Химия и физика полимеров и фуллеренов, биология и фармакология

Структура магнитоуправляемых наноразмерных носителей сенсибилизатора фотодитазина по данным малоуглового рассеяния нейтронов

© Ю.В. Кульвелис, В.А. Трунов, В.Т. Лебедев, Д.Н. Орлова, Gy. Török*, М.Л. Гельфонд**

Петербургский институт ядерной физики им. Б.П. Константинова РАН,

Гатчина, Ленинградская обл., Россия

* Research Institute for Solid State Physics and Optics,

Budapest, Hungary

** Научно-исследовательский институт онкологии им. Н.Н. Петрова,

Санкт-Петербург, Россия

E-mail: kulvelis@pnpi.spb.ru

Впервые синтезированы и исследованы методом малоуглового рассеяния нейтронов наноразмерные комплексы феррочастиц с сенсибилизатором "фотодитазин", использующимся в фотодинамической терапии в онкологии. Определена структура комплексов, исследовано влияние на них биосовместимого полимера плюроника. Обсуждаются возможности применения комплексов для магнитоуправляемого транспорта фотосенсибилизатора в клетки и ткани при лечении онкологических заболеваний методом фотодинамической терапии.

Работа поддержана Правительством Санкт-Петербурга (грант № 2.4/25-04/08)

1. Введение

Актуальной проблемой физики и химии функциональных наноструктурных материалов является создание гибридных систем, включающих магнитные наночастицы, низкомолекулярные и полимерные поверхностноактивные вещества, служащие для связывания медицинских препаратов с магнитными частицами, играющими роль управляемых полем носителей лекарственных веществ [1,2]. В связи с этим до последнего времени разрабатывались в основном феррожидкости на основе наночастиц ферритов, концентрирование которых в опухолях при внешнем воздействии (инфракрасном облучением или магнитным полем) создавало эффект гипертермии [2,3], который приводит к разрушению не только опухолевых, но и здоровых клеток. С точки зрения избирательного действия наиболее эффективными представляются феррожидкости — носители лекарственных препаратов за счет наличия комплекса препарата с магнитной частицей и последующей управляемой полем локализации препарата в нужном месте организма. Указанная область исследований еще только формируется [4,5]. Направление синтеза и нейтронных исследований структуры и физико-химических свойств феррожидкостей развивается в ПИЯФ РАН в течение нескольких десятилетий и в последнее время сконцентрировано на изучении впервые разработанных гибридных многокомпонентных систем на основе стабилизированных наночастиц феррита в водной среде, являющихся биосовместимыми и способными связывать лекарственные препараты, не подавляя, а усиливая их лечебное действие, что было показано в серии опытов на клеточных культурах [6]. Следует подчеркнуть, что в таких системах достижение необходимого комплекса функциональных свойств требует в первую очередь создания особой (оптимальной) наноструктуры, наиболее эффективным методом анализа которой является малоугловое рассеяние нейтронов. Целью настоящей

Рис. 1. Структура фотодитазина.

работы являлось изучение структуры и молекулярных корреляций в феррожидкостях с частицами в виде комплексов магнетита с фотодитазином (производное хлорина, рис. 1) — российским препаратом для фотодинамической терапии в онкологии, разработанным в качестве фотосенсибилизатора для лечения целого ряда опухолей [7].

2. Экспериментальная часть

Для приготовления биосовместимых феррожидкостей синтезировали магнетит стандартным методом Массара (конденсация солей Fe²⁺ и Fe³⁺) [8]. Стабилизацию полученных частиц магнетита проводили в водной среде, покрывая их лимонной кислотой [9,10]. Препарат фотодитазин (ООО "Вета-Гранд") использовали в виде раствора в водной среде (исходная концентрация 0.5 g/dl). Установлено, что фотодитазин связывается с феррочастицами (Fe₃O₄) [6]. Ранее было показано, что эффективность и биологическая совместимость препарата фотодитазина повышаются при его связывании с плюроником (блок-сополимер этиленоксида и пропиленоксида) [11]. Поэтому при синтезе в феррожидкости вводили макромолекулы плюроника (F-127, молекулярная масса — 12300, фирма BASF), облегчающие проникновение лекарств через биологические барьеры, усиливающие их накопление в опухолевых клетках (увеличение фотокаталитической активности фотодитазина до 5-10 раз) [11].

Для выявления особенностей строения впервые синтезированных многокомпонентных биологически активных феррожидкостей в нейтронных экспериментах проводился сравнительный анализ структуры ряда феррожидкостей различного состава: образец № 1 магнитная жидкость, № 2 — магнитная жидкость с плюроником, № 3 — магнитная жидкость с плюроником и фотодитазином, № 4 — магнитная жидкость с фотодитазином. Образцы приготовлены в среде, содержащей 90 vol.% D₂O и 10 vol.% H₂O. Магнетит, плюроник и фотодитазин имеют величины плотности длины когерентного ядерного рассеяния, равные $K_m = 7.0 \cdot 10^{10} \text{ cm}^{-2}$, $K_{\text{pl}} = 0.5 \cdot 10^{10} \text{ cm}^{-2}$ и $K_{\text{ph}} = 1.3 \cdot 10^{10} \text{ cm}^{-2}$ соответственно. Разности этих значений и плотности длины когерентного ядерного рассеяния среды растворителя $K_{\rm sl} = 5.7 \cdot 10^{10} \, {\rm cm}^{-2}$ определяют величину контраста в рассеянии для каждой из компонент: $\Delta K_m = K_m - K_{\rm sl} = 1.3 \cdot 10^{10} \,{\rm cm}^{-2};$ $\Delta K_{\rm pl} = -5.2 \cdot 10^{10} \,{\rm cm}^{-2};$ $\Delta K_{\rm ph} = -4.4 \cdot 10^{10} \,{\rm cm}^{-2}.$ Таким образом, по отношению к растворителю магнетит обладает положительным контрастом, а плюроник и фотодитазин характеризуются отрицательными значениями контраста одного порядка величины. Отсюда следует, что в этих условиях рассеивающая способность плюроника и фотодитазина, определяемая квадратом фактора контраста, на порядок выше, чем у магнетита.

Эксперименты по малоугловому рассеянию нейтронов с длинами волн $\lambda = 0.39$ и 0.75 nm (ширина спектра $\Delta\lambda/\lambda = 0.1$) проводили на дифрактометре "Yellow Submarine" (Институт физики твердого тела и оптики, Будапешт) в диапазоне переданных импульсов $q = \frac{4\pi \sin \theta/2}{\lambda} = 0.1 - 1 \text{ nm}^{-1}$ при физиологической температуре 37°С. Сечения рассеяния $d\sigma/d\Omega(q)$ (в единичный телесный угол детектора и на единицу объема в зависимости от переданного импульса q) определяли нормировкой интенсивностей рассеяния на образцах к интенсивностям рассеяния на калибровочном образце (слой H₂O толщиной 1 mm), являющегося стандартом известного сечения рассеяния.

3. Результаты и их обсуждение

Зависимости сечений рассеяния нейтронов $d\sigma/d\Omega(q)$ от переданного импульса для образцов № 1-4 приведены на рис. 2. Введение в систему плюроника в количестве $\sim 0.5\,\text{mass.}\%$ вызывает усиление рассеяния на порядок в значительной части диапазона импульсов, кроме высоких значений $q \sim 0.8 - 1 \, {\rm nm}^{-1}$. Добавление в десять раз меньшего количества фотодитазина сопровождается соответственно на порядок меньшим приростом сечений, причем не во всей области импульсов. Детальный анализ поведения сечений в этих образцах выполнен с помощью Фурье-преобразования данных и восстановления корреляционных функций $\gamma(R)$ в зависимости от радиуса R с использованием пакета программ ATSAS [12]. Структурные особенности феррожидкостей наглядно прослеживаются в поведении корреляционных функций на рис. 3, которые показаны в сферическом представлении $P(R) = \gamma(R) \cdot R^2$ и описывают корреляции плотности длины когерентного рассеяния внутри

Рис. 2. Сечение рассеяния на образцах № 1-4 как функция переданного импульса q. Линии — подгоночные функции по модели (1) для образцов № 1 и 4 и (2) для образцов № 2 и 3. Номера кривых соответствуют номерам образцов.

Рис. 3. Корреляционные функции в сферическом представлении $P = \gamma R^2$ для образцов № 1–4 в зависимости от расстояния *R*. Номера кривых соответствуют номерам образцов.

частицы и в сферических слоях вокруг выбранной частицы на расстоянии радиуса *R*. Для образцов № 1 и 4 без плюроника в спектре корреляций имеется характерная начальная область при $0 \le R \le 5$ nm, которая отвечает корреляциям короткого радиуса — в пределах отдельной частицы. Как известно [13], для однородной сферической частицы радиуса R_P корреляционная функция $P(R) \sim R^2 [1 - (3/4)(R/R_P) + (1/16)(R/R_P)^3]$ имеет максимум при $R^* = 1.05R_P$. В эксперименте максимум, соответствующий радиусу частицы $R_P \approx R^* \sim 3-4$ nm, перекрывается с максимумом на расстоянии $R_1 \sim 8$ nm. Кроме того, выражены пространственные корреляции частиц на расстояниях $R_2 \sim 13 \,\mathrm{nm}, R_3 \sim 20 \,\mathrm{nm},$ $R_4 \sim 28 \,\mathrm{nm}$ и $R_5 \sim 38 \,\mathrm{nm}$. Наличие максимумов в позициях R₁₋₅ явно показывает структурирование коллоидных систем № 1 и 4, что присуще феррожидкостям вообще. Феррочастицы обладают магнитными моментами, поэтому в феррожидкостях за счет дипольного притяжения вероятно образование цепных кластеров частиц [14]. В образцах № 1 и 4 (рис. 3) наблюдается формирование именно цепных структур длиной до ~10 диаметров частицы. Об этом свидетельствует соотношение между корреляционными радиусами $R_5/5 \approx R_4/4 \approx R_3/3 \approx R_2/2 \approx R_1 \approx 2R_P$, показывающее, что значения R_{1-5} кратны среднему диаметру частиц $2R_P \sim 8$ nm. Данная структурная модель была применена для анализа данных по образцам № 1 и 4 в импульсном пространстве (рис. 2).

Функция рассеяния

$$\frac{d\sigma}{d\Omega}(q) = \frac{\sigma(0)}{\left(1 + (qR_c)^2\right)^2} \left(1 + \sum_{i=1}^5 A_i \, \frac{\sin qR_i}{qR_i}\right) \quad (1)$$

включает квадрат формфактора частиц $\frac{1}{(1+(qR_c)^2)^2} = F^2(q)$ в виде квадрированного лоренциана, зависящий от корреляционного радиуса частицы R_c . Как показано ранее [15], функция $F^2(q)$ такого вида хорошо аппроксимирует данные рассеяния нейтронов на частицах феррожидкости при наличии дисперсии размера частиц (относительная дисперсия радиуса $\Delta R_P/R_P \sim 0.5$). Важно, что при этом выполняется закон Порода [13] для частиц с резкими границами, $F^2(q) \sim 1/q^4$ при импульсах $q \gg 1/R_c$ много больше обратного радиуса корреляции частицы, связанного с ее геометрическим радиусом в асимптотике для рассеяния на сфере радиуса $R_P = \sqrt[4]{9/2} R_c \approx 1.5 R_c$. В формуле (1) параметр $\sigma(0) = \sigma_{q \to 0}$ — сечение рассеяния в пределе малых импульсов при отсутствии интерференции волн, рассеянных от разных частиц, имеющих характерный диаметр $D_P \approx 3R_c$. В закон рассеяния (1) входит структурный фактор системы частиц $1 + \sum_{i=1}^{5} A_i \frac{\sin qR_i}{qR_i}$, учитывающий, что центры *i*=1 характерных расстояниях R_{1-5} , как было показано выше. Каждый из параметров А_i — это количество частиц, коррелирующих с любой выбранной частицей на расстоянии R_i от нее. Полученные из аппроксимации данных функцией (1) параметры приведены в табл. 1. Структурные параметры для образца № 4 (с фотодитазином) не очень сильно отличаются от таковых для образца № 1 (без фотодитазина). Как видно из величин параметров (табл. 1), частицы магнетита, имеющие в среднем диаметр $D_P \approx 7 \,\mathrm{nm}$, находятся на характерных расстояниях $R_1 - R_5$, примерно соответствующих тем, при которых наблюдаются максимумы корреляционных функций (рис. 3). Значения параметров $A_{1-4} \sim 2$ показывают, что в среднем в окрестности каждой частицы на расстояниях R_{1-4} находятся по две частицы, что реализуется именно в цепном кластере [14]. Меньшее значение параметра $A_5 < A_{1-4}$ свидетельствует об ослаблении корреляций на расстоянии R_5 , т.е. величина R_5 дает оценку радиуса кластера, который, как показывает суммирование величин A_{1-5} , составлен из ~ 10 частиц.

Введение в систему плюроника, играющего роль полимерного поверхностно-активного вещества, качественно меняет картину молекулярных корреляций (рис. 3). В поведении корреляционных функций для образцов № 2 и 3, различающихся между собой наличием фотодитазина, видны общие закономерности: преобладает главный корреляционный максимум при $R_m \sim 8-9$ nm; корреляции на больших масштабах достаточно слабые; не проявлены

E	1.0	1.3		
R5, m	$36.7 \pm$	$37.5\pm$		P nm
A_5	1.3 ± 0.4	0.9 ± 0.4	-	
R_4, nm	28.3 ± 0.6	28.2 ± 0.7		V
A_4	2.4 ± 6	2.0 ± 6		
R_3 , nm	20.6 ± 0.6	20.2 ± 0.8	(wo	-1/2
A_3	2.3 ± 0.5	1.9 ± 0.7	линофонти	$C_2(0) cm$
R_2, nm	14.2 ± 0.7	14.1 ± 1.2	в № 2 и 3 (
A_2	2.0 ± 0.4	1.4 ± 0.6	ы образцо	/2
R_1 , nm	8.0 ± 0.4	7.9 ± 0.7	и параметр	$c_{-10} m^{-1}$
A_1	2.1 ± 0.3	1.5 ± 0.4	2. Cocraв	0/0
R_c, nm	2.0 ± 0.2	2.5 ± 0.3	Таблица	۰. ر
$\sigma(0),{ m cm}^{-1}$	0.18 ± 0.03	0.29 ± 0.09		% 336m
C _{pd} , mass.%	0	0.049	-	ر ب
$C_{F^{-127}}$, mass.%	0	0		0 336.00
C _{magn} , mass.%	2.49	2.49	F	C
Образец	1	4		Обизрен

Таблица 1. Состав и параметры образцов № 1 и 4 (без плюроника)

	$R_m, { m nm}$	9.08 ± 0.11	9.7 ± 0.3
	A	1.77 ± 0.12	0.96 ± 0.12
	<i>r</i> 2, nm	7.3 ± 0.4	8.0 ± 0.4
	$S_2(0), \mathrm{cm}^{-1/2}$	1.02 ± 0.07	1.02 ± 0.05
	r_1 , nm	3.1 ± 0.4	3.57 ± 0.19
	$S_1(0), { m cm}^{-1/2}$	0.53 ± 0.09	0.74 ± 0.06
	$C_{\rm pd}$, mass.%	0	0.049
	C_{F-127} , mass.%	0.54	0.51
	$C_{\rm magn}$, mass.%	2.49	2.50
	Образец	2	3

особенности, связанные с отдельными феррочастицами. Как показывают оценки, количество плюроника в системе таково, что при равномерном и полном осаждении его цепей на поверхность частиц последние имели бы тонкую полимерную оболочку толщиной всего ~ 0.9 nm, что не увеличило бы существенно их наблюдаемый размер. Следовательно, объекты с характерным радиусом $R_m \sim 8-9$ nm — это не отдельные частицы, а кластеры. Они представляют собой уже не рыхлые цепные, а плотные глобулярные структуры, способные с некоторой вероятностью ассоциировать в растворе. Простейшая сферически-симметричная модель такого кластера представляется в виде плотного ядра, окруженного оболочкой. Данные для образцов № 2 и 3 были аппроксимированы следующей функцией рассеяния:

$$\frac{d\sigma}{d\Omega}(q) = \left(S_1(0) \frac{3(\sin qr_1 - qr_1 \cos qr_1)}{(qr_1)^3} + S_2(0) \frac{3(\sin qr_2 - qr_2 \cos qr_2)}{(qr_2)^3}\right)^2 \left(1 + A \frac{\sin qR_m}{qR_m}\right). \quad (2)$$

Формфактор здесь соответствует сферическим образованиям [13] с ядром из магнетита (радиус r_1) и оболочкой (внешний радиус r_2), которая может содержать частицы, связанные с цепями плюроника. Структурный фактор учитывает пространственные корреляции на одном характерном расстоянии R_m . Параметры, полученные из обработки данных, приведены в табл. 2.

Как показывают результаты (табл. 2), в образцах № 2 и 3 (с плюроником) частицы магнетита имеют примерно те же размеры $2r_1 \sim 6-7$ nm, что и в образцах № 1 и 4. Различие заключается в том, что в феррожидкостях № 2 и 3 феррочастицы несут на себе адсорбированные молекулы плюроника. Расчеты с использованием отношения вкладов в рассеяние ядра $S_1(0)$ и оболочки $S_2(0)$ (табл. 2) и известных длин когерентного рассеяния нейтронов на ядрах всех компонентов системы [16] показали, что для образца № 2 средняя плотность длины рассеяния оболочки составляет $K_{\rm SH} = 5.9 \cdot 10^{10} \, {\rm cm}^{-2}$, что превышает значения длин рассеяния плюроника $K_{\rm pl} = 0.5 \cdot 10^{10} \, {\rm cm}^{-2}$ и растворителя $K_{\rm sl} = 5.7 \cdot 10^{10} \, {\rm cm}^{-2}$. Следовательно, оболочка содержит не только плюроник и растворитель, но также и частицы магнетита, для которого $K_m = 7.0 \cdot 10^{10} \,\mathrm{cm}^{-2}$. Для образца № 3 (с фотодитазином) $K_{\rm SH} = 5.8 \cdot 10^{10} \, {\rm cm}^{-2}$, что почти не отличается от значения $K_{\rm SH}$ образца № 2, поэтому выводы о наличии магнетита в оболочке справедливы для обоих образцов. Оценки показали, что оболочки включают ~ 6 частиц магнетита. Таким образом, структуризация феррожидкостей № 2 и 3 происходит путем агрегации частиц в кластеры, состоящие из центральной частицы и ~ 6 частиц, формирующих сферический слой с внешним диаметром $2r_2 \sim 15 - 16 \,\mathrm{nm}$. При этом в растворе образуются группы преимущественно из 3 (образец № 2) или 2 (образец № 3) кластеров на расстоянии $R_A < 2r_2$ (оболочки взаимно проникают). Этот вывод следует из значений параметра A, определяющего количество частиц в группе: $A + 1 = 2.77 \sim 3$ (образец № 2); $A + 1 = 1.96 \sim 2$ (образец № 3). Присутствие фотодитазина (образец № 3) немного ослабляет корреляции частиц и несколько увеличивает расстояние R_m между их центрами от 9.1 до 9.7 nm. В растворе наблюдаются также слабые корреляции на расстояниях $R > 2r_2$, превосходящих диаметр кластера.

4. Заключение

Образование комплексов фотодитазина и плюроника с частицами магнетита приводит к структурированию феррожидкости с образованием компактных глобулярных кластеров в отличие от явлений ассоциации феррожидкостей классического типа, частицы которых склонны формировать протяженные цепные структуры. Полученные комплексы с фотодитазином и плюроником остаются стабильными длительное время при 20–40°С, что важно для применения в медицине.

Авторы благодарят Н.С. Мелик-Нубарова и Т.М. Жиентаева за предоставление образцов плюроника, Л. Рошта за поддержку в проведении экспериментов и Г.В. Пономарева за полезные обсуждения.

Список литературы

- R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach, C. Alexiou. J. Phys.: Cond. Matter 18, S 2893 (2006).
- [2] A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix. J. Magn. Magn. Mater. 201, 413 (1999).
- [3] N.A. Brusentsov, V.V. Gogosov, T.N. Brusentsova, A.V. Sergeev, N.Y. Jurchenko, A.A. Kuznetsov, O.A. Kuznetsov, L.I. Shumakov. J. Magn. Magn. Mater. 225, 113 (2001).
- [4] N.A. Brusentsov, A.Yu. Baryshnikov, F.S. Bayburtskiy, L.A. Goncharov. http://magneticliquid.narod.ru/autority/066.htm.
- [5] M. Idowu, T. Nyokong. J. Photochem. Photobiol. 188, 200 (2007).
- [6] Ю.В. Кульвелис, В.А. Трунов, В.Т. Лебедев, Д.Н. Орлова, М.Л. Гельфонд, Н.С. Мелик-Нубаров, Т.М. Жиентаев. Препринт ПИЯФ № 2736. Гатчина (2007). 21 с.
- [7] М.Л. Гельфонд. Физ. медицина 15, 31 (2005).
- [8] R. Massart. IEEE Trans. Magn. 17, 1247 (1981).
- [9] Ф.С. Байбуртский, Л.А. Гончаров, Н.А. Брусенцов. http://magneticliquid.narod.ru/medicine/012.htm.
- [10] F. Gazeau, F. Boue, E. Dubois, R. Perzynski. J. Phys.: Cond. Matter 15, S1305 (2003).
- [11] Т.М. Жиентаев, Н.А. Аксенова, Н.С. Мелик-Нубаров, А.Б. Соловьева. Четвертая Всерос. Каргинская конф. "Наука о полимерах 21 веку". М. (2007). Т. 2. С. 383.
- [12] D.I. Svergun. J. Appl. Cryst. 25, 495 (1992).
- [13] Д.И. Свергун, Л.А. Фейгин. Рентгеновское и нейтронное малоугловое рассеяние. Наука, М. (1986). С. 81.
- [14] М.И. Шлиомис. УФН 112, 427 (1974).
- [15] V.T. Lebedev, G.P. Gordeev, E.A. Panasiuk, L. Kiss, L. Cser, L. Rosta, G. Török, B. Farago. J. Magn. Magn. Mater. 122, 83 (1993).
- [16] V.F. Sears. Neutron News 3, 26 (1992).