентрации пар $Mn^{3+}-Mn^{4+}$, как в $La_{1-x}Ca_xMnO_3$, закон Кюри-Вейсса начинает выполняться при более низких T < 2T_c. Образованию спиновых поляронов в них препятствует G-тип антиферромагнитного порядка, когда все спины магнитных ионов антипараллельны.

5. Заключение

Методом ударно-волнового нагружения получена нанокерамика $LaMnO_{3+\delta}$ с разным содержанием ионов Mn⁴⁺. В нагруженном шаре при движении от центра к поверхности размер малых частиц уменьшается, а упругие напряжения увеличиваются. Температура Кюри при увеличении концентрации ионов Mn⁴⁺ уменьшается. Ферромагнитный вклад пар Mn³⁺-Mn⁴⁺ компенсируется уменьшением общего числа магнитных ионов за счет вакансий в Мп-подрешетке и эффектами малых частиц. Уменьшение размера частиц и дальнодействующие упругие напряжения способствуют разупорядочению магнитных моментов при более низких температурах. Выше Т_с существуют температурные области неоднородного и однородного парамагнитных состояний. Неоднородное парамагнитное состояние ($T_c < T < 440 \, \text{K}$) представляет собой смесь изолированных и поляризованных вблизи дефектов магнитных ионов. Образование магнитных поляронов с повышенным эффективным моментом обусловлено выигрышем в полной энергии при параллельной ориентации спинов. В области 300 < T < 440 K размер поляронов не изменяется и составляет ~ 10 Å. При понижении T < 300 К размер магнитных поляронов и их магнитный момент увеличивается. Лантановый манганит переходит в ферромагнитное состояние, когда магнитные поляроны начинают перекрываться. Однородное парамагнитное состояние независимо от концентрации ионов Mn⁴⁺ и симметрии решетки наблюдается в области T > 440 К, когда kT > J.

Список литературы

- J. Rivas, L.E. Hueso, A. Fondado, F. Rivadulla, M.A. Lopez-Quintela. J. Magn. Magn. Mater. 221, 57 (2000).
- [2] R.W. Li, H. Xiong, J.-R. Sun, Q.-A. Li, Z.-H. Wang, J. Zhang, B.-G. Shen. J. Phys.: Cond. Matter 13, 141 (2001).
- [3] R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao. Appl. Phys. Lett. 68, 2291 (1996).
- [4] K.S. Shankar, S. Kar, G.N. Subbanna, A.K. Raychaudhuri. Solid State Commun. 129, 479 (2004).
- Д. Гуденаф. Магнетизм и химическая связь. Металлургия, М. (1968). 325 с.
- [6] E. Dagotto. New J. Phys. 7, 67 (2005).
- [7] Q. Huang, A. Sautoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, R.L. Greene. Phys. Rev. B 55, 14987 (1997).
- [8] J.A.M. van Roosmalen, P. van Vlaanderen, E.H.P. Cordfunke, W.L. Ijdo, D.J.W. Ijdo. J. Solid State Chem. 114, 516 (1995).
- [9] P.A. Joy, C.R. Sanker, S.K. Date. J. Phys.: Cond. Matter 14, 4985 (2002).
- [10] R.H. Kodama, A.E. Berkowitz. Phys. Rev. B 59, 6321 (1999).
- [11] Б.А. Гижевский, В.Д. Журавлев, Р.Г. Захаров, М.И. Зиниград, Е.А. Козлов, Л.И. Леонтьев, С.В. Наумов, С.А. Петрова, В.П. Пилюгин, А.Я. Фишман, Н.М. Чеботаев. ДАН 4, 489 (2005).
- [12] Т.И. Арбузова, Б.А. Гижевский, Р.Г. Захаров, С.А. Петрова, Н.М. Чеботаев. ФТТ 50, 8, 1430 (2008).
- [13] V. Kiryukhin. New J. Phys. 6, 155 (2004).

- [14] A.K. Bogush, V.I. Pavlov, L.V. Balyko. Cryst. Res. Technol. 18, 589 (1983).
- [15] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [16] S. de Brion, F. Ciorcas, G. Chouteau, P. Lejay, P. Radaelly, C. Chaillout. Phys. Rev. B 59, 1304 (1999).
- [17] P.A. Joy, C.R. Sanker, S.K. Date. J. Phys.: Cond. Matter 14, L 663 (2002).
- [18] B.C. Hauback, H. Fjellvag, N. Sakai. J. Solid State Chem. 124, 43 (1996).
- [19] M.T. Cause, G. Alejandro, R. Zysler, F. Prado, A. Canriro, M. Tovar. J. Magn. Magn. Mater. 196–197, 506 (1999).
- [20] J.-S. Zhou, J.B. Goodenough. Phys. Rev. B 60, R15002 (1999).
- [21] M. Tovar, G. Alejandro, A. Butera, A. Canriro, M.T. Cause, F. Prado, R.D. Sanchez. Phys. Rev. B 60, 10 199 (1999).
- [22] H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg. Phys. Rev. Lett. 75, 914 (1995).
- [23] P.S.I.P.N. de Silva, F.M. Richards, L.F. Cohen, J.A. Alohso, M.J. Martinez-Lope, M.T. Casais, K.A. Thomas, J.L. Mac Manus-Driscoll. J. Appl. Phys. 83, 394 (1998).
- [24] L. Ghivelder, I.A. Castillo, M.A. Gusmao, J.A. Alonso. Phys. Rev. B 60, 12184 (1999).
- [25] G. Dezanneau, A. Sun, H. Roussel, H. Vincent, M. Audier. Solid State Commun. 121, 133 (2002).
- [26] N.N. Loshkareva, N.I. Solin, Yu.P. Sukhorukov, N.I. Lobachevskaya, E.V. Panfilova. Physica B 293, 390 (2001).
- [27] G. Dezanneau, M. Audier, H. Vincent, C. Meneghini, E. Djurado. Phys. Rev. B 69, 014412 (2004).
- [28] А.И. Гусев. Нанокристаллические материалы: методы получения и свойства. Изд-во УрО РАН, Екатеринбург (1998). 199 с.
- [29] З. Метфессель, Д. Маттис. Магнитные полупроводники. Мир, М. (1972). 405 с.
- [30] Э.Л. Нагаев. Физика магнитных полупроводников. Наука, М. (1979). 431 с.
- [31] X. Wang, A.F. Freeman. J. Magn. Magn. Mater. 171, 103 (1997).
- [32] C.M. Varma. Phys. Rev. B 54, 7328 (1996).