Теплопроводность высокопористых биоуглеродных матриц на основе дерева бука

© Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek*, А. Jezowski*, Т.E. Wilkes**, К.Т. Faber**

Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

* Trzebiatowski Institute of Low Temperature and Structure Research,

Polish Academy of Sciences,

Wroclaw, Poland

** Department of Materials and Engineering, Robert R. McCormick School of Engineering and Applied Science,

Northwestern University,

Campus Drive, Evanston, USA

E-mail: igor.smirnov@mail.ioffe.ru, smir.bi@mail.ioffe.ru

(Поступила в Редакцию 2 сентября 2009 г.)

В интервале 5–300 К измерены теплопроводность \varkappa и удельное электросопротивление ρ высокопористых (с канальным типом пор) биоуглеродных матриц бука, приготовленных с помощью пиролиза (карбонизации) дерева бука в токе аргона при температурах карбонизации 1000 и 2400°С. При 300 К проведен рентгеноструктурный анализ образцов. В них обнаружены нанокристаллиты, которые участвуют в формировании углеродных каркасов этих биоуглеродных матриц. Определены их размеры. Для образцов, полученных при $T_{\rm carb} = 1000$ и 2400°С, размеры нанокристаллитов находятся в пределах 12–25 и 28–60 Å. Зависимости $\varkappa(T)$ получены на образцах, вырезанных вдоль и поперек направления роста дерева. Значения \varkappa возрастают с увеличением температуры карбонизации и размеров нанокристаллитов в углеродных каркасах образцов. При измерении теплопроводности у обоих типов образцов получена нестандартная для аморфных материалов температурная зависимость фононной теплопроводности. При повышении температуры от 5 до 300 К она сначала возрастает пропорционально T, а затем $\sim T^{1.5}$. Проведен анализ полученных результатов.

Работа выполнена при поддержке РФФИ (проект № 07-03-91353 ННФ_а) и программ Президиума РАН П-03 и П-27.

The financial support for T.E.W. and K.T.F. from the U.S. National Science Foundation under grant DMR-0710630 is gratefully acknowledged.

1. Введение

Настоящая работа посвящена изучению структурных, электрических и тепловых свойств биоуглеродных матриц, полученных путем пиролиза дерева бука (Fagus sylvatica), и является продолжением проводимого нами цикла исследований физических свойств биоуглеродных матриц различных видов дерева: белого эвкалипта [1,2], белой сосны [3,4], сапели [5,6].

Сведения о природе биоуглеродных матриц (биоуглерода) можно найти в указанных выше работах [1–6] и литературных ссылках, имеющихся в них, а также в обзоре, посвященном этом материалу [7].

Однако для лучшего понимания результатов, представленных в настоящей работе, необходимо все же привести хотя бы краткие сведения о свойствах биоуглеродных матриц.

Биоуглеродные матрицы получают путем пиролиза (карбонизации) дерева в токе аргона при различных температурах карбонизации (T_{carb}) [8–10]. В результате такого процесса образуется высокопористый (до 75 vol.%) углеродный материал с канальным типом пор (с диаметрами от единиц до ~ 100 μ m), повторяющих структуру исходного дерева с "питательными" каналами, вытянутыми вдоль направления его роста. При этом всегда существует также небольшое количество радиальных пор, доля которых возрастает с увеличением плотности исходного дерева [11].

Биоуглерод относится к группе высокопористого аморфного углерода и обладает рядом нестандартных физических свойств; некоторые из них пока еще не нашли достаточно убедительных объяснений. Рассмотрим кратко наиболее интересные из них.

1) В результате проведенных рентгеноструктурных исследований [1,3,5] было показано, что в формировании углеродных каркасов биоуглеродных матриц белого эвкалипта и сапели, полученных при $T_{carb} = 1000$ °C, и белой сосны, приготовленной при $T_{carb} = 1000$ и 2400°C, наряду с аморфной фазой принимает участие углеродный материал, состоящий из двух типов независимых нанокристаллитов: трехмерных ("графитовых осколков") с размерами ~ 11–12 Å и двумерных (типа графенов) с размерами ~ 30 Å. Нанокристаллиты в образцах белой сосны, полученной при $T_{carb} = 2400$ °C [3], оказались несколько бо́лышими по размерами ~ 30 Å соответственно.

2) У всех исследованных биоуглеродных матриц (белого эвкалипта, белой сосны и сапели) была обнаружена нестандартная для аморфных тел температурная зависимость фононной теплопроводности $\varkappa_{\rm ph}$. В интервале 5–30 К в области низких температур $\varkappa_{\rm ph} \sim T$, а затем она возрастает пропорционально $T^{1.7}$. Теоретического объяснения такому поведению $\varkappa_{\rm ph}(T)$ пока что не найдено.

3) Для биоуглеродной матрицы белой сосны из измерений эффекта Холла при 77 К определена концентрация носителей тока (дырок) [12]. Для образцов, полученных при $T_{carb} = 1000$ и 2400°С, концентрации дырок оказались равными $6.3 \cdot 10^{20}$ и $3.6 \cdot 10^{20}$ cm⁻³, а их подвижности при 300 K составили 0.6 и 3 cm²/V · s соответственно. Полученная концентрация носителей тока в образцах близка к металлической, так что более естественно было бы ожидать у них "металлический" характер поведения удельного электросопротивления $\rho(T)$ (р должно было бы возрастать с увеличением температуры). Однако на эксперименте оказалось, что ρ у биоуглеродной матрицы белой сосны [4,12] (а также у всех ранее исследованных биоуглеродных матриц белого эвкалипта [1] и сапели [5]) в интервале температур 5-300 К уменьшается с ростом температуры (т.е. наблюдается "полупроводниковый" ход ρ). В [12] было предложено объяснение такого поведения ρ , учитывающее квантовые поправки к электропроводности σ $(\sigma = 1/\rho)$, характерные для разупорядоченных металлических систем [13].

Приведем некоторые очень краткие сведения о типах дерева, на основе которых получают биоуглеродные матрицы. Они могут быть полезными при дальнейшем обсуждении полученных экспериментальных результатов. Каждый вид дерева имеет индивидуальную структуру со своей формой, размерами и геометрией расположения каналов, величиной пористости, а также предысторией роста дерева в природе. По своей структуре они подразделяются на твердые и мягкие сорта [14,15]. Первые из них имеют два, а вторые — один тип пор (каналов), которые можно наблюдать в электронном микроскопе в сечении, перпендикулярном росту дерева. В каждом виде дерева может быть однородное и неоднородное распределение пор (каналов) по сечению. Поэтому для лучшего понимания физической природы биоуглерода надо иметь (и проанализировать) данные о его физических параметрах для достаточно большого набора биоуглеродных матриц. Выполнению этой задачи и посвящена настоящая работа.

Цели работы состояли в следующем.

1) На основании данных по рентгеновской дифракции оценить размеры кристаллитов, принимающих участие в формировании углеродных каркасов биоуглеродных матриц бука, полученных при температурах карбонизации 1000 и 2400°С.

2) Получить данные о температурной зависимости $\rho(T)$ для этих образцов в интервале температур 5–300 К.

3) Измерить в широком интервале температур (5–300 K) теплопроводность указанных выше образцов и выяснить, имеются (или отсутствуют) какие-либо

существенные различия в поведении фононной теплопроводности углеродных каркасов этих материалов по сравнению с другими родственными аморфными углеродными материалами.

4) Оценить роль и влияние размеров кристаллитов, принимающих участие в формировании каркасов биоуглеродных матриц бука, на теплопроводность последних.

Необходимо отметить, что биоуглеродные матрицы представляют интерес не только из-за нестандартного поведения их физических свойств, но и благодаря возможностям их практического применения.

1) Они выступают в качестве "промежуточных заготовок" в технологическом процессе приготовления высокопрочного биоморфного композита (экокерамики) SiC/Si, обладающего интересными физическими свойствами и нашедшего уже достаточно широкое практическое применение [7]. Биоморфные композиты получают путем инфильтрации в вакууме в пустые сквозные каналы биоуглеродных матриц расплавленного Si. В результате химической реакции кремния с углеродом матрицы образуется кубический β -SiC, а вместе с избыточным Si, не вступившим в реакцию с углеродом, — биоморфный композит SiC/Si.

2) Высокопористые канальные биоуглеродные матрицы могут служить в качестве контейнеров для формирования композиционных материалов: углерод/металл [4], углерод/органика [16] и др.

3) Высокопористые углеродные матрицы могут быть использованы также в качестве контейнеровнакопителей различных газов (включая водород).

2. Приготовление образцов, их идентификация и методики измерений

Приготовление биоуглеродных матриц бука осуществлялось в рамках ставшей уже стандартной методики получения биоуглерода [1,3,7-10,15]. Для этого пластины дерева бука с "питательными" каналами, вытянутыми вдоль направления роста дерева, подвергались пиролизу (карбонизации) в токе аргона при температуре $T_{carb} = 1000^{\circ}$ С в течение 1 h (BE-C-1000), а затем некоторые из них дополнительно отжигались в течение 30 min при 2400°С (ВЕ-С-2400). После пиролиза из полученных пластин были вырезаны образцы, ориентированные вдоль (∥) (образцы № 1-3 и 5) и поперек (⊥) (образцы № 4 и 6) направления роста дерева для измерения соответственно теплопроводностей \varkappa_{\parallel} и \varkappa_{\perp} и удельных электросопротивлений ρ_{\parallel} и ρ_{\perp} . Образцы № 1-4 относились к ВЕ-С-1000, а № 5 и 6 к ВЕ-С-2400.

Структура образцов ВЕ-С-1000 и ВЕ-С-2400 была охарактеризована с помощью сканирующего электронного микроскопа Hitachi *S*-3400. Она оказалась подобной структуре биоуглерода бука, приведенной в работах [14,15,17].

Бук и сосна относятся к группе твердых пород дерева, для которых, как и для соответствующих биоуглеродных матриц, характерно наличие двух типов аксиально ориентированных канальных пор с большими и небольшими диаметрами. В англоязычной литературе первый тип пор, связанный с "питательными" каналами дерева, получил название "vessels" или "sap channels", а второй — "fiber cells". Отношение количества пор первого типа ко второму в биоуглеродной матрице бука составляет ~ 1.2 [14]. В буке и сосне канальные поры располагаются по сечению образца регулярно. Размеры этих пор в биоуглеродной матрице бука, полученной при $T_{\rm carb} = 1000^{\circ}$ С, согласно [15], равны $\sim 1 \, \mu {
m m}$ (и меньше) для небольших и $\sim 20\,\mu{
m m}$ для больших пор. Общая пористость образцов ВЕ-С-1000 и ВЕ-С-2400 составила ~ 60 vol.%, плотность ~ 0.56 g/cm³, а плотность их углеродных каркасов $\sim 1.4 \, {
m g/cm^3}$, что близко к плотностям углеродных каркасов матриц белого эвкалипта [1], белой сосны [3], сапели [5] и других форм аморфного углерода [18-21].

Рентгеновские дифрактометрические кривые образцов были получены при 300 К на аппарате ДРОН-2 на Си K_{α} -излучении (35 kV, 15 mA, Ni-фильтр). Теплопроводность \varkappa и удельное электросопротивление ρ измерялись в интервале температур 5–300 К в вакууме 10^{-5} mm Hg на установке, аналогичной использованной в [22]. Размеры образцов для измерений \varkappa и ρ составляли $4 \times 4 \times 10$ mm, а для рентгеноструктурных исследований — $3.6 \times 2.5 \times 2.5$ mm. До начала измерений ρ и \varkappa для удаления влаги и газов, которые, возможно, содержались в порах биоуглерода, исследуемые образцы в течение суток находились в экспериментальной установке при постоянной откачке системы до указанного выше уровня вакуума.

3. Экспериментальные результаты и их обсуждение

3.1. Рентгеноструктурные исследования. Картины рентгеновской дифракции образцов ВЕ-С-1000 и ВЕ-С-2400 представлены на рис. 1. Видно, что дифрактограммы обоих образцов содержат диффузионные гало, характерные для аморфного (или рентгеноаморфного) материала. Подобные результаты в литературе были получены для биоуглеродных матриц белого эвкалипта, белой сосны, дуба, тополя [1,3,5,8,9,16,21]. В данном случае на основании полученных дифрактограмм нами были определены размеры и природа нанокристаллитов, имеющихся в углеродных каркасах ВЕ-С-1000 и ВЕ-С-2400. Определение размеров кристаллитов *D* проводилось по всем рефлексам дифрактограммы (рис. 1). Для расчетов использовалась формула

$$D = k\lambda/B_{2\theta}\cos\theta,\tag{1}$$

где λ — длина волны используемого рентгеновского излучения, $B_{2\theta}$ — интегральная полуширина рефлекса,

Рис. 1. Картины рентгеновской дифракции. 1 — для ВЕ-С-1000 (образец № 1), 2 — для ВЕ-С-2400 (образец № 5) при аксиальном расположении каналов в образце по отношению к падающему рентгеновскому излучению. Штриховые кривые — диффузный фон.

 θ — угол Брэгга. Величина параметра *k* принималась равной единице для рефлексов 002 и 004 и 1.84 для рефлексов 100 и 110 [23–25]. Измерения величины $B_{2\theta}$ и определение *D* проводились для двух ориентаций расположения каналов в образце по отношению к падающему рентгеновскому излучению: аксиальной (вдоль каналов, D_a) и радиальной (поперек каналов, D_r).

В литературе имеются достаточно подробно разработанные схемы для проведения теоретического анализа экспериментальных рентгеноструктурных данных для биоуглеродных матриц [1,3,5,16,21], которыми мы и воспользовались при анализе полученных в настоящей работе экспериментальных результатов для биоуглеродных матриц бука.

Рассмотрим сначала данные для образца ВЕ-С-1000. Три размытых максимума на рентгенограмме этого образца (рис. 1) соответствуют рефлексам 002, 100 и 110 графита. Первый максимум для ВЕ-С-1000 (рефлекс 002) сместился в сторону малых углов. Его межплоскостное расстояние ($d_1 = 3.86$ Å) заметно отличается от межплоскостного расстояния рефлекса 002 графита ($d_{002} = 3.35 \text{ Å}$). Появление первого максимума связано с образованием областей графитовой кристаллизации, содержащих не менее двух графитовых слоев ("графитовые осколки"). Его сравнительно высокая интенсивность показывает, что в исследованном образце графитовые осколки являются основными кристаллическими образованиями. Увеличение межплоскостного расстояния d_1 указывает на ослабление связей между слоями в графитовых осколках, связанное с нарушением азимутальной ориентации слоев. Второй и третий максимумы, относящиеся соответственно к рефлексам 100 и 110, связаны с двумерной дифракцией от отдельных беспорядочно ориентированных слоев графита (нанокристаллиты типа графенов). Помимо слоистых частиц

Рефлексы, соответствующие максимумам на дифрактограммах биоуглеродных матриц	PI-C-1000		BE-C-1000		PI-C-2400		BE-C-2400	
	$D_a, \mathrm{\AA}$	D_r , Å						
002	12	12	12	12	27	25	29	28
100	35	31	25	24	63	59	61	52
110	31	31	26	26	68	70	59	52
004					25	26	28	28

Размеры кристаллитов D_a и D_r в биоуглеродных матрицах белой сосны и бука

образцы ВЕ-С-1000 (так же как и ВЕ-С-2400) содержат также и аморфную фазу. Подтверждением этого может служить плавное повышение фона $I = f(2\theta)$ с уменьшением угла Брэгга (рис. 1).

На основании полуколичественной оценки, проведенной в [3], было показано, что в биоуглеродных матрицах аморфная фаза составляет ~ 35%, а ~ 65% приходится на нанокристаллические образования. Межплоскостные расстояния рефлексов 100 ($d_2 = 2.092$ Å) и 110 ($d_3 = 1.207$ Å) в BE-C-1000 меньше соответствующих расстояний для графита ($d_{100} = 2.127$ Å и $d_{110} = 1.228$ Å), а отношение интенсивностей для радиальной ориентации I_{100}/I_{002} равно 0.4. Для упорядоченного графита оно значительно меньше (0.1) [23].

Дифракционная картина для образца BE-C-2400 также представлена на рис. 1. Как видно из рисунка, отжиг при 2400°С значительно увеличил степень графитизации образца: интенсивность рефлекса 002 резко возросла, обострились максимумы всех рефлексов, появился рефлекс 004. Максимум рефлекса 002 сместился в сторону больших углов, межплоскостное расстояние d_1 стало равным 3.46 Å и приблизилось к величине межплоскостного расстояния рефлекса 002 графита. Максимумы рефлексов 100 и 110, наоборот, сместились к малым углам $(d_2 = 2.121 \text{ и } d_3 = 1.226 \text{ Å})$. Рефлекс 002 имеет небольшой наплыв со стороны малых углов. Межплоскостное расстояние этого наложившегося максимума d = 3.61 Å. Данный факт указывает на то, что кристаллизация образца неоднородна, и часть графитовых областей имеет меньший размер кристаллитов, чем основная масса вещества. Отношение интенсивностей для радиальной ориентации I_{100}/I_{002} для образца BE-C-2400 равно 0.2.

В таблице приведены размеры кристаллитов для образцов ВЕ-С-1000 и ВЕ-С-2400, рассчитанные по формуле (1) для всех рефлексов, зафиксированных дифрактограммами (рис. 1), при аксиальной и радиальной

Рис. 2. Температурные зависимости $\rho_{\parallel}(T)$. *a* — данные для $\rho_{\parallel}^{\exp}(T)$ без учета пористости образцов, *b* — данные для $\rho_{\parallel}^{0}(T)$ с учетом пористости образцов. *Ia* и *Ib* — соответственно образцы № 1 и 2 ВЕ-С-1000, *2* — образец № 5 ВЕ-С-2400.

Рис. 3. Температурные зависимости $\rho_{\parallel}^{0}(T)$. *a*) *1* — образец № 1 ВЕ-С-1000, *2* — образец № 5 ВЕ-С-2400; *b*) *1* — образец РІ-С-1000, *2* — образец РІ-С-2400 (данные работы [3]).

ориентациях каналов в образцах по отношению к падающему рентгеновскому излучению. Видно, что в пределах ошибки метода радиальная и аксиальная ориентации дают близкие результаты. В таблице для сравнения приведены полученные нами ранее значения D_a и D_r для нанокристаллитов биоуглеродной матрицы белой сосны (образцы PI-C-1000 и PI-C-2400, приготовленные при $T_{\rm carb} = 1000$ и 2400°С соответственно) [3]. Наблюдается достаточно хорошее совпадение этих величин с D_a и D_r биоуглеродных матриц бука. Из таблицы видно, что для BE-C-2400 (так же как и для PI-C-2400 [3]) имеет место небольшое различие в величинах D_a и D_r ($D_a > D_r$). Вероятнее всего, это связано с неоднородностью кристал

лизации "графитовых осколков". Для образца ВЕ-С-2400 размеры кристаллитов, определенные по двум порядкам отражения 002 и 004, полностью совпали.

3.2. Удельное электросопротивление. На рис. 2, *a*, *b* и 3, *a* приведены экспериментальные данные для удельного электросопротивления образцов ВЕ-С-1000 и ВЕ-С-2400 при измерении вдоль "питательных" каналов дерева (ρ_{\parallel}) без учета (ρ_{\parallel}^{exp} , рис. 2, *a*) и с учетом (ρ_{\parallel}^{0} , рис. 2, *b* и 3, *a*) пористости образцов.

Учет пористости проводился с помощью простой формулы [26,27]

$$\rho^0 = \rho^{\exp(1-p)},\tag{2}$$

где p — величина пористости образцов. Как отмечалось в разделе 2, для биоуглеродных матриц бука BE-C-1000 и BE-C-2400 p = 0.6.

Из рис. 2, *a*, *b* и 3, *a* видно, что характеры температурных зависимостей и величины ρ у BE-C-1000 и BE-C-2400 сильно различаются. У обоих образцов ρ возрастает с понижением температуры, но у BE-C-2400 наблюдается слабый рост, а у BE-C-1000 начиная с T < 40 K происходит резкое возрастание ρ_{\parallel}^{0} . При этом во всем измеренном интервале температур (5–300 K) величина ρ_{\parallel}^{0} у BE-C-1000 больше, чем у BE-C-2400 (рис. 3, *a*).

Подобная картина наблюдалась и при измерении $\rho(T)$ образцов биоуглеродных матриц белой сосны, полученных при $T_{\text{carb}} = 1000$ и 2400°С [12], и аналогичных им образцов РІ-С-1000 и РІ-С-2400, исследованных в [3]. Для сравнения на рис. 3, *b* приведены значения $\rho_{\parallel}^{0}(T)$ для образцов, измеренных в [3].

Качественно поведение $\rho(T)$ для образцов биоуглеродных матриц белой сосны и бука, представленное на рис. 3, *a*, *b*, можно считать подобным. Однако при количественном сравнении $\rho(T)$ этих двух групп материалов обнаруживается существенное различие. Так, например, величина отношения ρ_{1000}/ρ_{2400} , (где ρ_{1000} и ρ_{2400} — удельные электропроводности образцов, полученных при $T_{carb} = 1000$ и 2400°C) при 10 и 300 К для матрицы сосны составляет 2 и 1.5 по данным работы [12] и 2.43 и 1.28 согласно [3], что можно считать очень хорошим совпадением, а для матрицы бука она равняется 9.6 и 3.3.

Как отмечалось во Введении, особенности в поведении ρ с температурой в образцах биоуглеродных матриц белой сосны удалось описать в рамках квантовых поправок к электропроводности. Возможно, эту теорию можно использовать для объяснения поведения $\rho(T)$ и в биоуглеродных матрицах бука. Однако хотелось бы еще раз обратить внимание на поведение $\rho_{\parallel}^0(T)$ для образцов BE-C-1000 (рис. 2 и 3, *a*), которое, как уже отмечалось, заметно отличается от поведения $\rho_{\parallel}^0(T)$ у образца PI-C-1000 (рис. 3, *b*). Температурная зависимость удельного электросопротивления BE-C-1000 при этом очень похожа на зависимость $\rho(T)$ для материалов с Кондо-примесями [28].

3.3. Теплопроводность. Экспериментальные (x^{exp}) и расчетные данные для теплопроводности образцов ВЕ-С-1000 и ВЕ-С-2400 представлены на рис. 4 и 5. Измерения \varkappa проводились вдоль (\varkappa_{\parallel}) и поперек (\varkappa_{\perp}) пустых каналов образцов.

В эксперименте измерялась общая теплопроводность $\varkappa_{\rm tot} = \varkappa^{\rm exp}$

$$\varkappa_{\rm tot} = \varkappa_e + \varkappa_{\rm ph},$$
(3)

где \varkappa_e и \varkappa_{ph} — соответственно электронная и фононная составляющие теплопроводности. Оценки \varkappa_e по закону Видемана-Франца

$$\varkappa_e = LT/\rho \tag{4}$$

(L — число Лоренца) показали, что во всем интервале температур даже при наивысшем значении $L = L_0 = 2.45 \cdot 10^{-8} \, \mathrm{W} \cdot \Omega / \mathrm{K}^2$ для всех исследованных образцов $\varkappa_e \ll \varkappa_{\rm ph}$ и поэтому величина $\varkappa^{\rm exp}$ для всего исследованного интервала температур будет равна \varkappa_{ph} , но пока без учета их пористости.

Наиболее важную информацию о природе углеродного материала и особенностях поведения теплопроводности его кристаллической решетки можно получить из анализа данных о теплопроводности углеродного каркаса пористого материала $\varkappa^0_{\rm ph}(T)$, которую можно

€ ∞∞9∞∞∞∞∞∞∞∞0∞0 ∞

150

100

9089009900890088888980 8050000000

200

250

300

Рис. 5. Температурные зависимости теплопроводности для образцов ВЕ-С-2400. 1, 2 — соответственно $\varkappa_{\parallel}^{exp}$ и $\varkappa_{\parallel}^{0}$ для образца № 5; 3,4 — соответственно \varkappa_{\perp}^{\exp} и \varkappa_{\perp}^{0} для образца Nº 6.

вычислить с помощью формулы [29]

$$\varkappa_{\rm ph} = \varkappa^{\rm exp} = \varkappa^0_{\rm ph} (1-p) \sqrt{1-p}, \qquad (5)$$

где $\varkappa_{\rm ph}(\varkappa^{\rm exp})$ и $\varkappa^0_{\rm ph}$ — соответственно теплопроводности без учета и с учетом пористости образца¹. Данные для теплопроводности иследованных образцов с учетом их пористости (p = 0.6) также представлены на рис. 4 и 5. Из этих рисунков видно следующее.

1) Теплопроводность образцов ВЕ-С-2400, углеродный каркас которых сформирован из более крупных по размеру наночастиц, чем у ВЕ-С-1000 (см. таблицу), существенно выше теплопроводности последних.

анизотропии 2) Величина теплопроводности $\beta = \varkappa_{\parallel}/\varkappa_{\perp}$ в интервале температур 100–300 К равна ~ 2.5 для BE-C-1000 и ~ 2 для BE-C-2400 (рис. 6).

На рис. 7 в логарифмическом масштабе приведены температурные зависимости \varkappa^0_{\parallel} и \varkappa^0_{\perp} для углеродных каркасов биоуглеродных матриц бука (ВЕ-С-1000 и ВЕ-С-2400). У них снова обнаружена нестандартная для аморфных тел температурная зависимость теплопроводности; в области низких температур (5-20 К для ВЕ-С-1000 и 5-50 К для ВЕ-С-2400) она возрастает

2.4

2.0

1.6

1.2

0.8

0.4

0

0

50

 χ , W/K · m

¹ В дальнейшем для простоты и избежания сложной "многоярусной" индексации при обозначении х мы не будем пользоваться для нее индексом ph, но при этом необходимо помнить, что все приведенные на рисунке данные относятся к фононной теплопроводности.

Рис. 6. Величина анизотропии теплопроводности $\beta = \varkappa_{\parallel}(T)/\varkappa_{\perp}(T)$ образцов ВЕ-С-1000 (1) и ВЕ-С-2400 (2).

Рис. 7. Температурные зависимости теплопроводности для ВЕ-С-1000 ($1 - \varkappa_{\parallel}^{0}$ для образца № 1; $3 - \varkappa_{\perp}^{0}$ для образца № 4) и для ВЕ-С-2400 ($2 - \varkappa_{\parallel}^{0}$ для образца № 5; $4 - \varkappa_{\perp}^{0}$ для образца № 6).

по закону $x^0 \sim T$, а затем увеличивается как $x^0 \sim T^{1.5}$. Подобную картину для температурной зависимости теплопроводности мы наблюдали ранее у достаточно большого числа биоуглеродных матриц: белого эвкалипта [1], белой сосны [3] и с некоторыми особенностями у сапели [5]. Теперь с уверенностью можно сказать, что нестандартная для аморфных тел температурная зависимость теплопроводности углеродных каркасов биоуглеродных матриц разных пород дерева, имеющих различные пористость, размеры и геометрию расположения пустых каналов по сечению образца, присуща всем углеродным каркасам биоуглеродных матриц и является их собственной характеристикой.

Как уже отмечалось ранее, существующая к настоящему времени теория теплопроводности, к сожалению, не может пока объяснить такого нестандартного поведения $\varkappa(T)$.

Температурные зависимости теплопроводности, близкие к зависимостям, обнаруженным у углеродных каркасов биоуглеродных матриц, наблюдаются лишь для отдельных температурных областей у нанопористого углерода [3,30]. По результатам проведенного цикла рентгенодифракционных исследований при 300 К и измерения в интервале температур 5–300 К электропроводности и теплопроводности высокопористых (~ 60 vol.%) с канальным типом пор биоуглеродных матриц бука, полученных с помощью пиролиза дерева бука при температурах карбонизации 1000 и 2400°С, можно сделать следующие основные выводы.

1) На основании рентгенодифракционных данных показано, что:

а) углеродные каркасы биоуглеродных матриц бука конструируются из аморфного углерода и двух типов независимых нанокристаллитов, из которых первый тип характеризуется рефлексами 002 и 004 и представляет "графитовые осколки", которые можно рассматривать как проявление трехмерного порядка, а второй тип, связанный с рефлексами 100 и 110, представляет "беспорядочно ориентированные двумерные слои графита" (типа графенов);

b) с увеличением температуры карбонизации растет размер нанокристаллитов, образующих углеродные каркасы биоуглеродных матриц бука. В образцах, полученных при $T_{\rm carb} = 1000$ и 2400°С, размеры кристаллитов составляют ~ 12–26 и ~ 28–60 Å соответственно.

2) При измерении удельного электросопротивления образцов биоуглеродной матрицы бука, полученных при $T_{\rm carb} = 1000$ и 2400°C, обнаружено возрастание ρ с понижением температуры от 300 до 5 K.

3) Для углеродных каркасов биоуглеродных матриц, приготовленных при $T_{carb} = 1000$ и 2400°С, получена нестандартная для аморфных тел температурная зависимость теплопроводности: в области низких температур χ^0 возрастает по закону $\chi^0 \sim T$, а затем увеличивается как $\chi^0 \sim T^{1.5}$. Подобная картина для температурной зависимости χ^0 наблюдалась ранее для биоуглеродных матриц белого эвкалипта [1], белой сосны [3] и сапели [5].

4) Теплопроводность углеродных каркасов образцов, полученных при $T_{\text{carb}} = 2400^{\circ}$ С, существенно выше, чем у образцов, приготовленных при $T_{\text{carb}} = 1000^{\circ}$ С.

5) В интервале температур 100–300 К величина анизотропии теплопроводности ($\beta = \varkappa_{\parallel}/\varkappa_{\perp}$) равна 2.5 и 2 для образцов, полученных при $T_{\rm carb} = 1000$ и 2400°C соответственно.

Список литературы

- Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, J. Mucha, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ФТТ 48, 415 (2006).
- [2] Л.С. Парфеньева, Б.И. Смирнов, И.А. Смирнов, D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A.R. de Arellano-Lopez, J. Martinez-Fernandez, F.M. Varela-Feria. ΦΤΤ 48, 1938 (2006).

- [3] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, T.E. Wilkes, К.Т. Faber. ФТТ 50, 2150 (2008).
- [4] И.А. Смирнов, Т.С. Орлова, Б.И. Смирнов, D.W. Wlosewicz, H. Misiorek, A. Jezowski, T.E. Wilkes, K.T. Faber. ΦΤΤ 51, 2135 (2009).
- [5] Л.С. Парфеньева, Т.С. Орлова, Н.Ф. Картенко, Н.В. Шаренкова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, A. Jezowski, J. Mucha, A.R. de Arellano-Lopez, J. Martinez-Fernandez. ФТТ 51, 1909 (2009).
- [6] Л.С. Парфеньева, Б.И. Смирнов, И.А. Смирнов, D. Wlosewicz, H. Misiorek, Cz. Sulkowski, A. Jezowski, A.R. de Arellano-Lopez, J. Martinez-Fernandez. ФТТ 51, 2123 (2009).
- [7] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Dominguez-Rodriguez, V. Fernandez-Quero, M. Singh. Int. J. Appl. Ceram. Technol. 1, 95 (2004).
- [8] P. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961 (1998).
- [9] C.E. Byrne, D.C. Nagle. Carbon 35, 267 (1997).
- [10] C. Zollfrank, H. Siber. J. Eur. Ceram. Soc. 24, 495 (2004).
- [11] J. Martinez-Fernandez, A. Munoz, A.R. de Arellano-Lopez, F.M. Varela-Feria, D. Dominguez-Rodriguez, M. Singh. Acta Matger. 51, 3259 (2003).
- [12] В.В. Попов, Т.С. Орлова, J. Ramirez-Rico. ФТТ 51, 2118 (2009).
- [13] В.Ф. Гантмахер. Электроны в неупорядоченных средах. Физматгиз, М. (2003). 174 с.
- [14] V.S. Kaul, K.T. Faber, R. Sepulveda, A.R. de Arellano-Lopez, J. Martinez-Fernandez. Mater. Sci. Eng. A 428, 225 (2006).
- [15] T.E. Wilkes, J.Y. Pastor, J. Llorca, K.T. Faber. J. Mater. Res. 23, 1732 (2008).
- [16] A.K. Kercher, D.C. Nagle. Carbon 40, 1321 (2002).
- [17] T.E. Wilkes, M.L. Young, R.E. Sepulveda, D.C. Dunand, K.T. Faber. Scripta Mater. 55, 1083 (2006).
- [18] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоиздат, М. (1991). 1232 с.
- [19] W.W. Tyler, A.C. Wilson. Phys. Rev. 89, 870 (1953).
- [20] W.S. Rothwell. J. Appl. Phys. 39, 1840 (1968).
- [21] A.K. Kercher, D.C. Nagle. Carbon 40, 15 (2003).
- [22] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 20, 1500 (1987).
- [23] А.И. Китайгородский. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. Изд-во технико-теорет. лит., М.-Л. (1952). 588 с.
- [24] B.E. Warren. Phys. Rev. 59, 693 (1941).
- [25] А. Гинье. Рентгенография кристаллов. ГИФМЛ, М. (1961). 604 с.
- [26] Э.А. Бельская, А.С. Тарабанов. В сб.: Теплофизические свойства твердых тел. Наук. думка, Киев (1970). С. 111.
- [27] A.L. Love. J. Appl. Phys. 22, 252 (1951).
- [28] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Н. Misiorek, J. Mucha, A. Jezowski. ФТТ 48, 586 (2006).
- [29] Е.Я. Литовский. Изв. АН СССР. Неорган. материалы 16, 559 (1980).
- [30] В.В. Попов, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. Тез. докл. Всесоюз. конф. "Физика полупроводников и полуметаллов". Изд-во РГПУ им. А.И. Герцена, СПб. (2002). С. 122.